

Fast, High-Efficiency Separations on a 4 μ m Ion Exchange Phase Using a High-Pressure Ion Chromatography System

Carl Fisher, Barbara Shao, Maria Rey, and Linda Lopez
Thermo Fisher Scientific, Sunnyvale, CA, USA

Overview

Purpose: This poster demonstrates that 4 μ m columns combined with a high-pressure ion chromatography system achieve efficient separations and fast analyses.

Methods: Inorganic anions in fruit juice, wine, or drinking and waste water samples were separated using a Thermo Scientific™ Dionex™ IonPac™ AS11-HC-4 μ m column or Dionex IonPac AS18-4 μ m anion-exchange column in standard and microbore formats. The Dionex IonPac CS19-4 μ m cation-exchange column was used to separate cation standards. These columns were used with the high-pressure Thermo Scientific™ Dionex™ ICS-5000+ Reagent-Free™ HPIC™ system. Eluent suppressors were operated using the Thermo Scientific™ Dionex™ AutoSuppression™ device, either in recycle mode or external water mode, with suppressed conductivity detection. Elution conditions were as described in the figures.

Results: Multiple inorganic anions and organic acids were separated in single runs of fruit juice and wine samples, using a standard (4 mm i.d.) format Dionex IonPac AS11-HC-4 μ m column. Several of the separated components showed enhanced resolution of up to 68 % using the 4 μ m particle size column relative to the 9 μ m counterpart. Inorganic anions in municipal drinking and waste water samples were separated within 5 min with resolution above 1.6 (EP) using a 4 μ m particle size Dionex IonPac AS18-4 μ m microbore (2 mm i.d.) format column. Inorganic cations were eluted in less than 12 minutes by a combination of increased flow rate and an eluent gradient using the Dionex IonPac CS19-4 μ m, 4 mm i.d. column.

Introduction

Four μ m columns separate analytes with greater efficiency, permitting the use of higher flow rates while maintaining resolution and reducing overall run time. Running any column at increased flow rates may cause a decrease in peak resolution. However, the superior chromatographic fidelity achieved using the new 4 μ m columns, including the Dionex IonPac AS11-HC-4 μ m, Dionex IonPac AS18-4 μ m, and Dionex IonPac CS19-4 μ m, minimizes such losses, to provide better separation of ions in complex matrices. Faster flow rates reduce run time and increases productivity when multiple samples are being analyzed, but back pressure is also increased, which is typically >3000 psi. To take advantage of the benefits of 4 μ m columns, they should be combined with a high-pressure instrument, such as the Dionex ICS-5000+ HPIC system, which can operate continuously at up to 5000 psi using eluent generation.

Methods

Sample Preparation

The samples were diluted with deionized water before analysis without other pretreatment, as indicated in the figures.

Equipment and Data Analysis

Dionex ICS-5000+ system
Thermo Scientific™ Dionex™ Chromeleon™ Chromatography Data System (CDS) software

Conditions

Columns:

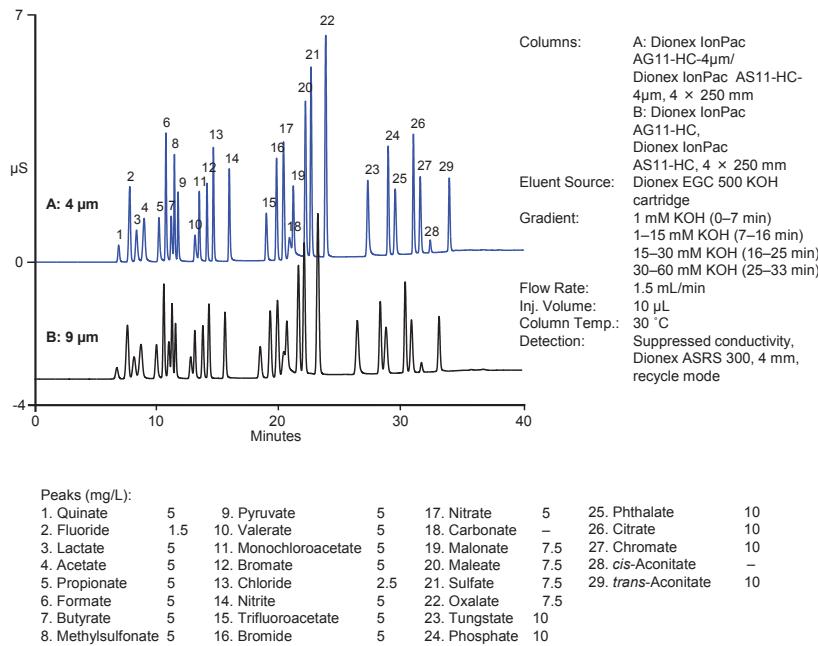
Dionex IonPac AS11-HC-4 μ m, 4 x 250 mm column
Dionex IonPac AS18-4 μ m, 2 x 150 mm column
Dionex IonPac CS19-4 μ m, 4 x 250 mm column

Eluent Source:

Thermo Scientific™ Dionex™ EGC 500 Cartridge for 2 mm and 4 mm columns

Detection: Suppressed conductivity, recycle mode

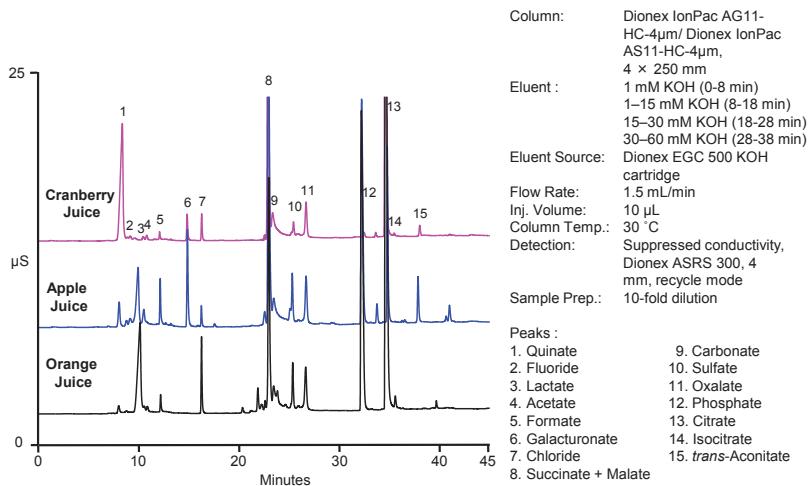
Thermo Scientific™ Dionex™ SRS™ 300 Self-Regenerating Suppressor

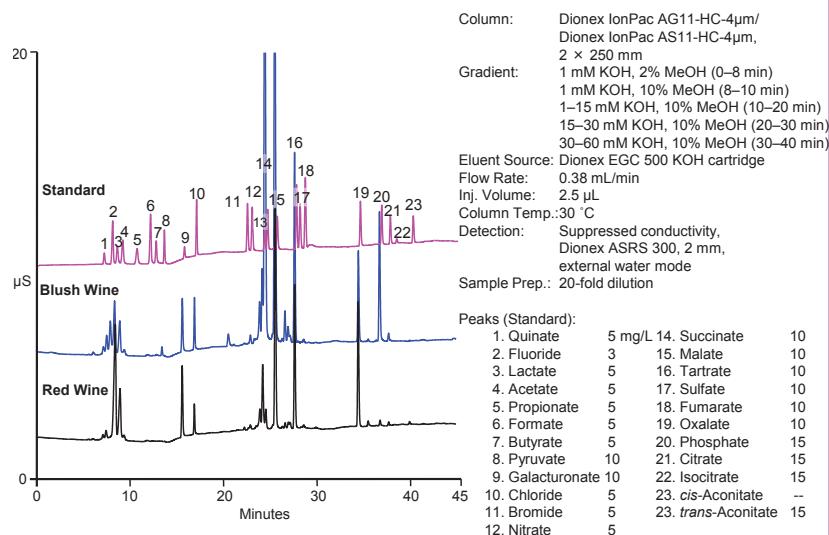

Results

Dionex IonPac AS11-HC-4 μ m Anion-Exchange Column

Four μ m columns such as the Dionex IonPac AS11-HC-4 μ m column can improve resolution and separation of organic acids and inorganic anions, simplifying peak integration. Figure 1 illustrates improved separation for monovalent carboxylic acids, such as lactate and acetate, and an improvement in resolution for formate, methylsulfonate, valerate, and phosphate of 58, 50, 45, and 68%, respectively (Table 1).

The high efficiency of this column permits separation in a single run of a large number of organic acids and inorganic anions in complex sample matrices such as fruit juice or wine samples (see Figures 2 and 3).

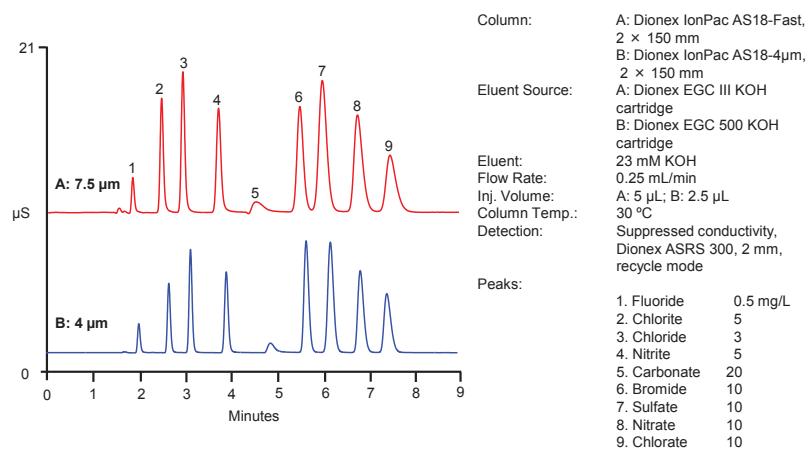

FIGURE 1. The Dionex IonPac AS11-HC-4 μ m column provides improved resolution over the Dionex IonPac AS11-HC column.


TABLE 1. Comparison of resolution obtained on columns with different particle size.

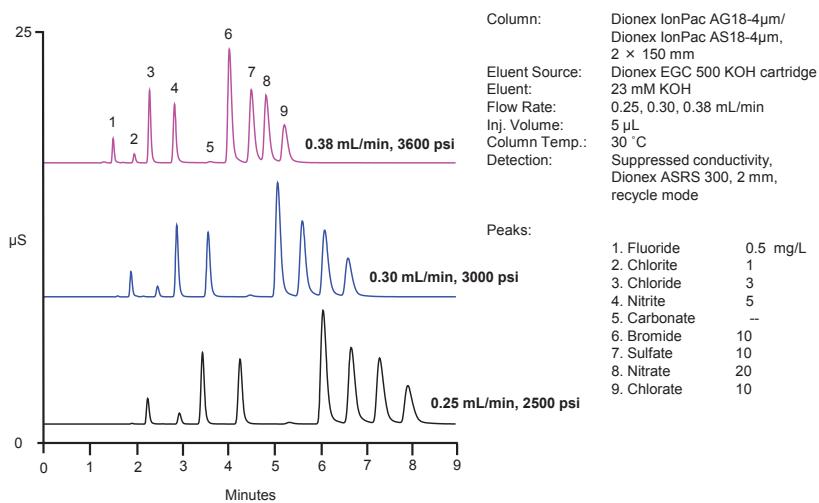
	Lactate (Peak 3)	Formate (Peak 6)	Methylsulfonate (Peak 8)	Valerate (Peak 10)	Phosphate (Peak 24)
Resolution (EP), 9 μ m column	1.17	1.46	1.33	1.12	1.42
Resolution (EP), 4 μ m column	1.90	2.31	2.00	1.62	2.39
Improvement in resolution (%)	62	58	50	45	68

FIGURE 2. Analysis of organic acids and inorganic anions in cranberry, apple, and orange juice using a Dionex IonPac AS11-HC-4 μ m column.

FIGURE 3. Analysis of organic acids and inorganic anions in red and blush wines using a Dionex IonPac AS11-HC-4 μ m column.



Dionex IonPac AS18-4 μ m Anion-Exchange Column


In 1993, the U.S. EPA Method 300.0 (A) defined the use of the Dionex IonPac AS4A anion-exchange column to determine inorganic anions in environmental water samples using a manually prepared carbonate-based eluent and suppressed conductivity detection. With the introduction of Reagent-Free Ion Chromatography (RFIC™) systems, hydroxide-based eluents were electrolytically generated inline and used in combination with anion-exchange columns optimized for hydroxide chemistry. RFIC systems deliver reproducible and precise eluent concentrations, eliminating labor, operator-to-operator variability, and potential errors associated with manual eluent preparation.

The Dionex IonPac AS18-4 μ m column has been developed using Dionex IonPac AS18 column chemistry with 4 μ m resin particles, which maintains peak resolution (Figure 4) while permitting faster flow rates for reduced run times (Figure 5). When this column is combined with a reagent-free HPIC system, inorganic anions that commonly exist in waste or drinking water samples are eluted within 5 minutes at a resolution above 1.6 (EP, Figure 6).

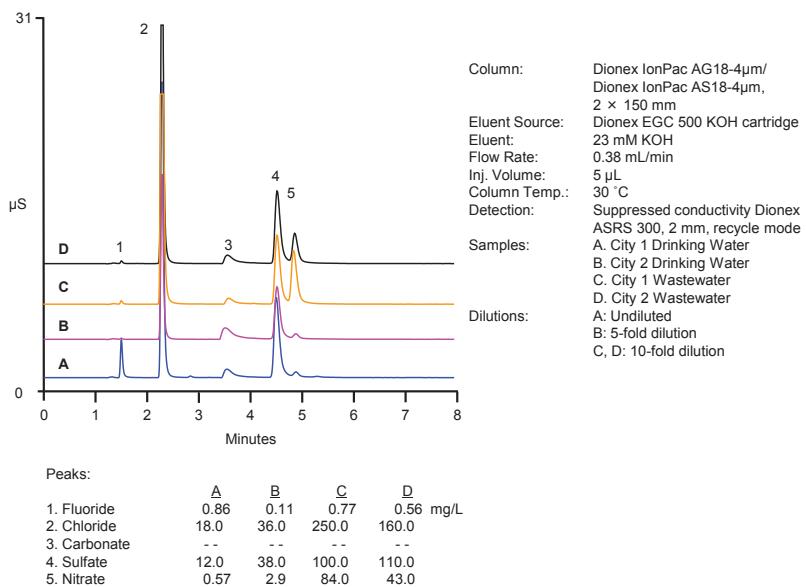
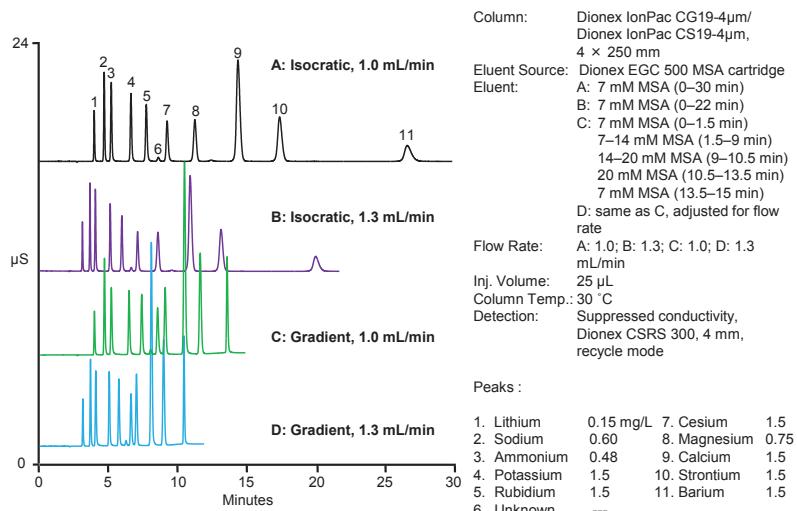

FIGURE 4. Peak efficiency and resolution were enhanced by using a 4 μ m column to separate nine anions.

FIGURE 5. Run times were shortened by increasing the flow rate to separate nine inorganic anions using a Dionex IonPac AS18-4 μ m anion-exchange column.


FIGURE 6. Rapid analysis of inorganic anions in municipal drinking and waste water samples using a Dionex IonPac AS18-4 μ m column.

Dionex IonPac CS19-4 μ m Cation-Exchange Column

Four μ m resin can also be exploited to resolve cations. Figure 7 illustrates how a Dionex IonPac CS19-4 μ m column was used to rapidly separate lithium, sodium, ammonium, potassium, rubidium, cesium, magnesium, calcium, strontium, and barium with high resolution. By increasing the flow rate from 1.0 to 1.3 mL/min and using an eluent gradient that ranged from 7 to 20 mM MSA, the run time was reduced from 30 to 12 minutes. The use of a gradient impacted the shape of the barium peak the greatest, decreasing the peak width at 50% by 7-fold compared to isocratic conditions (0.078 vs 0.54 min.).

FIGURE 7. Fast separation of inorganic cations using a Dionex IonPac CS19-4 μ m column by varying flow rate and elution conditions.

Conclusions

Four μ m resin particles produce highly efficient separations that yield high resolution and fast analyses. Shorter run times benefit the analysis of large sample numbers, which results in higher throughput. The Dionex ICS-5000⁺ HPIC system is designed to operate up to 5000 psi using all column formats, making it the ideal companion system for 4 μ m particle columns.

- The Dionex IonPac AS11-HC-4 μ m column provides improved separation for monovalent carboxylic acids and an increase in resolution of formate, methylsulfonate, valerate, and phosphate of up to 68%, compared to the standard 9 μ m particle size column.
- The Dionex IonPac AS18-4 μ m column provides efficient anion separations at higher flow rates thereby decreasing the time required to analyze drinking and waste water samples.
- Increasing flow rate and using an eluent gradient reduced run time from 30 to 12 minutes and decreased the 50% peak widths for some cations by as much as seven-fold with a Dionex IonPac CS19-4 μ m column.

References

For more information regarding Dionex IonPac AS11-HC and Dionex IonPac AS18 columns, refer to the following Thermo Fisher Scientific application and technical notes:

1. Application Note 143: *Determination of Organic Acids in Fruit Juices*, LPN 1415, Thermo Fisher Scientific, Sunnyvale, CA, 2003.
2. Application Note 154: *Determination of Inorganic Anions in Environmental Water Using a Hydroxide-Selective Column*, LPN 1539, Thermo Fisher Scientific, Sunnyvale, CA, 2003.
3. Fisher, C., Christison, T., Shao, B., Lopez, L. Technical Note 127: *Efficient and Fast Separations of Inorganic Anions in Water Samples Using a 4 μ m Particle Size Microbore Column with a High-Pressure Ion Chromatography System*. Available mid-2013.

www.thermofisher.com/dionex

©2013 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

Australia +61 3 9757 4486

Austria +43 1 333 50 34 0

Belgium +32 53 73 42 41

Brazil +55 11 3731 5140

China +852 2428 3282

Denmark +45 70 23 62 60

France +33 1 60 92 48 00

Germany +49 6126 991 0

India +91 22 2764 2735

Italy +39 02 51 62 1267

Japan +81 6 6885 1213

Korea +82 2 3420 8600

Netherlands +31 76 579 55 55

Singapore +65 6289 1190

Sweden +46 8 473 3380

Switzerland +41 62 205 9966

Taiwan +886 2 8751 6655

UK/Ireland +44 1442 233555

USA and Canada +847 295 7500

Thermo
SCIENTIFIC

Part of Thermo Fisher Scientific