

DT80 Range

DT80/81/82/85 Series 1,2 & 3 Includes CEM20

User's Manual

A complete guide to:

- data acquisition
- data logging
- programming
- sensor wiring
- communications

www.datataker.com

© 2013 ThermoFisher Scientific

DT80 Range User's Manual

© Copyright 2005-2013 Thermo Fisher Scientific Australia Pty Ltd ABN 52 058 390 917 UM-0085-B8

❖ Warranty

Thermo Fisher Scientific Australia Pty Ltd ("Thermo Fisher") warrants the instruments it manufactures against defects in either the materials or the workmanship for a period of three years from the date of delivery to the original customer. This warranty is limited to, and purchaser's sole remedy for a breach of this warranty is, the replacement or repair of such defects, without charge, when the instrument is returned to Thermo Fisher or to one of its authorized dealers pursuant to Thermo Fisher's return policy procedures.

The obligations set forth above shall be void with respect to any damage to the instrument resulting from accident, abuse, improper implementation or use, lack of reasonable care, loss of parts, force majeure, or any other third party cause beyond Thermo Fisher's control. Any installation, maintenance, repair, service, or alteration to or of, or other tampering with, the instruments performed by any person or entity other than Thermo Fisher without its prior written approval, or any use of replacement parts not supplied by Thermo Fisher, shall immediately void and cancel all warranties with respect to the affected instruments.

Thermo Fisher shall not be liable for any incidental, indirect, special, punitive or consequential loss or damages resulting from or arising out of the use of the instrument, In no event shall Thermo Fisher's liability with respect to the instrument, the use thereof, this warranty statement or any cause of action related thereto, under any circumstances exceed the purchase price of the instrument actually paid by purchaser.

Where Thermo Fisher supplies to the customer equipment or items manufactured by a third party, then the warranty provided by the third party manufacturer shall pass through to purchaser, but only to the extent allowed by the original manufacturer or third party supplier.

EXCEPT AS EXPRESSLY PROVIDED IN THIS WARRANTY STATEMENT, THERMO FISHER DISCLAIMS ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED, ORAL OR WRITTEN, WITH RESPECT TO THE INSTRUMENTS, INCLUDING WITHOUT LIMITATION ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. THERMO FISHER DOES NOT WARRANT THAT THE INSTRUMENTS ARE ERROR-FREE OR WILL ACCOMPLISH ANY PARTICULAR RESULT. ANY ADVICE OR ASSISTANCE FURNISHED BY THERMO FISHER IN RELATION TO THE INSTRUMENTS SHALL NOT GIVE RISE TO ANY WARRANTY OR GUARANTEE OF ANY KIND, AND SHALL NOT CONSTITUTE A WAIVER BY THERMO FISHER.

The Purchaser shall be solely responsible for complying with all applicable local, state and Federal laws with respect to the installation, use and implementation of the equipment.

❖ Trademarks

dataTaker is a registered trademark of Thermo Fisher Scientific Australia Pty Ltd

Adobe® Flash® Player. Copyright © 1996 – 2006 Adobe Systems Incorporated. All Rights Reserved. Protected by U.S. Patent 6,879,327; Patents Pending in the United States and other countries. Adobe and Flash are either trademarks or registered trademarks in the United States and/or other countries.

All other brand and product names are trademarks or registered trademarks of their respective holders.

* Regulatory Notices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

❖ Warning

dataTaker products are not authorized for use as critical components in any life support system where failure of the product is likely to affect the system's safety or effectiveness.

❖ Important: Firmware Version Covered in This Manual

This version of the *dataTaker DT80 Range User's Manual* (UM-0085-B8) applies to the *DT80* range of data loggers (DT80, DT80G, DT80L, DT80LM, DT80GL, DT81, DT82E, DT82EM, DT82I, DT85G, DT85L, DT85LM, DT85GL and DT85GLM, Series 1, 2 and 3) running **Version 9.14** firmware.

Contents

Contents	3
Part A – The DT80	13
DT80 Concepts	13
What is the <i>DT80</i> ?	13
The DT80 Product Family	14
DT80-Friendly Software	16
About This Manual	
A Tour of the DT80's Interfaces	
Getting Started	
Sending Commands	
Getting Help	
Designing Your Data Logging System	
Measurements	
What can the DT80 Measure?	
Analog Channels – Introduction	
Digital Channels – Introduction	
Serial Channels – Introduction	
Programming the DT80	23
Typical Workflow	
USB memory devices	25
Format of Returned Data	26
Real-time data	26
Logged Data	27
Part B - Channels	29
Channel Definitions	29
Channel Numbers	30
Channel Number Sequence	
Channel Types	
Internal Channel Types	
• •	
Channel Options	
Overview	
A Special Channel Option — Channel Factor Multiple Reports	
Mutually Exclusive Options	
Order of Application	
Default Channel Options	
Channel Option Table	
Part C – Schedules	45
Schedule Concepts	
What are Schedules?	

	Schedule Syntax	45
T	ypes of Schedules	48
•	General-Purpose Report Schedules	
	Immediate Report Schedules	
	Statistical Report Schedules	
W	Vorking with Schedules	
•	Entering Schedules into the <i>DT80</i> (BEGIN–END)	
	Triggering and Schedule Order	
	Changing a Schedule Trigger	
	Halting & Resuming Schedules	
	Executing Commands in Schedules	
	Time Triggers — Synchronizing to Midnight	
Part D	D – Jobs	57
	What is a Job?	
	Entering a Job	
	Loading an Existing Job	
	Job Structure	
	Job Commands	
	Startup Job	
	ONINSERT Job	
Part E	E – Manipulating Data	61
	caling	
0	Channel Factor	
	Spans (S <i>n</i>)	
	Polynomials (Yn)	
	Thermistor Scaling (T <i>n</i>)	
	Intrinsic Functions (Fn)	
	Combining Scaling Options	
С	calculations	64
	Channel Variables (<i>n</i> CV)	
	Calculation Only Channels	
	Reference Channels	
	Expressions	67
	Combining Methods	70
	Running Average	71
D	Perived Quantities	72
_	Rates and Integrals	
	Edge Timing	
9	statistical Channel Options	
3	Overview	
	Statistical Functions	
M	Iulti Value Statistical Options	
	Histogram (Hx:y:m.nCV)	
	Rainflow Cycle Counting	76
Part F	=	70
	· ····································	

	Alarm Concepts	79
	Alarm Commands	79
	Alarm Number	80
	Alarm Condition	80
	Alarm Digital Action Channels	82
	Alarm Action Text	82
	Alarm Communication Actions	84
	Alarm Action Processes	85
	Alarm Records	89
	Real Time Alarm Return	89
	Logging Alarms	89
	Polling Alarm Inputs	90
Part	t G – Logging and Retrieving Data	91
	Logging Data	91
	Enabling and Disabling Data Logging	
	How Data and Alarms are Stored	
	Logging Options	93
	Factors Which May Prevent Logging	
	Checking Logging Status	94
	Retrieving Logged Data	95
	Overview	
	LISTD – List Available Data	95
	COPYD – Unload Data	99
	DELD - Delete Logged Data	108
	Background Commands	109
	Obsolete Commands	110
	The DT80 File System	111
	Internal File System (B:)	
	External USB Devices (A:)	
	File Commands	
	Data Recovery	114
Part	t H – <i>DT80</i> Front Panel	115
	Display	115
	Displaying Channels and Alarms	
	Bar Graph	
	Controlling what is shown on the display	
	Auto-scrolling	
	Auto-acknowledge	117
	Pop-up Messages	
	Interactive Screens	118
	Display Backlight	118
	User Defined Functions	118
	Defining Functions	
	Selecting Functions	
	Default Functions	
	Keypad operation	119

	Special Key Sequences	119
Stat	us Indicator Lights	120
	Sample Indicator	
	Disk Indicator	120
	Power Indicator	120
	Attn Indicator	120
rt I –	dEX	122
	What is dEX?	122
	dEX vs. Classic Web Interface	
	Connecting to the Web Interface	
	dEX Home Page	
	Starting dEX	
	Browser Requirements	124
dEX	Navigation	124
	Back to the Main Menu (Home)	124
dEX	Security	125
	Enabling dEX Role Based Security	
	dEX User Roles	
	Adding dEX Users	
	Editing dEX Users	
dEX	Supported Languages	129
u L /	Supported Languages	
dEX	Configuration Builder	130
	Configure the logger	
	About Configurations	130
	Using the Configuration Builder	130
	Defining Schedules	132
	Defining Channels	133
	Global Settings	140
	Managing Configurations	
	Logger Controls	
	Preventing Configuration Changes	
dEX	Web Interface	
	Using the Web Interface	
	Status Screens	
	Data Retrieval	
	Displaying Real-Time Measurements	
	Command Window	
	Help	
Cus	tomising the Web Interface	
	Overview	
	The Web Interface Configuration Tool	
	Preventing Configuration Changes	
Clas	ssic Web Interface	
	Browser Requirements	
	Navigating the Web Interface	
	Home Page	168

	Channels Page	169
	Status Page	169
	Files Page	170
	Help Page	170
Cu	ustomising the Classic Interface	171
	Web Application Programming Interface (API)	
	Server-Side Include (SSI) Directives	
	Building A Custom Web Page	
Part J	- Modbus Interface	176
	About Modbus	176
	Connecting to a Modbus Network	176
	Modbus Registers	177
	Putting It All Together	179
Part K	- Communications	183
Ov	verview	183
	Services	183
	Protocols	183
	Physical Ports	184
	About the Communications Diagram	184
Th	ne Command Interface	187
	Connecting to the Command Interface	187
	Command Interface Operation	187
	Detecting DT80 Presence	187
	Password Protection	187
US	SB Port	188
	Configuring the USB Port	188
	About DtUsb	188
	Installing DtUsb	
	Using DtUsb	
	USB Direct Serial Mode	
	Sleep Mode	195
RS	S-232 Communications	196
	Direct RS-232 Connection	196
	RS-232 Flow Control	196
	Sleep Mode	197
Но	ost RS-232 Port	197
	Configuring the Host RS-232 Port	197
Se	erial Sensor Port	199
	Connecting to the Serial Sensor Port	199
	Configuring the Serial Sensor Port	
Ex	cternal Modem	202
	Modem (Remote) RS-232 Connection	
	Automatic Modem Detection	
	DT80-to-Modem Cable	203
	Modem Initialisation	203
	Powering the DT80's Modem	205

	Modem Communications Operation	206
	Setting Up a Remote Connection	206
Part L	- Network Communications	208
TC	CP/IP Concepts	208
	About TCP/IP	
	About This Section	208
	TCP/IP Parameters	208
Int	tegrated Modem	210
	Mobile Plans	
	Getting Started	213
	Configuring the Integrated Modem	213
	Verifying Modem Operation	
	Troubleshooting and Advanced Configuration	220
Co	ommunications Sessions	227
	Session Timing	227
	Error handling	
	Session Diagnostics	
	Ethernet Sessions	234
Et	hernet Communications	236
	Connecting to the DT80 Ethernet Port	
	Ethernet Commands	
	How to set up Ethernet	
	Accessing the DT80 via the Internet	
PF	PP Communications	
	About PPP	
	Setting up PPP	
	Using PPP	
Ne	etwork Services	
	Using the Network Command Interface	
	Using the <i>DT80</i> FTP Server	
	Security	257
Part M	Configuration	250
	3	
Co	onfiguring the DT80	
	Parameters	
	Switches	
	Profile Settings	
	Command Server Timeout ProfileSetting the System Time	
	Automatic Time Adjustment (NTP)	
ъ.		
Re	esetting the DT80	
	Soft Reset	
	Hard ResetSafe Mode	
	Factory Settings	
ъ.	, ,	
Di	agnostic Commands	
	TEST Command	2/3

	Event Logs	274
	STATUS Command	275
	CHARAC Command	275
	SERVICEDATA Command	275
Part N –	Hardware & Power	277
Inpu	its and Outputs	277
	Wiring Panel	277
	Left Side Panel	278
	Right Side Panel (DT8xM only)	
	Front Panel	279
	Rear Panel (DT8xG only)	279
Insid	de the DT80	280
	Accessing the main battery (if fitted)	280
	Accessing the lithium memory backup battery	281
Insta	allation	283
	Dimensions	283
	Operating Environment	283
	Grounding	284
Pow	ering the DT80	285
	Power Subsystem	
	External Power	285
	Internal Power	286
	Power Outputs	288
	Internal Memory-Backup Battery	289
	Monitoring DT80 Power	290
Pow	er Consumption	290
	Power Consumption	290
	Battery Life	295
	Minimising Power Consumption	296
Slee	p Mode	297
	About Sleep Mode	297
	Wake Events	298
	Controlling Sleep	298
	Forced Sleep Mode	298
Part O -	Sensors & Channels	299
Ana	log Channels	
7 11 101	About the Analog Input Terminals	
	Voltage	
	Current	
	4–20mA Current Loops	
	Resistance	
	Bridges	309
	Temperature – Thermocouples	
	Temperature – Thermistors	318
	Temperature – RTDs	319
	Temperature – AD590 Series IC Sensors	319

Temp	perature – LM35 Series IC Sensors	320
Temp	perature – LM135 Series IC Sensors	322
Humi	idity Sensors	323
Frequ	uency	323
Strair	n Gauges – Bridge	324
Strair	n Gauges – Vibrating Wire	325
Strair	n Gauges – Carlson Meter	327
Analo	og Logic State Inputs	331
Digital Ch	nannels	332
_	It the Digital I/O Channels	
	al Inputs	
•	al Outputs	
•	nters – Low Speed	
	nters – High Speed	
	se Encoders	
	nples – Digital and Counters	
	nannel	
	ut SDI-12	
	ng and Configuring an SDI-12 Device	
	ding Data from SDI-12 Devices	
	nple	
	r Considerations	
	bleshooting	
	Serial Channel	
	necting to and Configuring the Serial Port	
	al Channel Commands	
	al Channel Operation	
	rol String – Output Actions	
	rol String – Input Actions	356
	rol String – Example	
	edules	
	al Sensor Direct Mode	
	al Interface Power Control	
	al Channel Debugging Tools	
Seria	al Channel Examples	361
Modbus (Channel	364
Abou	ıt Modbus	364
Conn	necting Serial Modbus Sensors	364
Conn	necting Network Modbus Sensors	365
Read	ding Data from Modbus Devices	366
MOD	BUS Channel Options	367
Block	Transfers	368
Exam	nples	368
Troul	bleshooting	369
Technical	I Details & Troubleshooting	370
	2 Analog Sub-System	
	Inds, Ground Loops and Isolation	
	e Pickup	
	Heating of Sensors	
	ng Optimal Speed from Your <i>DT80</i>	

Part P -	· The CEM20	377
	What is the CEM20?	377
	Connecting CEM20s	377
	CEM20 Addresses	379
	Powering the CEM20	379
	Accessing CEM20 Channels	379
	CEM20 Temperature Reference	380
	Troubleshooting	380
Part Q -	- Security	381
Opti	ional Security	381
-	Enabling Security	381
	User Roles	381
	User Rights	381
	User Management	382
	dEX Security	382
Part R -	- Reference	383
DT8	0 Series Specifications	383
	Analog Inputs	383
	Digital Inputs and Outputs	384
	High Speed Counter Inputs	
	Serial Channels	
	Data Manipulation and Logging	
	Communication Interfaces	
	Network (TCP/IP) Services	
	System	388
CEN	//120 Specifications	390
Con	nmand Summary	391
ASC	CII-Decimal Tables	394
RS-2	232	397
	Signals	397
	Cables	397
Upg	rading DT80 Firmware	399
	Recommended Preparation	
	Firmware Upgrade – USB Flash Device	
	Firmware Upgrade – Host USB or RS232 Port	400
	Firmware Upgrade – Remote TCP/IP	401
	Reverting Back to Old Firmware	401
	In Case of Failed Upgrade	401
	Upgrading Modem Firmware	401
Erro	or Messages	
	Standard Messages	
	Data Errors	
	DT80 Abnormal Resets	
	ssary	
Safe	ety Information	418

General	418
Models with Internal Lead Acid Battery	418
Models with Integrated Modem	418
Index	419

Part A - The **DT80**

Figure 1: The dataTaker DT80G, DT80 and DT81 (rear), DT85G and DT85 (centre), DT82E and CEM20 (front)

DT80 Concepts

What is the DT80?

The dataTaker DT80 range of data acquisition and logging instruments are tools to measure and record a wide variety of quantities and values in the real world.

The web based *dEX* graphical user interface makes it quick and easy to define basic measurement tasks. Logged data can then be easily extracted via a USB "memory stick", or downloaded using the web interface into files ready for import into spreadsheets and data analysis tools.

The *DT80* range of loggers also include a powerful programming language which allows complex systems to be developed and monitored.

Extensive sensor support and communications options, and a rugged and low-power design, make the *DT80* a very flexible data logger.

The *DT80* Product Family

Models

The DT80 product family includes the following models:

- The **DT80** is a full-featured data logger,
- The DT81 is a single channel variant of the DT80.
- The DT82E is a low cost, low power logger designed for environmental applications.
- The **DT82I** is designed for industrial applications.
- The DT85 is an expanded and enhanced version of the DT80.
- The DT80L and DT85L are low power variants of the DT80 and DT85.
- The **DT80G** and **DT85G GeoLoggers** are designed for Geotechnical applications.
- The **DT80GL** and **DT85GL** are low power variants of the DT80G and DT85G.
- The DT82EM3, DT80LM3, DT85LM3 and DT85GLM3 contain an inbuilt GSM/EDGE/WCDMA cellular modem.
- The DT82EM2, DT80LM2, DT85LM2 and DT85GLM2 contain an inbuilt GSM/EDGE cellular modem.
- The CEM20 (Channel Expansion Module) is a 20-channel analog multiplexer which can be used to expand the number of analog input channels on a DT80 or DT85.

All of these models operate in a similar way; the differences are mainly to do with the number of input channels and other hardware features.

Table 1 (P15) lists the main differences between each model.

Series 1, 2 and 3

In January 2008, the original DT80, DT81 and DT85 models were superseded by enhanced **Series 2** models. These offered an all-new web based interface (**dEX**), additional power outputs, and more flexible analog input switching.

Series 3 models were introduced from October 2010. These supersede Series 2 and include enhanced resistance measurement options and an isolated switched 5V power output.

Series 2 and 3 units are clearly labelled as such on the front panel.

When a logger model number is displayed, the series is shown as a suffix, e.g. "DT85L-3" is a Series 3 DT85L.

GeoLoggers

The DT80G/GL and DT85G/GL "GeoLoggers" are equivalent to the DT80 and DT85, but also include direct support for **vibrating wire strain gauges**, which are widely used in geotechnical applications; see *Strain Gauges – Vibrating Wire* (P325). Throughout this manual, references to the DT80 and DT85 also refer to the DT80G and DT85G respectively, unless otherwise noted.

Low Power Models

Most *DT80* models include an internal 6V lead acid battery. However the low power "L" and "E" models do not include an internal battery and are instead optimised for operation with an external battery (often solar charged). Throughout this manual, references to the DT80 and DT85 also refer to the DT80L and DT85L respectively, unless otherwise noted.

Modem Models

The "M" models (DT82EM, DT80LM, DT85LM, DT85GLM) include an integrated cellular modem, which provides a convenient wireless solution for control of the *DT80* and data retrieval. The "M3" models support 2G and 3G networks (GSM/GPRS/EDGE/WCDMA), while the "M2" models support 2G only (GSM/GPRS/EDGE). Apart from this difference, the M2 and M3 variants operate identically.

Channel Expansion Module

The CEM20 is an analog multiplexer designed to work with a DT80 or DT85 Series 2 logger. It provides an easy way to expand the number of input channels. Up to 16 CEM20 modules can be connected to a DT85, giving a total of 320 input channels. See *The CEM20* (P377).

Note: In this manual, the term *DT80* (italics) is used to refer to <u>all</u> products (DT80, DT81, DT82 and DT85; Series 1, 2 and 3). If a feature or behaviour is specific to a particular model, this will be made clear in the text.

Feature	DT81-1	DT80-1	DT85-1	DT81-2	DT82E-2	DT82I-2	DT80-2	DT80G-2	DT85-2	DT85G-2	DT82E-3	DT82EM2-3	DT82EM3-3	DT82I-3	DT80-3	DT80G-3	DT80L-3	DT80LM2-3	DT80LM3-3	DT80GL-3	DT85-3	DT85G-3	DT85L-3	DT85LM2-3	DT85LM3-3	DT85GL-3	DT85GLM2-3	DT85GLM3-3
			d	iscor	ntinu	ed m	odel	S										cur	rent	mod	els							
Analog input channels	1	5	16	1	2	2	5	5	16	16	2	2	2	2	5	5	5	5	5	5	16	16	16	16	16	16	16	16
Fully isolated analog input pairs (+- and *# terminals switched independently)	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
2-wire resistance measurements on *#, +# and -# terminal pairs	-	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Vibrating wire strain gauge support	-	-	-	-	-	-	-	✓	-	✓	-	-	-	-	-	✓	-	-	-	✓	-	✓	-	-	-	✓	✓	✓
CEM20 modules supported	-	-	-	-	-	-	5	5	16	16	1	-	-	-	5	5	5	5	5	5	16	16	16	16	16	16	16	16
Digital I/O channels (open-drain outputs)	3	4	4	3	3	4	4	4	4	4	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Digital I/O channels (logic outputs / SDI-12)	1	4	4	1	1	-	4	4	4	4	1	1	1	-	4	4	4	4	4	4	4	4	4	4	4	4	4	4
High speed counter inputs	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	7	4	7	7	7	4	7	7
Phase encoder inputs	1	2	2	1	-	2	2	2	2	2	-	-	-	2	2	2	2	2	2	2	3	2	3	3	3	2	3	3
RS232/422/485 communications port	-	✓	✓	-	-	✓	✓	✓	✓	✓	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
RS232 communications port	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	-	-	✓	✓	✓	✓	-	-	✓	✓	✓	✓	-	-	✓	-	-
USB communications port	✓	✓	✓	✓	-	-	✓	✓	✓	✓	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Ethernet port	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Integrated GSM/GPRS/EDGE/WCDMA modem	-	-	-	-	-	-	-	-	-	-	-	-	✓	-	-	-	-	-	✓	-	-	-	-	-	✓	-	-	✓
Integrated GSM/GPRS/EDGE modem	-	-	-	-	-	-	-	-	-	-	-	✓	-	-	-	-	-	✓	-	-	-	-	-	✓	-	-	✓	-
USB memory device port	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Switched 12V power output	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Unswitched external power output	-	-	✓	-	-	-	-	-	✓	✓	-	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓
Switched isolated 5V power output	-	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Battery charger for internal/external battery	✓	✓	✓	✓	-	✓	✓	✓	✓	✓	-	-	-	✓	✓	✓	-	-	-	-	✓	✓	-	-	-	-	-	-
Internal battery (capacity in Ah)	1.2	1.2	4.0	1.2	-	1.2	1.2	-	4.0	4.0	-	-	-	1.2	1.2	-	-	-	-	-	4.0	4.0	-	-	-	-	-	-
Modbus master function	-	✓	✓	-	-	✓	✓	✓	✓	✓	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
LCD display & keypad	-	✓	✓	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Status LEDs	4	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Classic web interface (HTML)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
dEX Enhanced web interface (Flash)	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

Table 1: Feature listing for DT80 Range data logger models

DT80-Friendly Software

Programming and Configuration

There are three main ways to set up and program the DT80.

- **dEX** is a web based application for programming and monitoring *DT80* Series 2/3 data loggers. *dEX* is built into the logger (no installation required) and runs in your web browser. It provides a totally graphical interface, which means that knowledge of the *dataTaker* programming language is not required. Channels and schedules are defined simply by clicking on icons and making selections from menus and dialog boxes; *dEX* will then generate the required *DT80* program and load it onto the logger.
- Alternatively, commands entered interactively and then sent to the DT80 via one of its comms ports or a TCP/IP network. This allows full access to the DT80's capabilities. DeTransfer, or the enhanced web interface's command window, are the best tools for the job here. They both have separate send and receive windows, a macro facility, and many other useful features. A standard terminal program (e.g. HyperTerminal) can also be used.
- Finally, you can develop a *DT80* program off-line (e.g. using a text editor), then transfer it to the *DT80* using a USB memory device or send it as a file using *DeTransfer*.

Viewing Data and Status

Once the DT80 has been set up, there are a number of options for retrieving data and monitoring status:

- The *DT80*'s inbuilt **web interface** (*dEX*) provides a convenient way to access current data values and status information from any web browser. *dEX* is available on all Series 2 or 3 loggers.
- A simple HTML-based web interface is also provided on all loggers. This can be customised if required to provide an
 application-specific user interface. This interface is designed to operate efficiently on slow communications networks
 or on portable devices with a small display screen.
- **DeTransfer** can be used to view real-time and logged data in text format.
- dataTaker Instrument driver for LabVIEW™ is a set of drivers and documentation which allows dataTaker data loggers to be incorporated in a LabVIEW environment. LabVIEW is National Instruments' industry-leading graphical software development environment for measurement and automation applications.

All software is provided on the CD supplied with your *DT80*, and updates are available from the dataTaker website, www.datataker.com (Support/Downloads section).

About This Manual

This manual is intended for all users of the DT80. It describes:

- how to connect sensors and other devices to the DT80's input and output channels.
- how to program the DT80 to collect and return data as required.
- how to manage the data that the DT80 collects.

The main focus of this manual will be on directly programming the *DT80* using its command language. However, most of the concepts discussed here also apply when building programs using tools such as *dEX*.

A Tour of the DT80's Interfaces

The *DT80*'s interfaces with the outside world are grouped into three main areas: user interface (top), sensor interface (front) and communications interface (side). See also *Inputs and Outputs* (P277).

❖ User Interface

On the top panel of the *DT80* you will find controls which allow the user to interact with the unit during operation – without requiring a host computer:

- A 2-line LCD display shows status messages, measured values, and a menu of pre-defined functions (not DT81)
- Six keypad buttons allow the user to navigate between the various displayed options (not DT81)
- Four status LEDs are provided the blue **Sample** LED flashes each time a measurement is taken, the green **Disk** LED indicates internal flash disk activity, the red **Attn** LED indicates various warning conditions, and the green **Power** LED flashes at 3 second intervals while the logger is powered and not in low "sleep" mode. The duty cycle of the flash indicates whether the logger is externally powered (long flashes) or running from its internal battery (short flashes). (Note that the **Power** LED is not present on DT80 Series 1.)
- A USB socket allows connection of a USB memory device, which provides a convenient way to retrieve data from the DT80 (or load a program onto it)

❖ Sensor Interface

On the sloping front panel of the *DT80* there are two rows of terminal blocks – digital channels on the left, analog channels on the right. The green terminal blocks can be quickly unplugged from the *DT80* without unscrewing the sensor cabling.

This interface includes:

- 8 digital input/output/counter channels (1D 8D), 4 of which are SDI-12 compatible (DT82I: 4 channels; DT81/82E: 4 channels, one of which is SDI-12 compatible)
- an input to wake the DT80 from low power "sleep" mode (WK)
- 4 high speed counter inputs (7 on DT85/85L Series 3) (1C 4C)
- 2 phase encoder inputs, shared with the counter inputs connected) (1PE 2PE) (one phase encoder input on DT81, none on DT82E, 3 on DT85/85L Series 3)
- a pair of voltage free relay contact outputs (RELAY A and B)
- a general purpose switched 12V 150mA power output (12V) (DT80/81/82E Series 2/3 and DT85 only)
- a general purpose current limited (300mA) power output (PWR OUT), which is derived from the external power input (DT85 only)
- an isolated switched 5V power output (5V SW) (Series 3 only)
- digital / power ground terminals (DGND)
- an RS232/422/485 compatible serial port (Tx, Rx, RTS and CTS) (not present on DT81/82E)
- a number of analog input channels (5 channels for DT80, 1 channel for DT81, 16 channels for DT85)
- an external excitation input (EXT *)
- isolated analog ground terminals (AGND on DT80/81, EXT# on DT80 Series 2 and DT85)

(Note that early production DT80 models only had 4 analog inputs.)

Communications/Power Interface

On the left side panel you have a variety of connectivity options:

- 10-Base-T Ethernet for connection to a host computer or local area network
- USB for high speed connection to a host computer (not present on DT82)
- RS232 for connection to host computer or modem (not present on DT8xM)
- two alternative DC power connectors a standard plug-pack socket (DC jack) and a 4-pin terminal block (2-pin for DT82E/80L/85L)

For more details, see Communications (P183)

❖ Wireless Modem Interface (DT8xM only)

On the right side panel are the integrated modem ports:

- SIM card slot (subscriber identity module)
- red status LED
- coaxial screw connector for optional "receive diversity" antenna (DT8xM3 only)
- coaxial screw connector for main antenna.

A threaded earth point is also available on both left and right side panels. See Grounding (P284).

Getting Started

Power

Powering the DT80(P285) discusses the ways to provide power to the DT80. The simplest option is to plug in the supplied AC adaptor.

All *DT80* models except the DT82E include an internal 6V lead-acid battery which can power the logger if the main external supply is interrupted.

Important The *DT80* is shipped with its main internal battery disconnected. We recommend the battery is connected as soon as practical so that it can charge from the mains adaptor or other external power source. This is achieved by simply plugging the green power connector, see *Powering the DT80* (P285).

Switch On!

When power is connected, you should observe:

- the LCD backlight switches on (DT80/85), and the green Power LED starts flashing
- a brief clicking sound as the unit performs an initial self-calibration
- DT80 restarted / Power loss is displayed on the LCD
- the front panel LEDs flash a few times then the red Attn LED continues to flash.

The DT80 is warning you that its power has been interrupted. Press any of the front panel keys to clear this indication. The Attn LED should stop flashing and the display should now read: DT80 V9.14 / No current job. This indicates that:

• the version of DT80 firmware in use is "9.08" (this number may vary), and

• no user program (or "job") has been loaded

The DT80 is now idle and waiting for instructions.

Connecting to a Host Computer

In order to program the *DT80*, it is generally necessary to connect it to a "host" computer. The easiest option here is to use the supplied USB cable, or, for the DT82E/82I, the supplied Ethernet cable. Other options are to use a "null-modem" (cross-over) RS232 cable, or to connect the logger to an Ethernet network. See *Communications* (P183) for more details of the different communications options.

Very briefly, connecting the *DT80* via USB involves the following steps:

- Install the supplied DtUsb driver software. This allows you to access to DT80's network services via a USB connection.
- 2. Connect the USB cable between the DT80 and the PC.
- 3. The Windows "New Hardware Found" wizard will then run automatically (if required) to complete the installation of the necessary drivers.
- 4. Your default web browser will then be launched automatically and the dEX home page will be displayed.

To connect to the DT80 using Ethernet:

- 1. Connect the Ethernet cable between the *DT80* and the PC, or between the *DT80* and a socket on your computer's local area network.
- Use the DT80 keypad to scroll down to the "Ethernet" screen. Check that a valid IP address is displayed, e.g. 169.254.3.202
- 3. Launch your web browser and type the logger's IP address into the address bar. The *dEX* home page should be displayed.

The above is only a brief overview. See USB Port (P188) for detailed, step by step instructions.

As an alternative to the *dEX* web-based interface, you can also install the supplied *DeTransfer* software, which can be used to send the text-based commands described in this manual to the logger. *DeTransfer* can operate over a direct RS2323/USB connection or a network connection, and will work with any logger model.

The remainder of this manual will assume you have successfully established a connection between the host PC and the DT80.

Sending Commands

The DT80 is programmed by sending it textual **commands**. These commands may be either:

- manually entered (using DeTransfer, or the Command screen in dEX), or
- generated by the dEX configuration builder, based on details entered using its graphical user interface controls.

Commands are executed by the DT80 only after it receives a carriage-return character (⅃).

Commands are not case-sensitive; that is, they may be entered using either uppercase or lowercase characters.

In this manual all commands are shown in **UPPERCASE**. Responses from the *DT80* are shown like this.

After receiving a command, the *DT80* will normally **echo** the command, after converting it to uppercase. Note that the *DT80* does <u>not</u> echo each character as it is received.

After a command has been processed, the *DT80* will normally indicate that it is ready for the next one by transmitting a **prompt** string, such as:

DT80>

(Command echo and the prompt string can be turned off if required using the /e switch command, see Switches (P261).)

The maximum length of a command is 1023 characters.

The general categories of commands are:

- **channel definitions** (P29) (e.g. **2TK("Kiln temp",FF4)**) these define <u>what</u> measurements are to be taken, how they are to be acquired and how the measured values are to be presented.
- schedule definitions (P45) (e.g. RA (DATA: 2MB) 10S) these define when a set of measurements are to be taken and where the results are to be stored
- **job management commands** (P59) (e.g. **BEGIN**, **END**, **SHOWPROG**) these allow a set of schedule and channel definitions to be grouped into a single program, or "job", which can then be treated as a unit.
- data management commands (P95) (e.g. COPYD, LISTD) these allow logged data points and alarms to be retrieved, displayed or deleted.
- configuration commands (P258) (e.g. PROFILE) these allow various aspects of the DT80's operation to be
 adjusted to suit particular requirements.

Jobs (sets of commands) are stored in the *DT80*'s internal file system along with the data they generate. Different jobs can be loaded under manual or program control. In addition, the *DT80* can automatically run a particular job every time it is reset or powered up. See *Startup Job* (P60).

Getting Help

There are several options for getting help with programming the *DT80*:

- The command **HELP** topic will display useful summary information on a number of topics. Type **HELP** by itself to display a list of available topics. For example, **HELP COMMANDS** will display a list of *DT80* commands.
- This user manual, firmware release notes and a list of known issues are automatically installed onto the DT80's
 internal file system each time a firmware upgrade is done. In this way you always have access to up-to-date
 documentation for the installed firmware version. The easiest way to view these is via the DT80's built-in web
 interface.
- The dataTaker website (<u>www.datataker.com</u>) contains an extensive database of frequently asked questions, code examples, sensor information, application notes, video tutorials and an online forum.

Designing Your Data Logging System

Data acquisition and data logging are orderly processes and should be undertaken in a systematic way. In order to obtain effective information efficiently, do the following:

- Identify the quantities to be measured.
- · Select the sensors, considering measurement range, accuracy, stability, ruggedness and cost.
- Select the wiring configuration. For example, resistive sensors can be connected in 2, 3 or 4 wire configuration, while serial sensors can use different electrical standards (RS232/RS485 etc.) and data rates.
- Determine sensor output scaling, that is, the relationship between sensor output voltage/current/resistance/etc. and the actual quantity. For many sensor types this calculation is performed automatically by the *DT80* all you need to do is specify the appropriate channel type.
- Determine how data is to be processed, for example statistical functions such as max/min or histograms may be required.
- Decide on the sample frequency don't sample faster than you need to.
- Calculate the volume of data to be collected.
- Decide on the method of data recovery and archiving real-time data return or logging or both? Will logged data be unloaded via a comms port, or collected using a USB memory device, or transmitted to an FTP site? How often?
- Decide on an appropriate communications technology for setup/maintenance and normal operation: RS232, USB, Ethernet, modem, none?
- Consider the power consumption, including the use of low power "sleep" mode. In the event of a power failure will the *DT80*'s internal battery provide adequate running time?

The remainder of this manual will help you address these questions and then generate a suitable program for your DT80.

Measurements

What can the DT80 Measure?

Analog

Using its analog inputs, the DT80 can directly measure the following:

- DC voltage (30mV, 300mV, 3V and 30V ranges)
- DC current (0.3mA, 3mA and 30mA ranges with internal 100 Ohm shunt)
- resistance $(10\Omega, 100\Omega, 1k\Omega, 10k\Omega \text{ ranges})$
- frequency (0.1 to 10,000 Hz)

Many other quantities can be measured by connecting appropriate **sensors** which convert a physical quantity into something that the *DT80* can measure. The *DT80* directly supports:

- 4-20mA current loop sensors (0 to 100%)
- temperature sensors (thermocouples, RTDs, thermistors, IC sensors)
- bridges and strain gauges
- vibrating wire strain gauges (DT80G/85G only)

This list can be extended by means of user specified scaling calculations.

Digital

The DT80's digital and counter channels allow the measurement of:

digital input state (contact closure, CMOS or TTL logic)

- pulse count (32 bit)
- phase encoder position (32 bit)

Serial

Various "smart sensors" can also be read:

- SDI-12 (Serial Data Interface Programmable baud rates) based sensor networks
- other serial sensor devices with an RS232/422/485 interface, such as weighing machines, barcode scanners
- CAN (Controller Area Network) sensors, using the optional dataTaker CANgate CAN to ASCII gateway device. The use of this product is outside the scope of this manual.

Analog Channels – Introduction

Figure 2: DT80 analog terminals

Input Terminals

The DT80 provides five analog input channels, numbered **1** to **5**. Depending on the wiring configuration used, these allow between 5 and 15 separate voltages to be measured. The DT81 has one analog input channel, allowing 1-3 separate voltages to be measured, and the DT82E has two (2-6 separate voltage measurements). Finally, the DT85 has 16 analog input channels, allowing 16-48 separate voltage measurements.

Each analog input channel on a *DT80* is a 4-wire connection (see *Figure 3*) that allows voltage, current, resistance and frequency to be measured. These are the fundamental signals output by most sensors. It is not necessary to use all four terminals on each channel— two are often adequate.

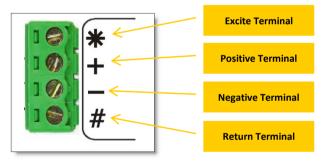


Figure 3: Analog input channel terminal labels

The exact function of each terminal varies depending on how the channel is programmed. In general terms:

- The * ("Excite") terminal can be a voltage input (relative to # terminal), or it can provide sensor excitation (for example, for resistance measurement) See Sensor Excitation (P21).
- The + ("Plus") terminal is a voltage input (relative to or # terminal)
- The ("Minus") terminal is a voltage input (relative to # terminal)
- The # ("Return") terminal is normally used as a common or return terminal. It can also be used as a current input, using the DT80's internal shunt resistor.

Multiplexers

The *DT80*'s analog input channels are **multiplexed**. The required input terminals are first connected to the input of the *DT80*'s instrumentation amplifier and analog to digital converter, then a measurement is taken. The next channel to be sampled is then switched through to the amplifier and ADC, and so on. Simultaneous sampling of analog channels is not possible.

Channel definition commands in the *DT80* program determine which terminals are used for a particular measurement. For example, the channel definition 1+V measures the voltage between the + and # terminals on channel 1.

Gain Ranges and Attenuators

The *DT80*'s instrumentation amplifier has three switchable gain settings. These give three basic voltage measurement ranges (3V, 300mV and 30mV full scale)

The *DT80*'s default is for its instrumentation amplifier to automatically change gain range to suit the input signal applied to it by the multiplexers.

If the amplitude of your input signals are known, then the gain can be set manually. Do this by applying the **GL***x* (gain lock) channel option, which disables autoranging for that channel and sets the gain to a fixed range.

The analog inputs also include switchable 10:1 attenuators, which effectively provide a fourth range (30V).

Warning Maximum input voltage on any analog input is ±30V dc, relative to the AGND/EXT# terminal. If this is exceeded then permanent damage may occur.

Analog Input Configurations

The basic quantity that the DT80 measures is voltage. Voltages can be measured using two different input configurations:

- shared-terminal analog inputs
- · independent analog inputs

❖ Shared-Terminal Analog Inputs

Sometimes called "single-ended" inputs, a shared-terminal input is one that shares one or more of its terminals with another input. In *Figure 4*, the three sensors share channel 1's # terminal. Each of the three inputs is a shared-terminal input.

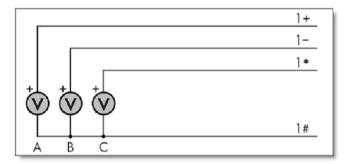


Figure 4 Shared-terminal voltage inputs sharing a channel's # terminal (voltage inputs used as example)

In a shared-terminal configuration, a sensor's "return" or "negative" wire is usually connected to the channel's # terminal. The remaining sensor wire (the "positive" or "signal") is connected to any of the channel's other three terminals. The common terminal need not be at ground potential – all voltage measurements (shared or unshared) are differential, i.e. only the difference in voltage between the two terminals is reported.

For shared-terminal inputs, the channel number is given a suffix indicating the terminal to which the positive wire is connected. For example, a shared-terminal voltage input applied to channel 1 between the + and # terminals is recognized by the channel definition 1+v.

Independent Analog Inputs

An independent input (also known as an "unshared" input) is one that connects to its own terminals and does not share any of those terminals with any other inputs. For example, in *Figure 5*, sensor A is connected to channel 1's + and – terminals, and sensor B is connected to the other two terminals of the channel. In other words, each sensor's terminals are independent of the other's — no terminal is used by both sensors.



Figure 5 Wiring one or two independent inputs to a single channel (voltage inputs used as example)

Note that each analog input channel can support <u>two</u> independent voltage inputs. In the above example, the channel definition <u>1V</u> will read sensor A while <u>1*V</u> will read sensor B. The channel definition syntax is fully described in *Channels* (P29)

Sensor Excitation

Many sensors require **excitation** (electrical energy) so that they can provide an output signal. For example, to read the temperature of a thermistor, excitation current is passed through the thermistor to generate a voltage drop that can be measured.

The DT80 can provide

- Voltage source of approx. 4.5V via 1kΩ. Useful for powering some sensors however the supply is not regulated and consequently liable to drift with temperature
- 200µA (approx.) current source. Default excitation for resistance measurement. Very stable over environmental temperature range.

- 2.5mA (approx.) current source. Default excitation for RTD and bridge measurement. Very stable over environmental temperature range.
- User supplied external excitation **EXT*** terminal. The user can provide an external excitation which is appropriate to the sensor being used. (The DT80 Series 2 and DT85 provide two general purpose DC power outputs which may be connected to the **EXT*** terminal to provide external excitation if required.)

See the Excitation category in the Table 4: DT80 Channel Options (P44) table.

More Information

For full details on how to connect sensors and make measurements using the *DT80*'s analog inputs, see *Analog Channels* (P299).

Digital Channels – Introduction

Figure 6: DT80 digital terminals

The DT80 provides:

- 4 bidirectional digital I/O channels (1D-4D) with open drain output driver and pull-up resistor (DT81/82E: 3 channels, 1D-3D)
- 4 bidirectional digital I/O channels (5D-8D) with tri-stateable output driver and weak pull-down resistor. These channels may also be used for controlling intelligent sensors using the SDI-12 protocol (DT81/82E: 1 channel, 4D)
- 1 voltage free latching relay contact output (RELAY)
- 1 LED output (Attn)
- 4 hardware counter inputs (1C-4C) which can be used as independent counter channels or as two quadrature (phase encoder) inputs (DT81: one phase encoder input, shared with inputs 3C and 4C. There are no phase encoder inputs on the DT82E.)

As with analog channels, **channel definition commands** are used to specify which digital inputs are to be measured and/or what digital output states are to be set. For example, the command **1DS** will read the digital state (0 or 1) on channel **1D**, while **3DSO=0** will set channel **3D** low.

A transition on a digital channel can be used to trigger a schedule. This allows a series of measurements to be made (or commands executed) in response to a change in digital state.

The *DT80* can count the number of pulses received on any digital input. The four dedicated counter inputs provide additional capabilities:

- a higher maximum count rate
- the ability to keep counting even if the logger is in low-power "sleep" mode
- optional low-level (5mV) input threshold levels
- optional decoding of phase-encoded input signals

For more details, see Digital Channels (P332)

Serial Channels - Introduction

The DT80 supports two main classes of "smart sensor":

- A wide range of sensors, particularly in the environmental monitoring field, use the **SDI-12** protocol. The *DT80* fully supports this protocol making it a simple process to read measured values. See *SDI-12 Channel* (P346).
- The *DT80* also provides a **generic serial channel**.

The serial channel allows a wide variety of sensors and devices to be controlled and polled. The serial channel:

- can use the dedicated serial sensor port (not DT81/82E), the host RS232 port (not DT8xM), and/or the USB port
- supports USB, RS232, RS422 and RS485 signal levels (depending on the port)
- supports point-to-point or multi-drop operation (point-to-point only for the host/USB port)
- features programmable output (poll) strings and a variety of options for parsing returned data
- can trigger execution of a schedule in response to received data

For more details, see Generic Serial Channel (P351).

Programming the DT80

Typical Workflow

When creating a program to send to the DT80, typically the work will follow this order:

Connect Sensors

Sensors & Channels (P299) describes how to measure many different quantities and read many different sensor types using the DT80's analog, digital and serial inputs.

The first step is therefore to refer to the sub-section relating to the quantity you wish to measure. This will help you decide on the most appropriate way to connect the sensor to the *DT80*.

Define Channels

Programming the DT80 essentially consists of :

- defining a series of measurements to take, and
- · specifying when to take them.

<u>Each measurement definition is referred to as a **channel**</u>. It is important to be clear on how the word "channel" is used – in *DT80* parlance, it refers to a measurement to be made, <u>not</u> a physical input channel.

For example, if you program the *DT80* to measure a voltage on analog input 1, then read the state of digital input 3, then measure the voltage on analog input 1 again then you have defined three channels. The fact that the first and third channels both measure the same physical quantity (the voltage on analog input 1) is irrelevant – as far as the *DT80* is concerned, they are two entirely separate measurements.

To specify <u>when</u> measurements are to be made, channel definitions may be grouped into **schedule** definitions. These specify whether the channels should be sampled immediately, or periodically, or in response to some event.

To define a channel, you need to specify:

- the **input number** (e.g. **1** for analog input 1)
- the channel type (e.g. V to perform a voltage measurement)
- any channel options that may be required (listed in parentheses, e.g. (GL3V,FF3)

So to define the three channels mentioned above, you could enter:

```
1V 3DS 1V
```

Since we haven't specified any schedule, these three measurements will be taken immediately, one after the other. Default settings will be used, since no channel options were specified. By default, the *DT80* will then return the measured values in ASCII form to the host computer, e.g.

```
1V 234.9 mV 3DS 1 State 1V 233.0 mV
```

So once you have connected the sensor as described in *Sensors* (P299), you can then test it out by directly entering a suitable channel definition.

For example, suppose we want to check the resistance of a resistor. In the section *Resistance* (P305), several different wiring configurations are given. In this case we are going to connect the resistor directly to the *DT80*'s terminals so we don't need to worry about lead resistance issues. The simplest 2-wire configuration is therefore suitable, as described in R4-2-Wire Independent Resistance Inputs (P308). We therefore pick an analog input to use, say input 2, and wire the resistor between the * and # terminals on analog input 2. We can now enter the channel definition:

```
DT80>2*R
2*R 559.1 Ohm
```

In this case the channel number is 2* (analog input 2, measuring between * and # terminals) and the channel type is R (measure resistance) and there were no channel options, so the complete channel definition is 2*R.

Note that a particular physical input can be read using different channel types. For example, a thermocouple can be read as a thermocouple or as a voltage. The command

```
1TK 1V
```

returns both a temperature and a voltage based on two readings of the same sensor.

For more information about how channels (measurements) are specified in the *DT80* programming language, see *Channels* (P29).

Define Measurement Schedules

A **schedule** defines <u>when</u> a set of channels should be measured. It consists of a list of channel definitions preceded by a scan **trigger** specification. See *Schedules* (P45).

As a general rule when creating schedules, don't instruct the *DT80* to read channels more frequently than is really necessary. For example, temperatures generally change slowly so rapid reading does not provide extra useful information.

Up to eleven different schedules can be declared (A to K), each with a different trigger based on a time interval or a digital input event. The schedule's trigger can be changed at any time, either manually or under program control.

A list of channels without a trigger specification can be entered at any time. These are scanned immediately, without affecting other schedules that may be operating. For more information, see *Immediate Report Schedules* (P52).

Important Whilst a schedule's **trigger** can be changed at any time, its **channel list** cannot be altered without re-entering all schedules. In fact, all schedules must be entered at the same time, either all on one line or between **BEGIN** and **END** keywords (see *Working with Schedules* (P54)).

Jobs

A *DT80* **job** is a logical "hold-all" for a group of schedule definitions and other commands. The command **BEGIN** signifies the start of a job, and the command **END** signifies the end of the job. Once a job has been fully entered, the *DT80* will activate all schedules defined therein.

The *DT80* can store more than one job (each with its own separate logged data and alarms), but only one can be the current/active job. See *Jobs* (P57) for more details.

Scaling and Calculations

The *DT80* can scale the channel input data to engineering units by applying intrinsic functions, spans or polynomials. Arithmetic expressions provide cross-channel and other calculations. Various statistical functions, including averaging and histogram channel options, can be applied. See *Scaling* (P61).

Reducing Data

In many instances the volume of the data recorded can be reduced by taking averages, maximums, minimums, standard deviations, histograms or integrals. See *Statistical Channel Options* (P73).

Alarms and Conditional Execution

The DT80's alarm facility is flexible and powerful. Alarms are used to warn of certain conditions (e.g. setpoint exceeded) and to control the DT80's operation. Alarms can

- control DT80 digital state outputs
- initiate execution of DT80 commands
- · trigger the sending of messages to the host computer.
- set variables

Executing *DT80* commands from an alarm can be particularly useful in modifying the *DT80*'s programming in response to changes in input(s). See *Alarms* (P79).

Data Logging

The DT80 stores measurements in its internal data store or in a removable USB memory device.

Logging begins only after you issue the ${f LOGON}$ command. Time and date stamping is automatic.

By default, the *DT80* overwrites the oldest data with new data once the memory is full. If you prefer to have the logger stop logging once the memory is full then you need to set the no-overwrite schedule option (NOV) (P46).

For more details see Logging and Retrieving Data (P91)

❖ Selective Logging

To selectively log channels and schedules:

- For channels, use the NL (no log) channel option
- For schedules, use the **LOGON***x* & **LOGOFF***x* commands

See Enabling and Disabling Data Logging (P91).

Retrieving Data

The *DT80* can do two things with the data it measures:

- Return it immediately to the host computer, where it can be seen arriving on-screen. This monitoring function is data return in real time.
- Store it in its internal memory and/or an inserted USB memory device ready for retrieval (unload) to the host computer at a later time. This is data logging.

The *DT80* can carry out these functions separately, or at the same time.

❖ Retrieving Real-Time Data

The *DT80*'s default is to return data in ASCII text form to a connected host computer instantaneously – that is, as it is measured. (To override this send the $/\mathbf{r}$ switch to the data logger (P261)).

The logger's inbuilt *dEX* software can also display real-time data in tabular form in your web browser, or you can define **mimics** to display the data in graphical form such as dials or trend charts.

Note that if the *DT80* is configured to take measurements at a rapid rate then it is possible that not all data values will be returned. All measurements will, however, be logged (if logging is enabled).

* Retrieving Logged Data

Data stored in a *DT80*'s internal memory or USB memory device can be retrieved (or **unloaded**) by means of the Host RS-232 port, the Ethernet port, or the USB port. Data can be retrieved for an individual schedule or all schedules, or for all jobs or an individual job.

USB memory devices

The DT80's USB port supports USB memory devices, which can be used

- as a medium for transferring logged data from the internal memory of a *DT80* to a computer (see *Retrieving Logged Data* (P95))
- as removable data storage. See Logging Data (P91)
- to load a job into a DT80. See ONINSERT Job (P60).
- to upgrade a DT80's firmware. See Firmware Upgrade USB Flash Device (P400).

Data stored on the USB memory device is in a Windows-compatible file structure – see *The DT80 File System* (P111).

Format of Returned Data

As mentioned earlier, the DT80 can:

- make data available to a host computer as it is measured (real-time data), and/or
- store data in memory to be retrieved at a later date (logged data)

You can control whether data is returned or logged on a per channel, per schedule or global basis.

Real-time data

Web Access (dEX)

If the *DT80* is connected to a host computer via a TCP/IP network then the logger's built in web interface can be used to display real-time data in any web browser. This may be presented in tabular numeric format, or as graphical "mimic" displays. See *Displaying Real-Time Measurements* (P154).

ASCII Data

The DT80 can also return real-time data in ASCII (text) form via its command interface. This can be in one of two formats:

- free format mode
- fixed format mode (also known as "host mode", or "formatted mode")

The /h switch command selects free format mode (which is the default); /H selects fixed format mode.

❖ Free Format Mode /h

In free format mode, data is returned as human-readable ASCII text. Various settings are available to control how the data is presented. By default, each channel is printed on a separate line, prefixed by its name (either a standard *DT80* channel name e.g. "3TK", or a user-specified name e.g. "Inlet temp") and followed by appropriate units.

Thus the following program:

```
RA30S 1V("Pressure~kPa") 2TK 5DS("Valve state")
```

would result in text similar to the following text being sent to the active communications port:

```
Pressure 102.3 kPa
2TK 98.0 degC
Valve state 1 State
Pressure 107.3 kPa
2TK 98.2 degC
Valve state 1 State
```

and so on.

By applying various formatting settings you can get different results. One possible example would be:

/n/c/u/T P33=10 RA30S 1V("Pressure~kPa",FF2) 2TK(FF2) 5DS("Valve state") which would format the data thus:

```
      12:46:00.029
      102.32
      97.98
      1

      12:46:30.017
      107.34
      98.22
      1
```

In this example, /n/c/u are **switch commands** (P261) that have been used to switch off output of channel numbers, channel names and units. The /T switch causes each data record to be prefixed by a timestamp. P33=10 is a **parameter setting** (P258) that sets each data value to a fixed width (10 characters). Finally, the **FF2 channel option** (P44) specifies that the channel value is to be rounded to 2 decimal places.

❖ Fixed Format Mode /H

Fixed format mode is designed for use with *dataTaker* host software. Data is still returned in ASCII form, but the record format is **fixed** to allow it to be easily parsed by a computer. If /H is specified then both of the above examples will return data as:

```
D,081044,"JOB1",2005/03/29,12:46:00,0.0293681,0;A,0,102.322,97.979902,1;0072;065FD,081044,"JOB1",2005/03/29,12:46:30,0.0170320,0;A,0,107.341,98.220014,1;0072;3BEB
```

In fixed format mode:

- all formatting commands (e.g. FF2, /n, channel names) are ignored fixed settings are used
- all records are prefixed by a **header**, which specifies that this is a data record (D), from *DT80* serial number 081044, running a job called "JOB1". This is followed a timestamp (date, time, and sub-second time). The 0 indicates that this is real-time data, the A identifies the schedule, and the 0 is the index within the schedule of the first data value.
- floating point data values are always specified to 8 significant digits
- each record includes an error-detection code (CRC) on the end. This allows host software to reject corrupted records.

Data records such as the above are only one of several types of fixed format message. A comprehensive description of all fixed format message types is beyond the scope of this manual.

Logged Data

This section discusses the different <u>formats</u> in which logged data can be retrieved. For details on <u>how</u> to go about retrieving your data, what mechanisms are available (web, file, FTP etc.) and what commands and options to use, see *Retrieving Logged Data* (P95).

CSV Format Data

CSV (comma separated value) is a widely used text based format for transferring data. The *DT80* command **COPYD** can be used to report logged data in CSV format. Data can be written to either:

- the active comms port, so the data appears in the *dEX* or *DeTransfer* command window from which the **COPYD** command was issued, or
- a file on the DT80's internal file system, or
- · a file on a removable USB device, or
- a file on an FTP server

❖ CSV Record Format

By default, the *DT80* merges logged data and alarms from multiple schedules into a single file. The file consists of a number of **rows**. Each row is terminated by a CR-LF sequence.

Each row consists of a number of fields (columns), separated by commas.

Each row consists of the following fields, in order:

- timestamp (e.g. 2010/03/01 09:54:38.000)
- timezone. Currently, this field will always have the value "n", meaning "no timezone"
- data values for first schedule (zero or more fields, one for each loggable channel). Numeric data values are specified
 in "mixed" format (may be either standard or exponential format), to 8 significant digits and trailing zeroes after the
 decimal point are trimmed. String values are enclosed in quotes, with any control characters represented in ^c form
 (e.g. a CR character would appear as ^M).
- alarm number, alarm state (0-3) and alarm text (see *Alarm Records* (P89)) for first schedule (three fields; only present if schedule has one or more loggable alarm channels)
- data values for second schedule (if any)
- alarm number, alarm state and alarm text for second schedule (if any)
- (and so on, for each schedule)

The first row in the file is a **header row**, which contains a descriptive name for each field. For example, the name of a data value field has the form "chanName (units)", e.g. "Ext Temp (degC)"

The first block of rows after the header row contain all data records for the first schedule. The next block of rows contain all alarm records for the first schedule. Then comes the data records for the second schedule, and so on.

In other words, the CSV data is generated in schedule order, <u>not</u> in time order. However, once it is loaded into a spreadsheet it is a trivial exercise to re-sort by the timestamp field.

❖ Example

For example, a typical file might look like:

```
"Timestamp", "TZ", "Ext Temp (degC)", "2V (mV)", "1CV", "B.ALnum", "B.ALstate", "B.ALtext" 2010/03/01 09:54:38.000,n,22.896844,-0.05822 2010/03/01 09:54:39.000,n,22.894454,-0.058563 2010/03/01 09:54:40.000,n,22.899576,-0.057869 2010/03/01 09:54:41.000,n,22.897856,-0.056656 2010/03/01 09:54:42.000,n,22.893504,-0.05735 2010/03/01 09:54:38.233,n,,,3 2010/03/01 09:54:40.249,n,,,4 2010/03/01 09:54:42.237,n,,,1 2010/03/01 09:54:40.249,n,,,2,1,"trig 22.9"
```

❖ Variations

To simplify parsing by host applications, the CSV format files generated by the *DT80* are essentially fixed format. However the following parameters may be used to vary the format:

- **P38** can be used to change the character used as the decimal point. By default, this is set to 46, which is the ASCII code for a period character (.). For European applications, it is often set to 44, which is the code for comma (,). If this is set to comma then the data separator is automatically changed to semi-colon (;).
- P41 can be used to change the number of decimal places shown for timestamp values (default 3).

```
For example, setting P38=44 P41=0
```

would result in:

```
"Timestamp";"TZ";"Ext Temp (degC)";"2V (mV)";"1CV";"B.ALnum";"B.ALstate";"B.ALtext"
2010/03/01 09:54:38;n;22,896844;-0,05822
2010/03/01 09:54:39;n;22,894454;-0,058563
2010/03/01 09:54:40;n;22,899576;-0,057869
2010/03/01 09:54:41;n;22,897856;-0,056656
2010/03/01 09:54:42;n;22,893504;-0,05735
2010/03/01 09:54:38;n;;3
2010/03/01 09:54:40;n;;;4
2010/03/01 09:54:42;n;;1
2010/03/01 09:54:40;n;;;2;1;"trig 22.9"
```

Data in this format can then be readily imported into spreadsheet applications which are set up for a European locale.

Error Values

In the event of an erroneous sample value, e.g. analog input overrange, or calculation error, a textual error string will be inserted into the CSV data in place of the data value, e.g.

```
2010/03/01 09:54:40.000,n,OverRange,-0.057869
```

When this is imported into a spreadsheet application, the non-numeric data value will typically plot as zero.

Native (DBD) Format Data

When the *DT80* logs data to its internal memory, it stores it in fixed size data files, one for each schedule. These files have a **.DBD** file extension, e.g. **DATA A.DBD**.

An alternative way of getting data out of a *DT80* is to transfer relevant **.DBD** files to the host computer. These files can then be opened using tools such as:

- dataTaker dump_dbd (which can convert to CSV format). This utility is available on the dataTaker resource CD or on the datataker.com website.
- third party packages such as DPlot, which provides plotting facilities.

For large data files, it is often significantly faster to transfer data in DBD format, as the *DT80* does not need to perform any data conversion and formatting.

Native format *DT80* data files can be saved to files on the *DT80* internal file system, a USB memory device or an FTP server. As with CSV format output, this is done using the **COPYD** command; the only difference being that a **format=dbd** option is specified.

For more details, see Retrieving Logged Data (P95).

Fixed Format Data

Logged data may also be unloaded to a file as fixed format records, as described in *Fixed Format Mode /H (P26)*. This is primarily intended for use with legacy host applications such as *DeLogger*.

To retrieve data in fixed format, use COPYD format=fixed.

Free Format Data

Data may also be unloaded in traditional dataTaker "free format" mode, as described in *Free Format Mode /h* (P26). This format may be customised using a number of parameter and switch settings.

To retrieve data in fixed format, use COPYD format=free.

Part B - Channels

Channel Definitions

A **channel definition** defines a measurement to be taken. It is therefore the fundamental building block that you use when programming the *DT80*.

Channel definitions are normally enclosed in a **schedule definition**. The schedule definition specifies <u>when</u> to take the measurements. The channel definitions specify <u>what</u> to measure, on <u>which</u> terminals and <u>how</u> to sample and process the data value.

A sample schedule definition is shown below

RA2S $\underline{\text{2DS}}$ $\underline{\text{3R(4W)}}$ $\underline{\text{2*V(0.1,GL3V,"Speed~km/h",FF0)}}$ $\underline{\text{9CV(W)=9CV+1}}$

This shows four channel definitions which are part of the "A" schedule. Each time this schedule runs (which will be every 2 seconds), four measurements will be taken:

- 1. The logic state of digital channel 2 will be sampled
- 2. A resistance connected to analog channel 3 (4-wire connection) will be measured
- 3. A voltage connected to analog channel 2 (* and # terminals) will be measured and displayed as a speed value
- 4. An internal general purpose variable will be updated (incremented)

Let us now examine the syntax of a channel definition more closely.

A channel definition consists of up to four components

- the **channel type** is a mnemonic code which tells the *DT80* what sort of quantity is being measured, or what sort of sensor is attached. In the above example the channel types are **DS** (digital state), **R** (resistance), **V** (voltage) and **CV** (channel variable). A channel definition must always include a channel type.
- a **channel number** prefix is required for most channel types. This specifies <u>which</u> channel to measure. In the above example we are measuring digital channel 2, analog channel 3, analog channel 2* and internal variable #9
- channel options are enclosed in round brackets after the channel type and further specify how the channel is to be
 measured and processed. In the above example, the 3R, 2*V and 9CV channels have user-specified options, the
 2DS channel does not.
- some channel types are "writable" (e.g. internal variables and digital output channels) and therefore allow a value to be assigned using an **expression**. In the above example the **9CV** channel definition contains an expression.

Channel Numbers

A *DT80* **channel number** identifies a particular channel within a certain **class** of channels. The following table lists the various classes of *DT80* channels. As can be seen, each class has its own range of channel numbers.

channel class	terminal labels	channel numbers	applicable channel types
analog	1 – 16 (DT8x)	1-16	V HV I L R BGI BGV AS F FW TX AD5XX CU NI
	1 – 20 (CEM20)	n 01 – n 20	LMx35 LMxx PT3xx TMPxx YSxx
		(n = CEM20 number)	
		plus optional * + - #	
		modifier	
digital	1D – 8D	1 - 8	C DB DBO DN DNO DS DSO
counter	1C – 7C	1 – 7	HSC
phase encoder	1PE – 3PE	1-3	PE
	shared with counter		
relay	RELAY	1	RELAY
LED	Attn	1	WARN
serial	1 = serial sensor	1 – 3	SERIAL MODBUS
	2 = host RS232 3 = USB		
TCP/IP	3 = 03D	4	MODBUS
power output	12V	no number	PWR12V
power output	5V SW	no number	PWR5V
SDI-12	5D – 8D (DT80/85)	5 - 8 (DT80/85)	SDI12
ODI-12	4D (DT81/82)	4 (DT81/82)	SDIIZ
channel variable	internal	1-1000	CV
system variable	internal	1-85	SV
string	internal	1-50	\$
-	internal		
timer		1 - 4	ST
temperature reference	internal	no number (DT8x)	REFT
		1 – 15 (CEM20)	
special	internal	no number	D T DELAY CALC & name CMRR IBAT R100 VANA
			VBAT VC VDD VEXT VLITH VREF VRELAY VSYS VZERO
			VZERU

The "applicable channel types" column lists the different ways in which a physical input can be measured. For example, analog channel 1 can be used to measure a voltage (specified by entering 1v), or a PT385 RTD (1PT385) or a frequency (1F). All of these **channel types** fall into the analog class, so when we talk about channel 1 we are talking about **analog** channel 1.

Because each channel type is a member of one class only, there is never any confusion about which "channel 1" is being referred to. 1C refers to **digital** input 1 because, from the above table, the C (counter) channel type is in the digital class. 1HSC, on the other hand, refers to **counter** input 1 because the HSC (high speed counter) channel type is in the counter class.

An **analog** channel number can be suffixed by a **modifier** character, which identifies the pair of terminals between which to measure, as shown in the following table:

Modifier	Measure voltage between
none	+ and -
*	* and #
+	+ and #
-	- and #
#	# and AGND/EXT# (normally only used for current measurements)

Thus the channel ID 3V defines a measurement between the + and – terminals, while 3*V, 3+V and 3-V define measurements between the *, + or – terminals (respectively) and the # terminal.

Channel Number Sequence

A channel ID that contains two channel numbers separated by two decimal points (for example, 1..3) defines a **continuous sequence** of channels. If the channel IDs include terminal modifiers then the sequence will include all terminal modifiers between that of the first channel ID and that of the second (inclusive, in the order *, +, -, #, and only where valid for the channel type). For example

Sequence	is equivalent to
14V	1V 2V 3V 4V
1#3#I	1#I 2#I 3#I
1+3-R(3W)	1+R(3W) 1-R(3W) 2+R(3W) 2-R(3W) 3+R(3W) 3-R(3W)

Channel Types

The following table lists all of the channel types supported by the DT80. For each channel type, the table shows:

- the **channel type** mnemonic (e.g. **HV**). Remember that in most cases this will be prefixed by a channel number. Refer to *Channel Numbers* (P30) for details of the allowable range of channel numbers for each channel type.
- whether the channel type is "writable" (shown in the Channel Type column). Writable channel types can be assigned a value, e.g. 2C=200 or 1CV=(2CV+3)+SIN(5CV)
- the default channel options for this channel type. These override the standard default values shown in the channel option table. See also Channel Options (P38).
- what the channel factor does for this channel type
- the **units** in which data will be returned. By default, the indicated units string will be shown on the display and appended to free format returned data, although it can be overridden if required.
- · references to further details about the channel type

Category	Channel Type	Signal\ Sensor Details	Default Channel Options	Channel Factor	Output Units	More Information
Voltage	V	Voltage input ranges are ±3V, ±300mV & ±30mV	(U) Note 1	scaling factor	mV	Voltage (P300)
	HV	Higher Voltage input ranges are ±30V, ±3V & ±300mV	(A)	scaling factor	V	
Current	I	Current	(100,T) Note 1, 2	current shunt Ω	mA	Current (P303)
	L	4-20mA current loop	(100) Note 2	current shunt Ω	ે	
Resistance	Resistance by 2, 3 or 4-wire methods, 10kΩ maximum.		(I,3W)	offset adjust Ω Note 4	Ohm	Resistance (P305)
Bridge	BGI	4-wire bridge, 3-wire simulated bridge current excitation	(350,II, 3W)	arm resistance Ω	ppm	Bridges (P309)
	BGV	4 & 6-wire bridges, voltage excitation	(V,4W)	offset adjust ppm Note 4	ppm	Bridges (P309)
Frequency	F	Frequency measurement	(30,T) Note 1	sample period ms	Hz	Frequency (P323)
	FW	Vibrating Wire Strain Gauge frequency DT80G/85G only	(200,MD350)	sample period ms	Hz	Strain Gauges – Vibrating Wire (P325)
Temperature	TB, TC, TD, TE, TG, TJ, TK, TN, TR, TS, TT	Thermocouples Type B, C, D, E, G, J, K, N, R, S and T	(T) Note 1	scaling factor	degC Note 3	Temperature – Thermocouples (P315)
	PT385 PT392	Platinum RTDs (α = 0.00385, 0.00392)	(100,3W, II)	0°C resistance Ω	degC Note 3	Temperature – RTDs
	NI	Nickel RTD $(\alpha = 0.005001)$	(1000,3W,	0°C resistance Ω	degC Note 3	

	Channel		Default Channel	Channel	Output	
Category	Type CU	Signal\ Sensor Details Copper RTD	Options (100,3W,	Factor 0°C resist-	Units degC	More Information
	CU	$(\alpha = 0.0039)$	II)	ance Ω	Note 3	
	YS01	Thermistors: Yellow	(3W,I)	parallel	degC	Temperature –
	YS02	Springs 400XX series	(311/=)	resistor Ω	Note 3	Thermistors (P318)
	YS03					
	YS04					
	YS05					
	YS06 YS07					
	YS16					
	YS17					
	AD590	Semiconductor current	(100,V,U)	ourront	dogC	Temperature – AD590
	AD590	source types	(100, V, U) Note 2	current shunt Ω	degC Note 3	Series IC Sensors (P319)
	TMP17	(Analog Devices)	NOIC Z	Origine 22		CONTOC TO CONTOCTO (1919)
	LM135	Semiconductor (zener	(2,V)	voltage	degC	Temperature – LM135
	LM235	diode) voltage output	(2/)	divider	Note 3	Series IC Sensors (P322)
	LM335	types				
	LM34	Semiconductor voltage	(V)	offset	degC	Temperature – LM35
	LM35	output types	()	adjust °C	Note 3	Series IC Sensors (P320)
	LM45			Note 4		
	LM50					
	LM60					
	TMP35					
	TMP36					
	TMP37					
Time, Date	T	Time of day				Time (P34)
and System	writable	,				
Timers	D	Day or date				
	writable					
	1ST	System timers	(60)	range	Counts	System Timers (P35)
	2ST	Increment every	(60)			
	3ST 4ST	sec (1ST), min (2ST), hour (3ST), day (4ST)	(24) (7)			
	writable	110di (301), day (401)	(7)			
Delay	DELAY	Delays schedule			ms	Delay (P36)
,	writable	execution for nominated				Note 6
		time				
System Data		System variable		scaling		System Variables (P36)
	some are writable			factor		
Variables	CV	Channel variables:		scaling		Channel Variables (nCV)
	writable	general purpose holders		factor		(P64)
		for data, calculation				
		results		!!		Deinfless Ossele Ossertines
	IV	Integer variables		scaling factor		Rainflow Cycle Counting
Calculation	CALC	Temporary holder for		scaling		Calculation Only
	writable	calculation result		factor		Channels (P65)
Reference	&name	Last measurement value		scaling		Reference Channels
		for channel called name		factor		(P65)
Text	\$	General purpose text for				Text (P35)
	writable	headings, etc. (max. 80 characters each)				
Serial	SERTAT.	Transmit to and receive	(<i>P</i> 53)	timeout	State	Generic Serial Channel
Jonai	JUNIAN	from serial device	ie. P53 specifies	(sec)	Deace	(P351)
			default timeout	. ,		
	SDI12	Control SDI-12 sensors	(AD0,R1)	scaling		SDI-12 Channel (P346)
		using digital channels 5-8		factor		
		Enable/disable serial		delay (ms)	State	Serial Interface Power
	writable	sensor port (not DT81)	,	Note 6		Control (P360)
Modbus	MODBUS	Read/control Modbus	(MBI, MES,	scaling factor		Modbus Channel (P364)
		sensors	TO3,RT0)	ιαυιυι		

Category	Channel Type	Signal\ Sensor Details	Default Channel Options	Channel Factor	Output Units	More Information
Power		Enable/disable 12V power		delay (ms)	State	Controlling 12V Power
Output	writable	output (Series 2)		Note 6		Output (P289)
	PWR5V	Enable/disable isolated		delay (ms)	State	Controlling 5V Power
	writable	5V power output (Series 3)		Note 6, 7		Output (P289)
Digital	DS	Digital state input (1 bit)			State	Digital Inputs (P333)
Input	DN	Digital nybble input (4	(15)	bit mask	Nybble	
		bits)	(055)	Note 5		_
	DB	Digital byte input (8 bits)	(255)	bit mask Note 5	Byte	
	AS	Digital state input on an	(2500)	threshold	State	Analog Logic State Inputs
		analog channel	(2000)	(mV)		(P331)
Digital	DSO	Output on a single digital		delay (ms)	State	Digital Outputs (P335)
Output	writable	channel.		Note 6		
	DNO	Nybble output on a group	(15)	bit mask	Nybble	
	writable	of digital channels	(055)	Note 5	Destro	_
	DBO writable	Byte output on a group of digital channels	(255)	bit mask <i>Note 5</i>	Byte	
	wiitabie	digital orialinois		71010 0		
	RELAY	1=Relay output closed		delay (ms)	State	
	writable	0=Relay output open		Note 6		_
	WARN	1=Attn LED on		delay (ms)	State	
	writable	0=Attn LED off		Note 6		0 1 0 1
Counter	C	Pulse count on digital		range	Counts	Counters – Low Speed
	writable HSC	input (0 to range-1) High Speed Up Counter		rango	Counts	Counters – High Speed
	writable	(0 to range-1)		range	Counts	(P341)
	PE	Phase Encoder			Counts	Phase Encoders (P344)
	writable					
Internal	REFT	Reference temperature of		scaling	degC	Temperature –
Maintenance		DT80 or CEM20 terminal		factor	Note 3	Thermocouples (P315),
		block				CEM20 Temperature Reference (P380)
	VBAT	Terminal voltage of		scaling	V	Battery flat if below 5.6V.
	* D111	internal 6V lead acid		factor	•	Battory hat it bolow 0.0 v.
		battery				
	VLITH	Internal Lithium		scaling	V	Replace battery if below
		memory-backup battery		factor		2.8V.
	IBAT	voltage. Internal main battery		scaling	mA	Positive if charging,
	IDAI	current		factor	1121	negative if discharging
	VREF	Analog 2.5V voltage		scaling	V	Ŭ Ü
		source reference		factor		
	VZERO	Analog zero voltage		scaling	mV	
	R100	reference Internal 100 Ohm Shunt		factor scaling	Ohms	
	RIUU	internal 100 Onin Shunt		factor	OIIIIS	
	VANA	Internal analog 3.8V rail		scaling	mV	
		voltage		factor		
	VDD	Internal 3.3V rail voltage		scaling	mV	
				factor		
	VSYS	Internal system supply rail voltage		scaling factor	mV	
	VRET.AV	Internal relay supply		scaling	mV	
		voltage		factor		
	VEXT	Raw voltage onto system		scaling	V	
		from external supply		factor		
	CMRR	Common-mode rejection			dB	
		ratio at maximum gain				

Table 2: DT80 Channel Types

❖ Notes

- Input termination is <u>on</u> by default (T) for DT80/81 Series 1 for non-attenuated measurements between + and terminals
- 2. If the current shunt value is specified (as the channel factor) then that value is used. Otherwise, if the measurement uses the *DT80*'s internal shunt on the # terminal (e.g. 3#I), then the *DT80* uses the actual calibrated resistance of its shunt. Otherwise, the external shunt is assumed to be 100.0 ohms.

- 3. Alternatively, parameter P36 can be set to force all temperatures to be returned in degF, degR or K.
- 4. Offset corrections are subtracted from the measured value.
- 5. The bitmask specifies which channels are affected by a multi-bit read or write. Channels where the corresponding bitmask bit is zero are not affected. For example 1DNO(3)=0 will set digital outputs 1D and 2D low but the state of outputs 3D and 4D will be unchanged.
- 6. The *delay* channel factor can be used in conjunction with the R channel option to generate a fixed width pulse output.

 Note: use *delay* carefully as it prevents execution of any other schedules, measurements or outputs during the delay.
- 7. 5V power output will only be active while analog section is powered; use **P21=1** if continuously power output is required.

Internal Channel Types

The *DT80* has its own internal channels, which can be read in exactly the same way as the obvious "external" channels. Use the channel types below.

Time

The *DT80*'s real-time clock/calendar has a resolution of 0.1ms, based on a 24-hour clock. Time is read in the same way as any channel, but without a channel number. That is, sending

```
returns
Time 11:45:10.213
```

This channel type is writable, so you can set the time by sending:

```
T=12:20:00
```

Time can be in several formats, selected by parameter P39 as follows:

P39=	Format	Example
0 (default)	Hours:minute:seconds.subseconds	11:45:10.003
	P41 controls the number of sub-second digits between 0 and 6	,
	default is 3 digits	
1	s.s (decimal seconds) since midnight	42310.003
2	m.m (decimal minutes) since midnight	705.1667
3	h.h (decimal hours) since midnight	11.7528

If the time is assigned to a channel variable (see *Channel Variables (nCV)* (P64)) then the CV will contain the number of seconds since midnight, e.g.

```
T(=1CV) 1CV
Time 17:40:50.748
1CV 63650.7
```

You can also set the time using a CV, e.g.

```
1CV=7200 T=1CV
1CV 7200.0
Time 02:00:00.000
```

See also Setting the System Time(P267).

Date

The current date can also be returned and set:

```
D
Date 22/05/2005
D=25/12/2010
Date 25/12/2010
```

Date can be in several formats, selected by P31 as follows:

P31=	Format		Example
0	Day number	DDDDD	86
1 (default)	European	DD/MM/YYYY	28/03/2002
2	North American	MM/DD/YYYY	03/28/2002
3	ISO	YYYY/MM/DD	2002/03/28

If the date is assigned to a channel variable then the CV will contain the number of seconds since 1-Jan-1989. The date can also be set from a CV, e.g.

```
D(=1CV) 1CV=1CV+86400 D=1CV

Date 04/03/2010

1CV 668176400.0

Date 05/03/2010
```

❖ System Variables

The following system variables (see *System Variables* (P36)) return date related information which can then be tested in alarms:

- 12SV returns the current date/time as decimal days since 1-Jan-1989
- 15SV returns the day number of the year (0-365)
- 20SV returns the day of the month (1-31)
- 21SV returns the month (1-12)
- 22SV returns the year (1989-9999)

Text

Fifty 80-character text channels (1\$ - 50\$) are available for labelling, data headings, site identification, *DT80* identification, and so on.

```
Define the string by sending, for example 2$="my text string^M^J"
```

Then, the string is returned (unloaded) whenever $n^{\$}$ is included in a channel list.

Text channels can also be set based on data returned via the serial channel. Control String – Input Actions (P356)

Control characters may be included in the text string, e.g. ^M for carriage return.

Internal Maintenance

There are several internal maintenance channels, which are read in the same way as normal channels. These allow, for example, the terminal voltage of the *DT80*'s internal batteries to be measured. See the *Internal Maintenance* section of the *DT80* Channel Types table (P31).

System Timers

There are four internal reloading system timers, which are read in the same way as channels. The four timers increment at the following rates, and reset to zero when their range (maximum value) is reached:

System Timer	Channel Type	Increments Every	Default range	Provides
1	1ST	1 second	60 (1 minute)	Second of the minute
2	2ST	1 minute	60 (1 hour)	Minute of the hour
3	3ST	1 hour	24 (1 day)	Hour of the day
4	4ST	1 day	7 (1 week)	Day of the week:
				(0 = Sunday, 1= Monday, etc.)

System timers are normally synchronised to the previous midnight or Sunday, and increment at the beginning of each second, minute, hour or day.

If the *DT80*'s date/time is set, the system timer channels will be updated to match the new time.

The range of a system timer can be set using the channel factor. For example, 2ST(15) will count from 0 to 14, resetting every quarter hour, on the quarter hour.

If the range is set to 0 then the timer will not reset, except at midnight (1-3ST) or midnight Sunday (4ST)

If a system timer is explicitly set to a value, e.g. **1ST=12**, then it will no longer necessarily be synchronised to the actual time. In this example, after being set 1ST will count up from 12 to 60, at which point it will reset back to 0 and start counting again. It will always differ from the time-of-day seconds count by a fixed offset.

If a system timer's range is set, it will automatically be resynchronised to the actual time. Therefore **2ST(60)** can be entered at any time to return **2ST** to its default behaviour.

If a system timer is set to a value outside its range, it is immediately adjusted so that it is in range. When you enter nST=x, you are actually doing nST=x mod range. Thus 2ST=62 will actually set 2ST to 2.

Examples

Assume the time is now 12:34:56. Then:

```
2ST 34 (34 minutes past the hour – counter resets on the hour)

2ST(0)

2ST 754 (754 minutes since midnight – counter resets at midnight only)

2ST(22)

2ST 6 (754 mod 22 – counter resets at midnight and every 22 minutes thereafter)

2ST 1 (counter is no longer synchronised to midnight)

2ST(22)

2ST 6 (setting range value resynchronises timer to current time)
```

2ST will now increment every minute, resetting back to 0 each time it reaches 22. When midnight comes around, it will again be reset to 0

Delay

It is often useful to insert a fixed delay into a DT80 program. There are two ways of doing this, each for a particular purpose.

As discussed in *Executing Commands in Schedules* (P56), there is a distinction between **channel definitions** and **commands**. Channel definitions (1V, T, 5SDI12 etc) are executed as part of a schedule. Any <u>commands</u> (U, G, <u>DELDATA</u> etc.) triggered by the schedule (using <u>ALARM</u> or <u>DO</u> statements) will be queued but not executed until the schedule completes.

The DELAY=n channel definition will insert a delay of n ms between two channel definitions. For example: RA20S 1WARN=1 DELAY=1000 1WARN=0

will turn on the **Attn** LED, wait one second, then turn it off. (There are more better and more compact ways to do this, e.g. **1WARN(1000,R)=1**; the above is simply to illustrate a point.)

On the other hand, the **PAUSE** n command will insert a delay of n ms between two commands. The following will do a similar thing to the previous example:

RA20S DO{SATTN; PAUSE 1000; CATTN}

In this case the SATTN and CATTN commands are used to turn the Attn LED on and off, rather than the 1WARN channel.

* Delay Accuracy

The actual delay will not necessarily be exactly as specified. For delays of 20ms or less it will be close (within 1ms). For longer delays the resolution is +/- 16ms however it is guaranteed that the duration will be at least the specified time.

For the **DELAY** channel type, the **PT** (precise timing) channel option may be specified to force a precise delay time, even if the duration is greater than 20ms. For example:

DELAY(PT)=1000

Note however that during this time <u>all</u> logger operations including communications, display updates and sampling will be suspended.

Note Performing long delays using the **DELAY** channel or the **PAUSE** command is not recommended as it can prevent the timely evaluation of other schedules. This is true regardless of whether the **PT** option is specified.

System Variables

System variables provide various pieces of information about the state of the *DT80* and its current job. All system variables are read-only except where indicated as **writable** in the table below.

As with any other channel type, SVs are, by default, displayed to one decimal place. Use the **FF**n channel option to vary this if required, e.g. **14**SV(**FF2**)

System Variable	Function	Notes	Writable
1sv	Free space in the internal file system (B:)	in kBytes	
2SV	Used space in the internal file system (B:)	in kBytes	
3SV	Free space in USB memory device (A:)	in kBytes, 0 if no memory device present	
4sv	Used space in USB memory device (A:)	in kBytes, 0 if no memory device present	
5sv	External power status	0 = external power not connected 1 = external power connected	
6SV	Build number of the DT80's firmware	e.g. = 2 for firmware version 6.18.0002	
7sv	Job loaded flag	0 = no current job 1 = a job is loaded	
8sv	Mains frequency setting in Hz (P11)	Can be used to change P11 within a schedule	$\overline{\checkmark}$
9sv	USB memory device presence	0 = none 1 = USB memory device inserted	
10sv	ID of the owning schedule	0 = RX schedule 1 = RA schedule ↓ 11 = RK schedule 12 = immediate schedule	
11sv	Returns 0.0	Can be used as thermocouple reference channel for cases where the thermocouple output is already compensated, e.g. RAIS 11SV(TR) 1TT	
12SV	Decimal days since base date (00:00, 1-Jan-1989)		
13sv	DT80 serial number		
14sv	Version number of the DT80's firmware	e.g. = 6.18 for firmware version 6.18.0002	
15sv	Day number of the current year (integer)	0 = 1st of January	
16SV	Host RS-232 port input handshake line states	Bitmask, 0 to 15 8 = RI, 4 = DCD, 2 = DSR, 1 = CTS	

System Variable	Function	Notes	Writable
17sv	Host RS-232 port output handshake line states	Bitmask, 0 to 3 2 = DTR, 1 = RTS	
18sv	Serial Channel input handshake line states (RS232 mode only)	Bitmask, 0 to 1 1 = CTS	
19sv	Serial Channel output handshake line states (RS232 mode only)	Bitmask, 0 to 1 1 = RTS	
20sv	Current day of the month	1 - 31	
21sv	Current month	1 - 12	
22SV	Current year	1989 - 5999	
25sv	Status of a modem connected to the <i>DT80</i> 's Host RS-232 port	 0 = no modem connected (direct connection assumed) 1 = modem connected and no call in progress 2 = modem connected and call in progress 	
26SV	Status of last NTP attempt	0 = no NTP requests have been attempted 1 = time adjustment in process 2 = last request successful -15 = last request unsuccessful	
27SV	Time discrepancy as at last NTP request	in milliseconds	
29SV	Status of last unload attempt	0 = no unloads have been attempted 1 = unload in progress 2 = last unload was successful -1019 = destination store file error -2029 = source store file error -30 = communications queue is full -99 = unload aborted by user	☑
30sv	Number of logged data records for RX schedule	-1 = no current job; or no storefile has been	
31sv	Number of logged alarm records for RX schedule	created for the specified schedule in the current	
32SV	Number of logged data records for RA schedule	job -	
33sv	Number of logged alarm records for RA schedule	_	
	\downarrow		
52SV	Number of logged data records for RK schedule		
53SV	Number of logged alarm records for RK schedule		
80sv	Communications session state	see States (P220) (DT8xM models only)	
81SV	Result of last communications session	see Errors (P221) (DT8xM models only)	
82SV	Last sampled mobile network signal level	value in dBm, typical range -113 to -51 (DT8xM models only)	
83SV	Last sampled mobile network type	see Network (P224) (DT8xM models only)	
84SV	Last sampled mobile network bit error rate	value in % (DT8xM models only)	
85SV	Current Ethernet communications state	0 = disabled/no cable 1 = starting 2 = online 3 = limited connectivity (link-local IP address)	

Table 3: DT80 System Variables

Channel Options

Overview

All channel types can be modified in various ways by **channel options**, which define the way in which the input channel is managed when sampled. There are channel options that specify the type of sensor excitation, the termination of the input channel, scaling and linearization of the input signal, the format and destination of channel data, fixed channel gain values, resistance and bridge wiring methods, statistical operations on the channel data, and so on.

As shown below, channel options are placed in round brackets immediately following the channel ID (channel number and type). If multiple channel options are specified then they should be separated by a comma (no spaces).

```
RA2S 1TK 3R(4W) 2*V(0.1,GL3V, "Speed~km/h",FF0)
```

In the above example:

- The first channel, 1TK, has no channel options specified so it will measure the thermocouple using default settings.
- The second channel (3R) includes the 4W channel option, which specifies that a 4-wire resistance measurement should be taken.
- Finally, the 2*V channel is in this case used to read a speed sensor which outputs a voltage that is directly proportional to speed (10mV per km/h). The 0.1 channel option is the **channel factor**, which for a voltage channel is interpreted as a simple scaling factor (mV * 0.1 = km/h). The GL3V (gain lock) option tells the *DT80* to select the 3V measurement range (rather than auto-ranging). The last two options concern the presentation of the data on the LCD display and in returned real-time data when in free format (/h) mode. In particular, they define the channel name and units, and specify that no decimal places be displayed (FF0).

The channel's data will therefore be returned/displayed as:

```
Speed 72 km/h instead of the default: 2*V 721.3 mV
```

Only certain channel options can be applied to each channel type. If an inappropriate channel option is applied (or an incompatible combination of options), the *DT80* notifies by returning an E3 - Channel option error message.

The same channel can be put in the list more than once, with the same or different channel options. The *DT80* treats each occurrence as a separate measurement.

A Special Channel Option — Channel Factor

The *DT80*'s **channel factor** channel option is simply a floating point number. This number is interpreted in different ways depending on the channel type, as indicated by the following table.

Channel Type	Channel Factor's function
V, HV, Tx, CV, SV, CALC, &name,	Scaling factor – for example, 1V(5.5) means multiply the reading by 5.5
MODBUS, SDI12, internal	
channels e.g. VBAT, REFT	
LMx35 (voltage output)	External voltage divider factor, or slope calibration factor
I, L, AD5xx, TMP17 (current)	Resistance (ohms) of the external current shunt (the DT80 uses this value and
	the voltage it measures across the shunt to calculate current flow)
LMxx, TMP3x (voltage output)	Offset adjustment (°C)
BGI (current excited bridge)	Bridge arm resistance (ohms)
BGV (voltage excited bridge)	Offset adjustment (ppm)
PT3xx, NI, CU (RTD)	Resistance of the RTD element at 0°C (ohms)
YSxx (thermistor)	Value of connected parallel resistance (ohms)
R (resistance)	Offset adjustment (ohms)
AS (state)	Logic threshold value (mV)
F, FW (frequency)	Sample Period (ms)
C, HSC, STx (counter, timer)	Count modulo value (reset after every n counts)
DN, DB, DNO, DBO (digital multiple)	Bitmask (only channels with 1 in bitmask are read/output)
DSO, WARN, RELAY, PWR12V,	Delay time (ms)
PWR5V (digital output)	
SERIAL	Timeout (sec)

For example, the three channel definitions in the schedule command

RA30S 1V(10.1) 4PT385(200.0) 2DSO(100,R)=0

contain channel factor channel options that instruct the DT80 to do the following:

- scale (multiply) the voltage measured on input channel 1 by 10.1
- use 200 \cdot 0 Ω (instead of the default 100.0 Ω at 0°C) when calculating the temperature represented by the signal from the RTD on channel 4
- output a 100ms pulse on digital channel 2.

Multiple Reports

The *DT80* samples each channel in the channel list once every scan. However, by adding additional **channel option sets** (each set enclosed in round brackets) you can generate additional reports. That is, you can report the same data value in different ways.

The first channel option set determines how the channel is sampled, and must include all sampling options required for the channel. These channel options are listed above the **configuration line** in the *Channel Option Table* (P41). Second and subsequent option sets may only contain reporting options (those below the configuration line.

Multiple reports are particularly useful for statistical reports (see *Statistical Report Schedules* (P53)) in that several different statistical operations can be performed on the same data set.

For Example:

```
RA1H 3YS04(II,AV)(MX)(TMX)(MN)(TMN)
```

defines five option sets. The first option set specifies one sampling option (**II** – use 2.5mA excitation) and returns the average temperature value, calculated over the period (1 hour in this case) since the last report scan. The remaining option sets will return the maximum reading over the same interval, the time at which it occurred, the minimum and the time of minimum.

Remember that the first option set can contain options from any part of the channel option table, while subsequent option sets can only contain options from below the configuration line.

Mutually Exclusive Options

Options grouped by a shaded rectangle in the Mutual Exclusions column of the table below are **mutually exclusive**. If more than one channel option from a mutual exclusion group is placed in a channel list, only the **last** one specified is recognised.

Order of Application

The *DT80* applies channel options in a specific order, regardless of the order in which they are specified in a channel definition. The channel option table below lists the channel options more or less in the order of application.

In general terms, the ordering is as follows:

First, the raw value is sampled, taking note of sampling options, i.e. those relating to the physical measurement process. These include options in the input termination (T, U), input attenuator (A, NA), resistance/bridge wiring (2W, W, 4W), gain lock (GL30V, GL300MV, GL30MV) and excitation (I, II, V, E, N) categories, along with NSHUNT, 2V, ESn and MDn.

The raw value may then be linearised according to the channel type, e.g. for thermocouples the appropriate polynomial will be applied to convert millivolts into a temperature value (in the units specified by P36).

The resulting linearised value is then further processed as follows.

- 2. The **channel factor** is then applied, if specified. For most channel types this is a simple scaling (multiplier) value.
- 3. A **user specified scaling** option a span (sn), polynomial (yn), thermistor scaling (tn) or intrinsic function (tn) is then applied.
- 4. The resulting scaled and linearised value may then be manipulated using a **data manipulation** option difference (**DF**), time difference (**DT**), rate of change (**RC**), reading per time (**RS**) or integrate (**IB**).
- 5. A **digital manipulation** option for measuring the timing of signal transitions may then be applied (**TRR**, **TRF**, **TFR**, **TFF**, **TOR** or **TOF**)
- 6. The data value processed up to this point may then be used as a **reference** value for other measurements (TR, BR or TZ)
- 7. The data value may then be accumulated using one or more **statistical** options (each one in a separate option set). Statistical channel options include **AV**, **SD**, **MX**, **MN**, **TMX**, **TMN**, **DMX**, **DMN**, **IMX**, **IMN**, **INT**, **NUM** and **H** (histogram).
- 8. Finally, the resultant value after applying the above options (or values if multiple option sets are used) may be stored in a channel variable using =CV and op=CV options. Return, logging and/or display of the data may be disabled using the NR, NL, ND and W options, and output formatting can be specified using FFn, FEn and FMn and "name~units".

Default Channel Options

All channel options have default values. The DT80 follows a 3-step procedure to determine what options to apply:

- 1. Start with the basic set of default options specified in the channel option table.
- 2. If the **channel type** specifies any default options then they are applied, overriding any conflicting basic default options. Default options for each channel type are listed in the channel type table refer *Table 2: DT80 Channel Types* (P33)
- 3. Finally, if an option is explicitly specified in the channel definition then that setting is used, overriding any default setting. If more than one **mutually exclusive** option is specified then only the **last** one is used, e.g. **1V(AV,MX)** is interpreted as **1V(MX)**. (If you want to output both the average and the maximum then use two separate option sets, i.e. **1V(AV)(MX)**.)

For example, if you specify:
1R(4W)
then you are really specifying:
1R(U,NA,N,ESO,MD10,FF1,I,3W,4W)

In this case the basic default options are (U,NA,N,ESO,MD10,FF1). The R channel type specifies (I,3W) as its default options, so the (I) option $(200\mu A \text{ excitation})$ overrides the (N) option (no excitation). Then the user specifies (4W) which overrides the R channel type's default wiring option setting (3W).

Channel Option Table

Category	Channel Option	Mutua Excl	Function	Range of Option (n)	Comment	
Input Termination (DT80/81 Series	T		Terminate +, – inputs with 1MΩ to AGND terminal		Provides input bias current path to ground to prevent inputs "floating" – particularly when independent (differential) inputs are used.	
1 only)	default		Unterminate +, - inputs		Not required on DT80 Series 2 or DT85 as a ground path is always present.	
Input Attenuators	A		Enable ÷10 input attenuators		Attenuators default ON for HV, AS channel types, OFF for other types.	
	NA default		Disable input attenuators			
Resistance and Bridge	2W		2-wire measurement		Specifies the number of wires run between the <i>DT80</i> and the resistance or bridge. More	
	3W default	_	3-wire measurement		wires generally mean better accuracy.	
	4W		4-wire measurement			
Gain lock	(none) default		Auto-range over 3 gain ranges		Selects between 3V, 300mV, 30mV ranges if input attenuators disabled Selects between 30V, 3V, 300mV ranges if input attenuators enabled	
	GL30V		Lock channel gain for ±30V input signal range		Valid only if input attenuators are enabled	
	GL3V		Lock channel gain for ±3V input signal range			
	GL300MV		Lock channel gain for ±300mV input signal range			
	GL30MV		Lock channel gain for ±30mV input signal range		Valid only if input attenuators are disabled	
Excitation	I		Supply 200µA current excitation on * terminal		Precision current source. Low excitation current minimises self-heating in resistive temperature sensors and allows high resistances to be measured.	
	II		Supply 2.5mA current excitation on * terminal		Precision current source. Higher excitation current allows more accurate measurement of low resistances (< 700Ω).	
	V		Supply approx. 4.5V voltage excitation on * terminal		Voltage source is not regulated	
	Е		Connect external excitation source (EXT * terminal) to channel's * terminal			
	N default		No excitation by <i>DT80</i> (assumes externally applied excitation)		Excite terminal (*) may be used as a shared-terminal input channel	
Channel Factor	value		Linearise/scale the measured value	depends on chan type	A scale factor or other parameter specific to channel type (see the channel factor column in <i>Table 2: DT80 Channel Types</i> (P33))	
Reference Offset	2V		Measure relative to 2.5V rather than 0V		Used with F channel type to set threshold to +2.5V (suitable for TTL level input signals) rather than the default of 0V.	
Extra Samples	ESn default = 0		Perform <i>n</i> additional samples and average them	0 to 30000	Can reduce noise. Total measurement time is <i>n</i> +1 mains periods. Analog channel types only.	
Measurement Delay	MDn default = 10		After selecting channel, delay for <i>n</i> ms before starting measurement	0 to 30000	Specifies the settling time required before a sensor can be measured. Default is 350ms for FW channel. Analog channel types only.	
Low Threshold	LT		Set low input voltage thresholds for high speed counters		Valid for 1HSC, 2HSC (DT80/81/85) and 1PE (not DT81) channels.	

Category	Channel Option	Mutual Excl	Function	Range of Option (n)	Comment
Reset	R		Reset channel after reading	Option (ii)	Valid for C, HSC, ST and CV channel types, which are reset to 0 after returning their current value. Also valid for digital output channel types (DSO, DNO, DBO) which invert the state of each bit after returning its value.
Internal Shunt (DT80/81 Series 1 only)	NSHUNT		Disconnect internal 100R shunt between # terminal and AGND		Allows # terminal to be used for shared-input voltage measurements
Delay	PT		Force precise timing		Valid for DELAY , DSO , WARN and RELAY channel types. Forces a precise (+/- 1ms) delay time even for long delays.
Scaling	Sn		Apply span <i>n</i>	1 to 50 (poly & - span index	Applies a previously-defined span See Spans (Sn) (P61))
	SRn		Apply reversed span <i>n</i>	is shared)	Applies a span in reverse See Spans (Sn) (P61)
	Y n		Apply polynomial <i>n</i>		Applies a previously-defined polynomial See <i>Polynomials</i> (P62)
	Fn		Apply intrinsic function <i>n</i> .	1 to 7	nFunction1 $1/x$ 2 \sqrt{x} 3 $Ln(x)$ 4 $Log(x)$ 5Absolute(x)6 χ^2 7Gray code to binary conversion (16
	Tn		Apply thermistor scaling (correction) <i>n</i>	1 to 20	bit) Applies a previously-defined thermistor scaling equation See Thermistor Scaling(P62) and Temperature – Thermistors(P318)).).
Data Manipulation	DF		Difference Δx		Returns the difference (xUnits) between the latest reading and the previous reading
	DT		Time difference Δt		Time difference (seconds) between the latest reading and the previous reading
	RC		Rate of change Δx / Δt		Rate of change (xUnits per second) based on latest and previous readings and their respective times
	RS		Reading / time difference x / Δt		Rate of change (xUnits per second). Useful when the sensor reading is already a difference (e.g. resetting counters)
	IB		"Integrate" (x – Δx / 2) Δt		"Integration" with respect to time (xUnits . seconds) between the latest and the previous readings (area under curve)
Digital Manipulation	TRR		Time from rising edge to rising edge		Normally used for digital channels. If used on analog channels then channel
	TRF		Time from rising edge to falling edge		factor is interpreted as a threshold value.
	TFR		Time from falling edge to rising edge		
	TFF		Time from falling edge to falling edge		
	TOR		Time of rising edge		
Reference Channel	TR		Time of falling edge Use this channel's value as thermocouple reference junction temperature		Any non-thermocouple temperature sensor measuring isothermal block temperature. If already compensated use 11sv(TR) as reference channel (11SV always returns 0.0). TR channel temperature is used for all subsequent thermocouple measurements in this schedule

Category	Channel Option	Function Expression	Range of Option (n)	Comment
	TZ	Use this channel's value to correct the <i>DT80</i> 's electrical zero	,	This zero would be measured at the isothermal block TZ channel zero is used for all subsequent thermocouple measurements in this schedule
	BR	Use this channel's value as bridge excitation voltage		BR channel voltage used for all subsequent BGV measurements in this schedule
SDI-12	AD"n"	Sensor address (quotes optional for 0-9)	0-9, A-Z, a-z	See SDI-12 Channel (P346)
	Rnnn	Register to read	1 to 999	
	СМ	Configure sensor to measure continuously		
	VERnn	Only use commands supported by SDI12 version <i>n.n</i>	10, 11, 12, 13	
Modbus	AD n	Sensor address (serial)	1 to 247	See Modbus Channel (P364)
	AD" ip-addr"	Sensor address (TCPIP)	IP address	
	Rt: rrrrr: b	Register(s) to read or write	0:0 to 4:65536	
	MB type	data type: int16, unsigned16, int32, float32, Enron int32,	I, U, L, F, LE, FE	
	ME order	Enron float32 32-bit word order:	S, R	
	TOn	standard, reversed comms timeout (sec)	1 to 255	
	RTn	max retries	0 to 25	
	MUIDn	unit id	0 to 255	
Serial Channel		Input and output actions		See Generic Serial Channel (P351)
Rainflow Cycle Analysis	RAINFLOW			See Rainflow Cycle Counting (P76)
CONFIGURATI	ON LINE (see Mo	ultiple Reports (P39))		
Statistical	AV	Average of channel readings	_	These channel options link the channel to the statistical sub-schedule RS. The channel is
See Statistical Channel	SD	Standard deviation of channel readings	_	sampled at times determined by the RS trigger (which defaults to 1S).
Options (P73)	MX	Maximum channel reading	_	At the report time as determined by the report
	MN	Minimum channel reading		schedules, the statistical summary is reported. If insufficient samples have been
	TMX	Time of maximum channel reading		taken before the reporting time, an error is reported (NotYetSet).
	TMN	Time of minimum channel reading		
	DMX	Date of maximum channel reading	I	
	DMN	Date of minimum channel reading		
	IMX	Instant (time and date) of maximum		
	IMN	Instant (time and date) of minimum		
	INT	Integral for channel (using time in seconds)	_	
	NUM	Number of samples in statistical calculation		
	Hx:y:mnCV	Histogram	x, y ±1e18 m, n 1-1000	Divide data range x to y into discrete buckets and accumulate in CVs the number of samples in each bucket See Histogram (Hx:y:mnCV) (P75)

Category	Channel Option	Mutual Excl	Function	Range of Option (n)	Comment
Variables See Channel			Assign channel reading to channel variable. nCV = reading		Channel variables are like memory registers in a calculator. They can be assigned directly (e.g. 1CV=2.5), or assigned a channel
Variables (nCV) (P64)	+= <i>n</i> CV		Add channel reading to channel variable. nCV = nCV + reading	1 to 1000	reading at scan time (e.g. 1V(=7CV)). The contents of a variable can also be read,
	-=nCV		Subtract channel reading from channel variable. nCV = nCV - reading	1 to 1000	modified and then updated. For example 1V(/=7CV) means that the value of 7CV is divided by the reading on channel 1 and the
	*=nCV		Multiply channel variable by channel reading. nCV = nCV * reading	1 to 1000	result is returned to 7CV. Note that these actions occur only at report time and not during statistical sampling.
	/=nCV		Divide channel variable by channel reading. nCV = nCV ÷ reading	1 to 1000	
	=mnCV (MODBUS channel only)		Assign values to a range of CVs	_	
Destination	NR		No return		Channels tagged with NR are not returned to the host computer (they may still be logged or displayed).
	NL		No log		Channels tagged with NL are not logged (they may still be returned or displayed).
	ND		No display		Channels tagged with ND are not displayed on the LCD (they may still be returned or logged).
	W		Working channel		Same as (NR, NL, ND) Working channels are usually used to hold intermediate values in calculations.
	LM		Log alarm measurement		Log the value being tested in an alarm. Ignored for non-alarm channels.
Output Data Format	FFn default = 1		Fixed-point format n=decimal places	0 to 7	Specifies numeric format for display and free format (/h) real-time data.
	Fen	=	Exponential format, n=decimal places	0 to 7	For example, FF2 returns 71.46 mV For example, FE2 returns 7.14e1 mV
	FM n		Mixed: FF or FE, n=significant digits	0 to 7	FMn uses exponential format if exponent is less than –4 or greater than n
	BGmin: max				Show value as a bargraph on the display.
Channel name and Units	"name"		User-specified name Default units	ASCII text	Allows channel name and/or units to be overridden for display and free format (/h)
	"name~unit"		User-specified name User-specified units	_	real-time data. Max 24 characters for user-specified channel name; 10 characters for units.
	"name~"		User-specified name No units	_	name, to onaractors for units.
	"~unit"		No channel name User-specified units	_	
	п~п		No channel name No units	_	

Table 4: DT80 Channel Options

Part C - Schedules

Schedule Concepts

What are Schedules?

Schedules are the workhorses of the *DT80*. They are the underlying structures that you use to manage the repetitive processes of the *DT80* such as

- · scanning input channels
- · evaluating calculations
- processing alarms
- · managing output channels
- · returning data to a host computer
- logging data.

The DT80 supports the following schedules:

- 11 general purpose schedules, A-K, which can be triggered by a variety of different events
- a **polled** schedule, X, which is normally triggered by a poll command from the host computer (although most of the other triggers can also be applied to it, making it effectively a 12th general purpose schedule)
- the immediate schedule, which executes once immediately after being entered
- the statistical schedule, which collects and accumulates data to be returned as statistical summaries by the other schedules.

Schedule Syntax

A typical schedule definition is shown below:

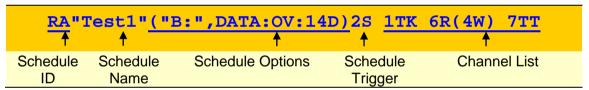


Figure 7: Components of a typical schedule command

A schedule consists of a number of parts. Firstly the Schedule ID, next the schedule options and finally the schedule trigger. There are no spaces between the different parts

Schedule ID

<u>RA</u> "T	est1"("B:	",DATA:OV:14D)2S	3 1TK 3R(4W) 2DS
Schedule ID	Schedule Name	Schedule Options	Schedule Trigger	Channel List

The **Schedule ID** consists of the letter **R** ("Report schedule") followed by a letter identifying the schedule.

Each schedule has a unique identifier; these are summarized in the following table:

	Schedule ID	Quantity
Report schedules (P48)	RA, RB, RC, RD, RE, RF, RG,	12 available
	RH, RI, RJ, RK, RX	
Immediate report schedule (P52)	No schedule ID	Each time you enter an immediate schedule it replaces the previous one, if any.
Statistical sub-schedule (P53)	RS	1 available, but is applied to one or more of the other report schedules

Schedule Name

RA <u>"Test1"</u> ("B:"	,DATA:OV:14D)2S	1TK 3R(4v	I) 2DS
Schedule Schedule Name	Schedule Options	Schedule Trigger	Channel List

The schedule name is optional, and consists of text (max 20 characters) enclosed in double quotes. This name is used in reports and is normally used to document the purpose of a given schedule.

Schedule Options

Schedule options are enclosed in brackets. They define:

- where to log the data and alarms generated by the schedule (i.e. internal file system or removable USB device)
- the amount of space to allocate for storing data records, and whether old records are to be overwritten when it is full.
- the amount of space to allocate for storing alarm records, and whether old records are to be overwritten when it is full.

For more details on how data logging works, see Logging Data (P91)

The schedule option syntax is as follows:

(Dest, DATA: DataOverwrite: DataSize, ALARMS: AlarmOverwrite: AlarmSize: AlarmWidth)

Item	Possible Values	Explanation
Dest	"A:"	Logged data and alarm information from this schedule will be written directly to the USB memory device (not recommended, see <i>Logging Options</i> (P93))
	"B:"	Logged data and alarm information from this schedule will be stored on the internal flash disk (default)
DataOverwrite	OV	Data for this schedule will be overwritten when the data store is full (default)
	NOV	Data will <u>not</u> be overwritten when the data store is full. When the data store fills logging will stop and the Attn LED will flash
DataSize	nB	Allocate <i>n</i> bytes for storing data for this schedule
	nKB	Allocate n kilobytes for storing data for this schedule
	n m B	Allocate <i>n</i> megabytes for storing data for this schedule
	nR	Allocate space for <i>n</i> data records for this schedule
	ns Note 1	Allocate space for <i>n</i> seconds worth of data for this schedule
	nM Note 1	Allocate space for <i>n</i> minutes worth of data for this schedule
	nH Note 1	Allocate space for <i>n</i> hours worth of data for this schedule
	nD Note 1	Allocate space for <i>n</i> days worth of data for this schedule
AlarmOverwrite	OV	Alarms for this schedule will be overwritten when the store is full (default)
	NOV	Alarms will NOT be overwritten when the store is full. When the store fills logging will stop and the 'Attn' LED will flash
AlarmSize	nB	Allocate <i>n</i> bytes for storing alarms for this schedule
	nKB	Allocate <i>n</i> kilobytes for storing alarms for this schedule
	n MB	Allocate <i>n</i> megabytes for storing alarms for this schedule
	nR	Allocate space for <i>n</i> alarm records for this schedule
AlarmWidth	W n	Allocate <i>n</i> bytes for storing each alarm string (default=60 bytes)

Note 1: These are only valid for time-triggered schedules (not for polled or event triggered schedules). Furthermore, if the schedule rate is changed after the job has started running then the store file may no longer contain data for the indicated time span.

❖ Default Schedule Options

All schedule options are optional. Default settings are:

- Destination is **B**: (internal flash drive)
- New data and alarms overwrite earlier data/alarms once the store file fills
- Space allocated for data is 1MB

- Space allocated for alarms is 100KB
- Space allocated for each logged alarm text string is 60 bytes.

Examples

```
RA"Fred"(DATA:NOV:15D)15M
```

Schedule A is given the name "Fred". Data and alarms are stored on the internal drive and sufficient space is allocated for 1440 readings (15 days worth, based on a 15 minute scan rate). In this case earlier data is considered more valuable than later data, so no-overwrite mode is selected. If any alarms are defined in this schedule they will use the default storage parameters (100KB, overwrite enabled)

Schedule Trigger

All schedules have a **trigger**, which defines when the schedule is to execute the processes assigned to it. Here are the *DT80*'s schedule triggers:

- an interval of time, see Trigger on Time Interval (P48)
- a time of day, see Trigger at Date/Time (P49)
- an external event (such as a digital input transition), see Trigger on External Event (P49)
- an **internal event** (such as a CV changing), see *Trigger on Internal Event* (P50)
- a poll command, see Trigger on Poll Command (P51)

Triggers can also be conditional upon an external or internal state (that is, trigger only while a particular external state or internal state exists) — see *Trigger While* (P52).

Channel List

```
RA"Test1" ("A:", DATA:OV:14D) 2S 1TK 3R(4W) 2DS

Schedule Schedule Options Schedule Channel List Trigger
```

Most often schedules will be created that instruct the DT80 to carry out channel-related tasks, such as scanning one or more of its input channels and/or setting one or more of its output channels. When these schedules are created, group the channel details (their IDs and optional instructions) together in a **channel list** within the schedule. *Figure* 7 (P45) shows a typical schedule — notice its schedule header and channel list components.

A channel list may contain just one channel entry or many, and each channel in the list must be separated from the next by one or more space characters. Similarly, a schedule's header must be separated from its channel list by one or more space characters.

The DT80 processes the channels in a channel list from left to right.

❖ Example — Channel List

The channel list

```
1V 3R 5..7DS 4TK("Boiler Temp") 3DSO=0
```

specifies the following channels (each is separated from the next by a space character):

- 1v read analog input channel 1 as a voltage
- 3R read analog input channel 3 as a resistance
- 5..7DS read the state of digital input channels 5 through 7 (inclusive)
- 4TK("Boiler Temp") read analog input channel 4 as a type K thermocouple and assign it the name Boiler
 Temp
- 3DSO=0 set digital state output channel 3 low

Note that the example above is only a channel list and not a complete schedule. Here's the same channel list used in a schedule (the schedule header RJ2M has been added):

```
RJ2M 1V 3R 5..7DS 4TK("Boiler Temp") 3DSO=0
```

The header identifies the schedule as Report schedule J that runs every 2 Minutes.

A Simple Schedule

A schedule comprises a schedule ID (schedule identifier), a trigger that determines when the schedule runs, and a list of processes to be carried out every time the schedule runs. For example, the schedule

RA10M 1V 3R

specifies report schedule A as follows:

- RA schedule ID
- If logging is enabled then data will be stored to the internal flash disk, 1MB will be allocated and old data will be overwritten when full. This schedule does not define any alarms, so no alarm storage will be allocated.
- 10M trigger (run the schedule every 10 minutes)
- 1V 3R channel list

Groups of Schedules — Jobs

A *DT80* **job** is essentially a group of one or more schedules that together perform the overall task. It may also be referred to as a **program**.

See also Jobs (P24).

Types of Schedules

General-Purpose Report Schedules

The *DT80* supports twelve general-purpose **report schedules**, which you use to carry out the repetitive processes of scanning input channels, evaluating calculations, handling alarms, managing output channels, returning and logging data, and so on.

These report schedules have the identifiers RA, RB, RC, RD, RE, RF, RG, RH, RI, RJ, RK and RX

A report schedule executes the processes assigned to it whenever it is triggered. A schedule trigger can be

- · an interval of time
- a particular time of day
- an external event (e.g. a digital input changing state)
- an internal event (e.g. an internal variable changing its value)
- a poll request from a host computer or an alarm channel
- continuous (the schedule executes repeatedly, as quickly as possible)

Trigger on Time Interval

Figure 8: Time interval schedule

Report schedules can be triggered at regular intervals of time, determined by the *DT80*'s real-time clock. Intervals can be an integer number of seconds, minutes, hours or days:

Trigger	Run every n	Range
nD	<u>D</u> ays	1 – 65535
nH	<u>H</u> ours	1 – 65535
n M	<u>M</u> inutes	1 – 65535
ns	<u>S</u> econds	1 – 65535
n T	Milliseconds (Thousandths of seconds)	5 – 65535

Note The schedule first runs on the next multiple of the interval since last midnight (see *Time Triggers — Synchronizing to Midnight* (p56)), and subsequently runs every multiple of the interval thereafter. If the interval is not an even multiple of 24 hours, the *DT80* inserts a short interval between the last run of the schedule prior to midnight, and the run of the schedule beginning at midnight.

Examples

The following schedule will execute every 5 seconds:

RA5S

The following schedule will execute 6-hourly, at 00:00, 06:00, 12:00 and 18:00:

RX6H

Trigger at Date/Time

Schedules can be triggered at particular times of day, days of the week, or dates. This is done by specifying the desired second, minute, hour, day, month and day of week on which to trigger, as follows:

[seconds: minutes: hours: day: month: weekday]

where

- seconds, minutes and hours specify the time of day at which the schedule should trigger, e.g. 0:0:17 for 5pm.
- day and month specify the date on which the schedule should trigger, e.g. 1:7 for 1st July.
- weekday specifies the day of the week on which the schedule will trigger. This is a number from 0 to 7, where 0 or 7 represents Sunday. The schedule will trigger if either the date or weekday condition matches.

Each of the six fields may be set to either:

- a single value, e.g. 3
- a list of values, e.g. 3, 4, 9
- a range of values, e.g. 3-12
- *, which means "all values"

Thus [0:0:12:*:*:*] will trigger the schedule daily at noon.

Fields may be omitted starting from the right hand side. Any omitted field is assumed to be '*', so [0:0:12] is equivalent to the previous example.

Finally, /n may be appended to a range. This means: include every nth value, so 2-14/4 in the hours field means trigger at 2am, 6am, 10am and 2pm, while */6 would mean 12am, 6am, 12pm and 6pm. As a shortcut, if the end point of a range is omitted (i.e. a single value is specified to the left of the /) then this is interpreted as a range from the indicated value up to the maximum for the field, e.g. in the hours field 7/2 is equivalent to 7-23/2.

Examples

```
Trigger daily at 9:00am:
```

```
RA[0:0:9]
```

Trigger every Monday morning at 10:30am

```
RA[0:30:10:*:*:1]
```

Trigger at 4:00am on the first of every month

RA[0:0:4:1]

Trigger every 2 hours (same as RA2H)

RA[0:0:*/2]

Trigger every 2 hours, at 2 minutes before the hour (i.e 1:58, 3:58, etc.)

RA[0:58:1/2]

Trigger at 7:30am on the 1st and 15th of each month

RA[0:30:7:1,15]

Trigger hourly from 9:00am to 5:00pm, weekdays only

RA[0:0:9-17:*:*:1-5]

Trigger on External Event

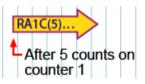


Figure 9: Various external event schedules

Report schedules can also be triggered by external events, which are manifested to the logger as state changes on the digital input channels $n\mathbf{D}\mathbf{S}$, or as pulses on the counter channels $n\mathbf{C}$:

Trigger	Action
nΕ	Trigger on a rising or falling transition of digital input channel n
n+E	Trigger on a rising transition of digital input channel n
n- E	Trigger on a falling transition of digital input channel n
mnE	Trigger on a rising or falling transition of any of digital input channels $m \centerdot . n$
mn+ E	Trigger on a rising transition of any of digital input channels mn
<i>mn</i> − E	Trigger on a falling transition of any of digital input channels mn
nC(c)	Trigger when low speed counter channel n "wraps around" (i.e. is reset to 0), which will occur when a count value of c is reached.
nHSC(c)	Trigger when high speed counter channel <i>n</i> "wraps around" (i.e. is reset to

	0), which will occur when a count value of c is reached.
nSERIAL" text"	Trigger on the arrival of characters (from an external serial device) at the $DT80$'s Serial Channel (serial sensor port if $n = 1$, host port if $n = 2$). The trigger can be of the form
	1SERIAL"", where any character arriving triggers the schedule (note that
	there is no space between ""), or
	1SERIAL"AbC", where arrival of the exact string AbC triggers the
	schedule.
	See Triggering Schedules (P359).

where:

- n is a digital channel number
- $m \cdot n$ is a sequence of digital channel numbers (see *Digital Channels* (P332))
- text is a string of characters arriving at the DT80's Serial Channel terminals from an external serial device

Note For digital input edge triggering the minimum pulse width is approximately 16ms.

Note If a counter is preset to a value greater than its specified trigger count, the schedule is not triggered. For example, a schedule set to trigger after 10 counts on digital counter 2 (e.g. **RA2C(10)**) cannot be triggered if counter 2 is assigned a value of 15.

* Examples - Digital Channel Event

The schedule header

RC1E

instructs the DT80 to run report schedule C on every transition of digital input 1D.

The following schedule will run whenever digital input **3D** receives a low to high (positive/rising) transition: RA3+E

Examples – Counter Event

The following schedule will run on every 100th pulse received on high speed counter input **1C**: RA1HSC(100)

In this case counter **1HSC** will count from 0 to 99 then reset to 0, at which time the schedule will trigger. This means that if you read the value of **1HSC** within this schedule then it will generally always read 0.

The following schedule will be triggered on every second pulse received on digital input 1D: RA1C(2)

❖ Examples – Serial Channel Event

The following schedule will run if the specific character sequence Pasta8zZ is received on the serial sensor port:

RB1SERIAL"Pasta8zZ"

The following schedule will run each time any string is received on the host port (assuming the port has been configured for serial channel operation):

RG2SERIAL""

Trigger on Internal Event

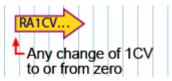


Figure 10: Internal event (CV change) schedule

Report schedules can also be triggered by channel variables (CVs) changing value:

Trigger	Action
nCV	Trigger if channel variable nCV changes from zero to non-zero, or vice versa
n+CV	Trigger if channel variable nCV changes from zero to non-zero
n-CV	Trigger if channel variable nCV changes from non-zero to zero
mnCV	Trigger if any of the channel variables $m \cdot nCV$ change from zero to non-zero, or vice versa
mn+CV	Trigger if any of the channel variables $m \cdot nCV$ change from zero to non-zero
mn-CV	Trigger if any of the channel variables $m \cdot n = n \cdot n = n \cdot n \cdot n \cdot n \cdot n \cdot n \cdot n$

See also Channel Variables (nCV) (P64).

Examples

The schedule header

RK6CV

instructs the DT80 to run schedule K upon any change of channel variable 6CV to or from zero.

The schedule header

RA11..13+CV

instructs the DT80 to run schedule A whenever either 11CV, 12CV or 13CV change from 0 to any other value.

Trigger on Poll Command

Figure 11: Polled schedule

Instead of a time or event trigger, the poll trigger (x) can be applied to a report schedule. The schedule will then only run when it is polled.

The command to poll a schedule is **X**s (where s is the schedule letter). This command can be issued:

- by a host computer, or
- by an alarm action (see *Using an Alarm to Poll a Schedule* (P87)).

* Example

The schedule

RDX 1..3TK

samples analog channels 1 to 3 as type K thermocouples (1..3TK) whenever the *DT80* receives an XD poll command (that is, whenever it receives the character sequence XD) either from a connected computer, or by means of an alarm action from within the *DT80*.

Using Poll Commands with Standard Report Schedules

Figure 12: Polling a time interval schedule

A report schedule defined with a time or event trigger can also be polled by its appropriate poll command at any time. For example, the report schedule

RC5M 1V 2V 3V

normally runs every 5 minutes (5M), but it can also be run at any time by an XC poll command (from the host computer or an alarm).

For schedules that have a long interval, this is useful for checking that a sensor is functioning.

Continuous Trigger

Figure 13: Continuous schedule

Report schedules that run continuously can be created. A continuous schedule will start scanning as soon as job is loaded onto the *DT80*, and run until it is stopped (by sending a halt command or resetting the *DT80*, for example).

Define a continuous schedule simply by omitting the trigger from a report schedule.

Example — Continuous Schedule

Sendina

RA 1TK 2R(3W) 3TT

causes the DT80 to scan the specified channels continuously.

Note The X schedule does not support continuous trigger. The schedule definition **RX** is equivalent to **RXX**, i.e. it defines a polled schedule, <u>not</u> a continuous schedule.

Trigger While

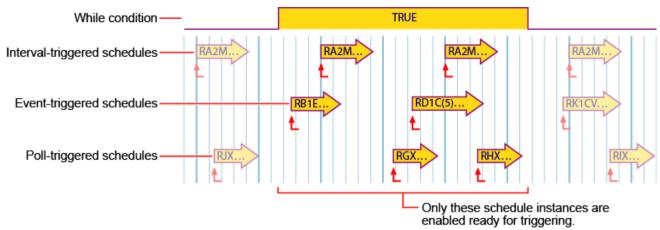


Figure 14: Schedule "while" condition

A report schedule's trigger can be enabled or disabled by an external condition. This is called the **While** condition — that is, trigger only <u>while</u> the external or internal condition is true.

The While condition can be either

- states on one or more of the DT80's digital input channels (nDS), or
- internal conditions specified to the DT80 as states of channel variables:

While clause	Action
: n W	Enable schedule while digital input n is high
: n~₩	Enable schedule while digital input <i>n</i> is low
:mnW	Enable schedule while ANY digital input m to n is high
:mn~W	Enable schedule while ANY digital input m to n is low
: nCV	Enable schedule while ncv is non-zero
:n~CV	Enable schedule while nCV is zero
:mnCV	Enable schedule while any of the channel variables nmcv are non-zero
:mn~CV	Enable schedule while any of the channel variables nmcv are zero

Note that the colon (:) is required.

* Examples — While Condition

The schedule header

RA1E:2W

instructs the DT80 to run schedule A on every transition of digital input 1 (1E) only while digital input 2 is high (: 2W).

The schedule header

RD1S:4~W

instructs the DT80 to run schedule D every second (1S) while digital input 4 is low (:4~W).

The schedule header

RK2H:9W

instructs the DT80 to run schedule K every two hours (2H) while digital input 9 is high (:9W).

The schedule header

RC5M:12CV

instructs the DT80 to run schedule C every 5 minutes (5M) while channel variable 12 is not zero (:12CV).

The schedule header

RF6..8E:5W

instructs the *DT80* to run schedule **F** on any transition of digital channels D6, D7 or D8 (6..8E) while digital input 5 is high (:5W).

Immediate Report Schedules

Figure 15: Immediate schedule

Instead of scanning according to time or event triggers, **immediate schedules** run immediately — and once only — when they are received by the *DT80*.

An immediate schedule is simply a list of input channels, output channels, calculations and/or alarms with no schedule header (that is, no schedule ID and no trigger). The *DT80* executes the list (up to the next carriage return) immediately and once only.

Note Any data resulting from an immediate schedule is returned to the host computer, but is not logged.

❖ Example — Immediate Report Schedule

Sending

```
1TK 2R(3W) 3TT
```

causes the *DT80* to immediately scan analog channels 1, 2 and 3 once only and return the data. Notice that this schedule has no schedule ID and no trigger.

* Re-Running an Immediate Schedule

The last-entered immediate schedule can be run again by sending the * (asterisk) command — that is, by sending a * character. For example:

```
1..2TK

1TK 31.5 degC

2TK 22.0 degC

*

1TK 34.2 degC

2TK 21.9 degC
```

Statistical Report Schedules

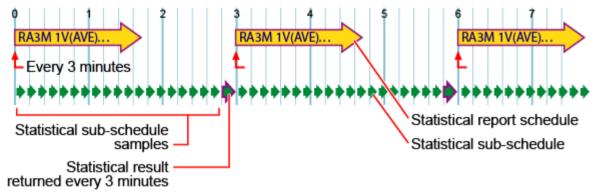


Figure 16: Statistical and report schedules

A report schedule can instruct the *DT80* to return statistical information (average, SD, max., min.,...) for one or more channels. The *DT80* does this by

- scanning its input channels and executing calculations at <u>frequent</u> intervals of time, then
- retaining intermediate values to produce a statistical data summary at <u>longer</u> intervals.

Note that there are two schedules involved:

- The primary statistical data is collected at frequent intervals, which are determined by the statistical sub-schedule RS.
- The statistical data summary (average, SD,...) is returned and logged at longer intervals, which are determined by the report schedule(s) that are requesting the statistical information.

The statistical sub-schedule has its own interval trigger. The default is one second, but you can change that — see *Redefining the Statistical Sub-Schedule's Trigger* (P53) below.

To return statistical data, include — in any report schedule — a statistical channel option for the specific input channels, calculations, and so on where statistically scanned is required. For example

```
RA1M 2TT(AV)
```

will sample a type T thermocouple connected to channel 2 (2TT) once a second (because one second is the default scan rate for the statistical sub-schedule). Once a minute (RA1M), the average (AV) of these 60 measurements will be reported and logged.

Note:

- Simply including a statistical channel option ((AV) in the example above) invokes the statistical sub-schedule.
- There is no need to include RS, the statistical sub-schedule's ID, anywhere (unless you want to alter RS's trigger see *Redefining the Statistical Sub-Schedule's Trigger* (P53) below).

For details of the statistical channel options available, see Statistical Channel Options (P73).

Redefining the Statistical Sub-Schedule's Trigger

The statistical sub-schedule's trigger can be altered from its default of one second. Define the statistical sub-schedule's trigger in the same way as for report schedules (see *Changing a Schedule Trigger* (P55)), by using the RS schedule ID and

sending an **RS**... schedule command to the *DT80*. If you don't specify the **RS** schedule's trigger in this way, it defaults to once per second. Here are some examples:

The schedule header	instructs DT80 to accumulate specified statistical data
RS10S	every 10 seconds
RS1-E	on each 1 to 0 transition of digital input 1
RS	continuously

Statistical Sub-Schedule Halt/Go

The statistical sub-schedule can be halted by sending the HS command, and start it again by sending the GS command.

Important Because statistical sampling of channels stops the moment the **HS** command is sent, be aware that the reported statistical summaries do not include data from this halt period.

See also Halting & Resuming Schedules (P55).

Multiple Statistical Information for a Channel

If more than one type of statistical information is required for a channel, then each statistical option must be placed in a separate channel option list. For example, the channel list

```
1TT(AV)(SD)(MX)
```

results in periodic average, standard deviation and maximum data for the 1TT channel.

Insufficient Statistical Samples

If no statistical data has been scanned before being reported, then the reported data value will be set to NotYetSet. This will also occur if **insufficient** samples have been taken – for example, the standard deviation (SD) option requires at least two samples to be able to return a value.

This condition may occur when

- the statistical sub-schedule is event-triggered
- the statistical sub-schedule has been halted
- a statistical sub-schedule scan interval is longer than its statistical report scan interval.

When using statistical channel options you need to ensure that the statistical and report schedule triggers are selected such that sufficient statistical samples are taken between each execution of the report schedule.

* Example — Statistical Report Schedule

```
The command
```

```
RS10S RA1H 1TT 2TT(AV)(MX)
```

sets the statistical sub-schedule's scan rate to 10 seconds (RS10S). The main report schedule returns three temperature readings: a spot reading of channel 1 each hour (RA1H 1TT), and the average and maximum over the hour from 10-second samplings of channel 2.

Working with Schedules

Entering Schedules into the DT80 (BEGIN-END)

Report schedules must be entered into (that is, sent to) the *DT80* as a group. Since the schedules and processes that comprise a job or program often extend over more than one line, you normally enclose them between the keywords **BEGIN** and **END** to designate the beginning and end of the group. Here's an example:

```
BEGIN"walrus"

1DSO=1

3CV(W)=2

RA10S

4TT("Oven Temp")

5TT("Flue Temp")

RB1S

2C("Water Flow")
```

A group of schedules such as this is called a **job**. In the above example, the job has been named "walrus" and comprises two report schedules, **RA** (which measures two thermocouples every 10 seconds) and **RB** (which measures a counter once a second). Note also the two "immediate" channels (**1DSO** and **3CV**) which are not part of any schedule. These are executed once only, when the job is entered.

For more details on how jobs are entered and processed, see Jobs (P57)

Triggering and Schedule Order

When different schedules are due to trigger at the same time, the schedules execute in the order of RA, RB,...RK, RX.

When there are statistical channels in a schedule and the statistical sub-schedule is due at the same time as the report schedule, the statistical sub-schedule runs prior to the report schedules. You cannot change this order.

Channels within schedules are sampled in the order of entry (left to right).

For example, consider the job:

```
BEGIN"cupcake"
RB2S 3V
RA5S 2V(AV)(SD) 1V
RS1S
END
```

The channels defined here will be sampled and reported in the following order:

Time	Schedule	Channel sampled	Channel reported/logged
12:00:00	S	2V	-
	Α	-	2V(AV)
	A	-	2V(SD)
	Α	1V	1V
	В	3V	3V
12:00:01	S	2V *	-
12:00:02	S	2V *	-
	В	3V	3V
12:00:03	S	2V *	-
12:00:04	S	2V *	-
	В	3V	3V
12:00:05	S	2V *	-
	Α	-	2V(AV) average of the 5 samples marked *
	Α	-	2V(SD) standard deviation of the 5 samples marked *
	Α	1V	1V
12:00:06	S	2V	-
	В	3V	3V

As can be seen in the above example, when multiple schedules are due at the same time, they execute in a fixed order governed by their identifier (A, B, etc.) – regardless of the order in which they are specified in the job. Channels, however, are sampled/reported in the order in which they appear within a schedule definition (e.g. 2V before 1V in the above example).

Changing a Schedule Trigger

The schedule's trigger can be changed at any time simply by sending a new schedule ID and trigger without any channel definitions. For example, suppose a schedule had been defined as follows:

```
RA10M 1V 2DS
```

This will measure a voltage and a digital input every 10 minutes. If you then send:

RA10S

the schedule will then, from that point on, measure every 10 seconds.

Important If any channel definitions are included on the same line (e.g. RA10S 2V) then this will be interpreted as a whole new job being entered, which will replace the currently running job.

Halting & Resuming Schedules

Schedules can be halted individually or as a group using the following commands:

Command	Function
H	Halt all schedules
HA, HB HK, HX	Halt RA RX schedule
HS	Halt the statistical sub-schedule (see Statistical Sub-Schedule Halt/Go (P54))

Schedules can then be resumed ("GOed") individually or as a group:

Command	Function
G	Resume all schedules
GA, GB GK, GX	Resume RA RX schedule
GS	Resume the statistical sub-schedule (see Statistical Sub-Schedule Halt/Go (P54))

Executing Commands in Schedules

It is important to distinguish between **commands** and **channel definitions**. Commands (e.g. H, /S, P11=60, DIRJOB, COPY etc.) are always executed once only, immediately they are received – even if they appear to be within a schedule definition.

For example, if you enter

```
RA1+E 1V HB SATTN 4CV=4CV+1
```

you might expect that when the schedule was triggered (by a positive going edge on digital input 1) it would measure a voltage (1V), halt schedule B (HB), switch on the Attn LED (SATTN) and increment a channel variable (4CV=4CV+1).

In fact, the **HB** and **SATTN** will execute once only, when the job is entered. The **1V** and **4CV=4CV+1** are channel definitions, so they will execute each time schedule A is triggered.

To execute commands within a schedule, the DO construct can be used. This is actually a special case of the ALARM statement (see *Alarms* (P79)) – one where the condition is always true. The syntax is the same as ALARM except that there is no test condition.

So if the above job was rewritten as:

```
RA1+E 1V DO{HB SATTN} 4CV=4CV+1
```

then the following actions would be performed each time schedule A is triggered:

- Channel 1V is measured, then channel variable 4CV is incremented
- The commands **HB** and **SATTN** are queued for execution. They will be actioned "as soon as possible" once all schedules that are currently due have completed, and any previously queued commands have been executed.

Note that this means that it is <u>not</u> possible to <u>interleave</u> the execution of commands and channels within a schedule. Channels are always performed first; commands are executed a short time later.

Commands can also be executed conditionally, using the IF construct, e.g.

```
RA1M IF(1CV>3.57){XB}
```

will test the value of 1CV once a minute. If it exceeds 3.57 then schedule B will be triggered.

For more details on ALARM/IF/DO syntax and usage, see Alarms (P79).

Time Triggers — Synchronizing to Midnight

Time triggers for report schedules function in two different ways depending on the setting of the synchronize-to-midnight switch (/s or /S, see (P261)).

❖ Synchronize-To-Midnight Switch Enabled

If the synchronize-to-midnight switch is enabled (/s, the DT80's default), the intervals of all schedules with time triggers are synchronized to the previous midnight.

When a time-triggered schedule is entered, the schedules first run on the next multiple of the interval since last midnight, and subsequently run on every multiple of the interval thereafter.

If the interval is not an even multiple of 24 hours, the *DT80* inserts a short interval between the last run of the schedule prior to midnight and the next run of the schedule at midnight.

For example, if you send the schedule

RA10H

to the DT80 at 06:00:00, it first runs at 10:00:00 (4 hours since entry, but 10 hours since midnight) and then at 20:00:00 that day; then at 00:00:00, 10:00:00 and 20:00:00 the next day; and so on.

If you enter an interval longer than 24 hours then the interval is <u>rounded down to the nearest multiple of 24 hours</u>. So if the schedule

RA50H

was entered at 09:00 Monday morning then the schedule will first run at 00:00 Wednesday morning, then every 48 hours thereafter.

❖ Synchronize-To-Midnight Switch Disabled

If the synchronize-to-midnight switch is disabled (/s), the schedules run at intervals relative to the time that the schedule is entered. For example, if the same RA10H schedule is sent to the *DT80* at 09:30:00, it first runs at 19:30:00 that day; then at 05:30:00 and 15:30:00 on the next day; at 01:30:00 and 11:30:00 on the following day; and so on. That is, every 10 hours of elapsed time.

Note that the base time (the time at which the specified schedule interval begins) is reset whenever:

- the schedule rate is changed, or
- the schedule is restarted (using the G command), or
- the system time is changed (using the D=, T= or DT commands)

Part D - Jobs

What is a Job?

A **job** is a collection of related schedule definitions and commands which together configure the *DT80* to perform a particular data logging task.

Several different jobs can be stored on the *DT80*'s internal file system, but <u>only one can be active at any one time</u>. Each job has its own separate data/alarm storage area.

Jobs are identified by their **job name**, which is a user-defined string of up to 8 characters. If a job name is not specified when the job is entered, the default name **UNTITLED** is used.

When the *DT80* is first started or reset, there is no active job. The logger is idle and No current job is displayed on the LCD to indicate this.

To make the logger do something useful, you need to either:

- enter a new job, or
- run (load) an existing job.

Once a job has been entered or loaded successfully, it becomes the currently active job and its name will be displayed on the LCD. If you then enter or load a different job, all schedules and channels defined by the original job are cleared and replaced by those of the new job.

Entering a Job

To enter a new job you send the required commands and schedule definitions to the logger using one of the communications ports (USB, Ethernet or RS232), or by placing the commands in a file on a USB memory device and plugging it into the logger. Once the complete job has been entered, the *DT80* will automatically store the job in its internal file system and activate it.

To begin entering a new job, the **BEGIN** command is used. This command:

- causes the currently active job to be cleared. All defined schedules will stop running.
- specifies the name of the new job, e.g. **BEGIN"GOOSE"** indicates that the new job will be called "GOOSE". (Just **BEGIN** by itself is equivalent to **BEGIN"UNTITLED"**.)
- places the *DT80* in "job entry mode". After each line of the job is entered the *DT80* will output a job> prompt, rather than the usual DT80> prompt.

As each line of the job is entered the *DT80* executes any <u>commands</u> or <u>immediate channels</u> that it finds. Report schedule definitions, including their constituent channel definitions are recorded but they are not activated just yet.

The END command marks the end of a job. At this point all schedules defined within the job are activated, and the *DT80* is no longer in job entry mode.

If an error occurs during job entry, the *DT80* will clear all schedule/channel definitions and ignore the remainder of the job, up until the **END** command is seen.

Note In some circumstances the *DT80* will not allow a new job to be entered:

- if the "fix schedules" switch (P261) is active (/F) this prevents any change to the currently active job. (Use /f command to allow the current job to be changed.)
- if a different job with the same name already exists, and it has been locked using the LOCKJOB" jobname" command

 this prevents a stored job being accidentally overwritten. (Choose a different job name, or unlock the existing job
 using UNLOCKJOB" jobname".)
- if a different job with the same name already exists, and it has logged data or alarms this prevents data from <u>different</u> jobs (which happen to have the same name) from being mixed up in the one data file. (Choose a different job name, or delete the existing job's using DelD).

Note An error message will be returned if you attempt to send more than 1023 characters on a single line.

Single Line Jobs

As a shortcut, it is also possible to enter a job simply by entering one or more schedule definitions <u>all on one line</u>, e.g.:

The above is then equivalent to:

```
BEGIN"UNTITLED" RA1S 1TK END
```

that is, it will create a new job called "UNTITLED".

Note that entering just a schedule trigger (with no channel definitions after it), e.g.

does not create a new job – it simply changes the trigger condition for the currently defined A schedule (if any).

It is recommended that, for clarity, BEGIN and END are always included explicitly when entering a job.

Loading an Existing Job

The *DT80* can also read job text from a file stored in its internal file system and automatically enter it. This job will then become the current active job, replacing whatever was previously the current active job.

A new job may be loaded when:

- the RUNJOB" jobname" command is issued. This will read the job from the file B:\JOBS\jobname\PROGRAM.DXC.
- the DT80 is reset. By default, the previously active job will be loaded (See Startup Job (P60))
- A USB memory device is inserted. If a file A: \ONINSERT.DXC or A: \serialnum\ONINSERT.DXC is present then
 any commands therein will be executed. These may include a job definition, in which case the job will become the
 current active job. (See ONINSERT Job (P60))

Job Structure

A typical DT80 job is shown below (the line numbers are for reference only and are not part of the job)

```
7
       BEGIN"Boiler01"
2
       ' No. 1 Boiler monitoring job for DT80 03-Dec-2005
3
       /n/u/S/e
4
       P22=44
5
       Y10=4.5,0.312"kPa"
6
       S1=0,50,0,100"L/m"
       1DSO=0
                  ' Enable sensor power relay
8
       RS5S
9
10
       RB1M 2...3TT("Temp")
11
12
       RC(DATA:NOV:365D)15M 1V(Y10,AV) 4#L(S1,AV)
13
14
       RK10S
15
        ALARM1(1V(Y10)>2.25)3DSO
        ALARM1(4TT>110.0)3DSO,1CV"Over Temp ?"{RB5S}"
16
17
18
       LOGON
19
       END
```

Note the following salient points:

- Line 1 the **BEGIN** command tells the *DT80* to clear the current job and prepare to receive a new one.
- Line 2 anything following a single quote character (up to the end of the line) is considered a **comment** and is ignored. Blank lines are also ignored.
- Line 3-7 the first part of a job normally consists of commands to set switches and parameters, define polynomials and spans, and evaluate any immediate channels.
- Line 8 this line sets the scan rate for the statistical sub-schedule. All channels which include a statistical channel option, i.e. 1V(AV) and 3#L(AV), will therefore be scanned every 5 seconds. The measured values will not be logged or returned; they will only be used for accumulating the average values.
- Line 10 defines the B schedule (measure two thermocouples once per minute).
- Line 12 defines the C schedule (report pressure and flow rate values, averaged over a 15 minute period. Note the use of a polynomial (Y10) to convert the measured voltage in mV to pressure in kPa. Similarly, a span is used to convert a current loop % value to a flow rate in l/m.)
- Line 14-16 define the K schedule (every 10s check pressure and temperature against limits. If pressure exceeds 2.25kPa then set digital output 3 to LOW (active); if temperature exceeds 110°C then set digital output 3 to LOW, set 1CV=1, output and log an "Over Temp" alarm string, and change the scan rate of schedule B to 5s.)
- Line 18 enables logging for all schedules (by default logging is disabled)
- Line 19 marks the end of the job; all schedules will now be activated.

Job Commands

A number of commands are provided for managing jobs on the DT80.

Listing Job Names

The **DIRJOBS** command lists the names of all jobs stored in the *DT80* internal file system, e.g.

```
DT80> DIRJOBS
FRED
*GEORGE
+ RON
+ GINNY
UNTITLED
```

An asterisk (*) indicates the currently active job, if any. Locked jobs are indicated by a plus sign (+).

The CURJOB command simply displays the name of the current active job, e.g.

```
DT80> CURJOB
GEORGE
```

Specifying Jobs

The following commands act on a specific job or jobs. To specify the job you can enter a *jobspec* parameter after the command, where *jobspec* can be either:

- a job name in double quotes, e.g. "FRED", or
- an asterisk (*), which will apply the command to all stored jobs, or
- nothing, in which case the command will operate on the current active job (an error message will be reported if there is no currently active job).

Showing Program Text

To show the commands which define a job, use SHOWPROGjobspec, e.g.

```
DT80> SHOWPROG"RON"
Job Program - RON
BEGIN"RON"
RA1S 3TT 1DS
END
```

Locking Jobs

If a job is **locked** then its program text cannot be deleted or overwritten. To lock a job use the **LOCKJOB** *jobspec* command; to unlock use **UNLOCKJOB** *jobspec*, e.g.:

```
DT80> LOCKJOB*

Locking Job FRED - Done

Locking Job GEORGE - Done

Locking Job RON - already locked

Locking Job GINNY - already locked

Locking Job UNTITLED - Done
```

Deleting Jobs

The **DELJOB** jobspec command can be used to delete a job from the *DT80*'s internal file system.

However, this command will fail and the job will not be deleted if any of he following apply:

- the job is the current active job and the /F (fix schedules) switch is set (use /f to turn this switch off)
- the job is locked (use UNLOCKJOB to unlock it)
- the job has logged data and/or alarms (use **DELD** to delete them)

Managing a Job's Logged Data and Alarms

The following commands allow you to manage the data and alarms logged by a job:

- LISTD lists details of the number of logged records and the associated time range
- COPYD is used to unload data and/or alarms that is: read data from one or more store files, transform it to the selected format (e.g. CSV), and output it to the currently active comms port, or a file, or an FTP server
- DELD will delete a job's logged data and/or alarms respectively.

For more details on these commands, see Logging and Retrieving Data (P91).

Startup Job

The *DT80* can automatically load a user-defined job every time it is restarted by a hard reset (**HRESET** command or power failure or pressing the manual reset button). This allows the *DT80* to operate as a dedicated instrument.

The DT80's behaviour following a hard reset is controlled by the following profile setting:

```
PROFILE STARTUP RUN
```

There are three possible settings for this profile:

- CURRENT_JOB the DT80 will reload the job that was active prior to the reset (if any). This is the default.
- NONE no job will be loaded following hard reset
- jobname the specified job (if it exists) will be loaded following hard reset.

If a "triple push" reset is performed (see Safe Mode (P272)) then the configured startup job will not be loaded.

ONINSERT Job

When a USB memory device is inserted into a *DT80*, the *DT80* first looks for a file on the USB device named **A:**\serialnum\ONINSERT.DXC, where serialnum is the serial number of the *DT80* (e.g. SN80322). If found, the commands in this file are entered into the *DT80* exactly as if they had been received via a comms port.

If the above file is not found, the *DT80* looks for a command file in the root directory, i.e. **A:\ONINSERT.DXC**; if found it is loaded into the *DT80* in the same way.

If the USB device contains a suitable **ONINSERT.DXC** file, a prompt (Run ONINSERT?) will be displayed on the LCD to give you an opportunity to <u>prevent</u> it running. Press **OK/Edit** to immediately run the ONINSERT job, or any other key to prevent execution. If no key is pressed within 5 seconds then the ONINSERT job will be run.

This auto-programming function means that a single USB memory device can be inserted into a number of *DT80*s, one at a time, and either:

- automatically program all the DT80s with the same job if no serial-number-specific subdirectories containing
 ONINSERT.DXC files exist on the USB device and an ONINSERT.DXC file exists at the root level, or
- automatically program particular *DT80*s with their own specific job if serial-number-specific subdirectories containing **ONINSERT.DXC** files exist on the USB device, or
- carry out a combination of these two options *DT80*s that do not find a subdirectory named with their serial number automatically load and run the "standard" **ONINSERT.DXC** file at the root level, and *DT80*s that find their specific subdirectory automatically load and run the "specific" **ONINSERT.DXC** file found there.

These files are typically created by inserting the USB memory device into a PC and copying the required program files to the required directories.

Alternatively, the DT80 command:

RUNJOBONINSERT" jobname"

can be used to copy the specified job's program text to A:\serialnum\ONINSERT.DXC.

Similarly,

RUNJOBONINSERTALL" jobname"

will copy the specified job's program text to A: \ONINSERT.DXC.

To delete the ONINSERT.DXC files from the inserted USB memory device, you can use the DELONINSERT

and

DELONINSERTALL

commands.

Part E - Manipulating Data

Scaling

Most *DT80* channel types automatically scale measured values so that the returned values are in appropriate engineering units. For example, the thermocouple channel types (e.g. **TK**) automatically apply the appropriate scaling polynomial so that the data is returned in °C. However, a number of additional facilities are provided for applying custom scaling or corrections:

- channel factor
- spans
- polynomials
- thermistor scaling
- intrinsic functions
- expressions

Channel Factor

For many channel types, the channel factor (a channel option consisting of just a floating point number) can be used to provide a simple multiplication factor. See *A Special Channel Option — Channel Factor* (P38).

For example, if a high voltage is being measured using an external 12.5:1 voltage divider then the following channel definition:

1V(12.5)

will multiply the raw reading by 12.5 so that the returned value reflects the actual voltage.

Note that for some channel types the channel factor performs a special function, and therefore cannot be used as a scaling factor. In these cases a span should be used (see below).

For example, if you are measuring a frequency which has passed through a 100:1 prescaler then you will need to use a span to scale it.

Spans (Sn)

A span transforms a measured **signal** value (e.g. mV) into the corresponding **physical** value (e.g. kPa) using a straight line function:

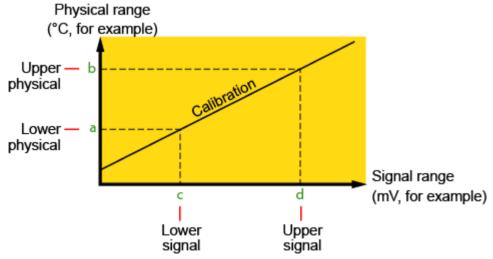


Figure 17: Span coordinates

A span must be **defined** before it is applied. This is normally done at the start of a job, before any schedules are defined. The syntax is as follows:

sn=a,b,c,d"units"

where:

- *n* is the **poly/span number** (1 to 50), which is used simply to distinguish one span from another. Note that a span and a polynomial cannot have the same number.
- a and b are the **physical** coordinates of two points on the calibration line (reported or output values)
- c and d are the signal coordinates of two points on the calibration line (measured or input values). If not specified, 0
 and 100 are assumed.

units replaces the channel's default units text

Spans are particularly suited to 4–20mA current loop inputs. The following defines a span suitable for a current loop sensor that measures pressure in the range 0-300kPa:

```
S2=0,300"kPa"
```

Note that in this case the default signal coordinates (0 and 100) are used, because the \mathbf{L} (current loop) channel type returns a value in the range 0-100%.

Once defined, a span may be **applied** to any number of channels in any schedules or alarms using the **S**n **channel option**.

In the following example, two of the above current loop pressure sensors are used, plus a frequency input which passes through a 10:1 prescaler (frequency divider):

```
BEGIN"MONKEY"

$1=0,10,0,1"Hz" ' multiply measured freq by 10

$2=0,300"kPa" ' scale 0-100% to 0-300kPa

RA10S 1#L(S2,"Inlet") 2#L(S2,"Outlet") 4F(S1)

END
```

This will return data in the form:

```
Inlet 23.9 kPa
Outlet 119.0 kPa
4F 3920 Hz
```

Note that for the **F** channel type the channel factor indicates the sample period, so it cannot be used as a scaling factor. A span is therefore used instead.

A span can also be applied in reverse, using the SRn channel option. Thus

```
S1=0,100,32,212 1CV(S1) is equivalent to S1=32,212,0,100 1CV(SR1)
```

Polynomials (Yn)

Polynomials are used to define calibrations for non-linear sensors. Each defined polynomial can have up to six polynomial coefficients.

The DT80 evaluates a polynomial according to the formula

$$y = k_0 + k_1 x + k_2 x^2 + k_3 x^3 + k_4 x^4 + k_5 x^5$$

where x is the raw channel reading, and the k's are coefficient terms.

A polynomial is defined in a similar way to a span:

```
Yn=k0, k1, k2, k3, k4, k5" units"
```

where:

- *n* is the **poly/span number** (1 to 50), which is used simply to distinguish one polynomial from another. Note that a span and a polynomial cannot have the same number.
- k0 ... k5 are the polynomial coefficients. If not specified, a coefficient value of zero is assumed
- units replaces the channel's default units text

The required coefficients may be supplied by the sensor manufacturer, or they may be determined from a calibration curve or from measured data points using a least squares regression technique. Various statistical programs are available for this purpose.

Once defined, a polynomial may be applied to any number of channels using the Yn channel option. For example:

```
Y1=23.5,0,0.987"deg C"
RA1M 1V(Y1) 2V(Y1)
```

Thermistor Scaling (Tn)

The *DT80* has channel types (e.g. **YS03**) for many 2-wire thermistors manufactured by MEAS (formerly Yellow Springs Instruments). For other thermistor types, the *DT80* supports thermistor scaling — the conversion of a resistance reading to a temperature. The *DT80* does the conversion from resistance to temperature using

$$T = \frac{1}{a + b(\ln R) + c(\ln R)^3}$$

To apply thermistor scaling, firstly obtain the constant terms a, b and c from the thermistor manufacturer, then define a thermistor conversion in a similar way to a polynomial or span:

```
Tn=a,b,c"units"
```

where:

- T is the temperature, in Kelvin (K)
- *n* is the **thermistor conversion number** (1 to 20), which is used simply to distinguish one thermistor equation from another.
- a, b, c are the constants from the above thermistor equation. If not specified, a coefficient value of zero is assumed
- units replaces the channel's default units text

Once defined, a thermistor conversion may be applied to any number of resistance channels using the $\mathbf{T}n$ channel option. For example:

```
T1=26.5,1.034,8.77e-3"K"
RA1M 3R(T1,"Solvent temp")
```

See also *Temperature – Thermistors* (P317).

Intrinsic Functions (Fn)

The *DT80* has seven inbuilt and mutually exclusive intrinsic functions that may be applied as channel options. The intrinsic functions available are

Fn	Description		Text Modifier
F1	1/x	inverse	(Inv)
F2	√x	square root	(Sqrt)
F3	Ln(x)	natural logarithm	(Ln)
F4	Log(x)	base ten logarithm	(Log)
F5	Absolute(x)	absolute value	(Abs)
F 6	x * x	square	(Squ)
F7	Gray code conversion (16-bit)		(Gc)

The text modifier is appended to the channel's default units string. If a channel's units string has been explicitly set (using the "name~units" channel option) then no modifier is appended.

```
For example, the channel definition

1V(F2) 2F(F1,"period~sec")

will return data in the form:

1V 455.7 mV (Sqrt)

period 1.7 sec
```

Combining Scaling Options

The span (Sn), polynomial (Yn), thermistor (Tn) and intrinsic function (Fn) channel options are all *mutually exclusive*. If more than one are specified then only the last one will be applied.

Channel variables and expressions (P65) can be used if multiple scaling operations need to be combined.

Calculations

Channel Variables (nCV)

Channel variables (CVs) are memory locations (registers) for holding and manipulating floating-point data. The *DT80* has 1000 channel variables, identified as **1CV** to **1000CV**.

All channel variables are reset to 0.0 when the DT80 is reset (HRESET) or cleared (INIT).

Reading Channel Variables

A channel variable behaves in much the same way as any other channel type. Its value may be read (i.e. returned and/or logged) by including the appropriate nCV channel definition in a schedule. For example, sending

```
12CV
```

will immediately return the value of channel variable #12, while

```
RA10S 1..5CV
```

will report the values of 1CV through 5CV every 10 seconds.

If a CV is being used for holding an intermediate value then you would normally use the **w** channel option to make it a working channel (which is neither returned nor logged).

Setting Channel Variables

A channel variable's value may be set in several different ways:

- the CV is set to the value of an **expression**, i.e. nCV=expression
- any channel's value (e.g. a measured temperature) may be assigned to a channel variable by using the =nCV
 channel option
- certain special channel options (e.g. histogram) return multiple data values, which are written to a specified range of channel variables. See *Multi Value Statistical Options* (P75).
- data values read from a serial sensor using the generic serial channel type (nSERIAL) may be assigned to CVs. See Generic Serial Channel (P351).
- CVs can be set or read by an external Modbus master device. See Modbus Interface (P176).
- CVs can be configured to follow the state of an alarm (e.g set to 1 if the alarm is active, 0 if it is not). See *Alarm Digital Action Channels* (P82).

Expressions

Some examples of using expressions to set CVs:

```
1..20CV=10.2 initialise multiple CVs

RA1S 1V 9CV=9CV+1 count the number of measurements taken

5CV(W)=3CV*SIN(21CV)+2CV*COS(21CV)
```

See also Expressions (P67).

❖ =nCV Channel Option

The =nCV channel option allows a channel value to be assigned directly to a CV, typically so it can then be used in further calculations.

```
This can be used to apply a complicated linearisation equation, e.g.: 
1V(=2CV,W) 2CV(S9,"temp~K")=2CV/(LN(2CV+1))
```

This will measure a voltage and assign it to 2CV (note the woption – we are not interested in logging/returning the raw voltage value). The value in 2CV is then plugged into the specified expression and the result stored back in 2CV. Finally a span (\$9\$, which must have been previously defined) is applied and the result is returned with appropriate name and units.

An arithmetic operator may also be applied during the assignment, as follows:

Channel Option	Action
=nCV	ncv = channel value
+=nCV	nCV = nCV + channel value
-=nCV	nCV = nCV - channel value
*=nCV	ncv = ncv * channel value
/=nCV	nCV = nCV / channel value

These allow a CV to be used as an accumulator, e.g.

```
RA1M 3C(+=2CV) 2CV("Total")
```

will report the number of counts received in each one minute period, plus the total counts, i.e.:

```
3C 192 Counts
Total 192
3C 77 Counts
Total 269
```

Storage Precision

Channel variables may be used to store values with magnitudes from 10^{-38} to 10^{38} . However, it is important to be aware that values are stored with 24 bits of precision, or approximately 7.25 significant digits when written in decimal form. This means that whenever the *DT80* displays a value, it will only be accurate to 7 significant digits. The 8th digit can be used to distinguish values which are close together, but its value may be out by a few counts. Any changes in the 9th or later digits will not be reflected in the stored value.

This is particularly noticable when incrementing large integer values. For example:

```
1CV=3600000
RA1S 1CV=1CV+1
1CV 3600000.0
1CV 3600000.8
1CV 3600002.0
```

In this example 8 significant digits are being displayed, so the last one is not accurate. It would be better in this case to not display any decimal places, i.e. 1CV(FF0)=1CV+1.

Once the magnitude of the CV value exceeds 2²⁴ (16,777,216), adding one to it will no longer cause its value to change.

A consequence of this is that if you manually count something using a channel variable (e.g. 1CV=1CV+1) then it will stop counting once its value reaches 16,777,216. Note that this only applies to manual counting using CVs – hardware and software counters (HSC and C channel types) can count over the full 32-bit range.

If you need a CV to count beyond 16,777,216 then you will need to use two CVs to hold the count value, e.g.: 1CV=1CV+1 IF(1CV>1000000) {2CV=2CV+1 1CV=0}

Naming Channel Variables

As with any other channel type, CV channels can be given name and units strings using the "CVname~Units" channel option.

The command

NAMEDCVS

will return a summary of all CVs that have been explicitly named, e.g.:

```
CV S CV Name Value Units

5 A Temp 89.1 Deg C
1 A Speed 23.4 m/s
```

(The "S" column is the schedule identifier)

Calculation Only Channels

If you need to return a calculated value then a channel variable is often used, e.g.

```
9CV("sum")=1CV+2CV+3CV
```

However, if you are just logging the result of this expression, and are not going to do any further calculations with it, then there is no point storing the result in **9CV**.

The CALC channel type is a better choice here. An expression can be assigned to it, and the result will be logged in exactly the same way as a CV. The only difference is that it does not actually copy the result to any particular channel variable.

For example:

CALC("sum")=1CV+2CV+3CV

Reference Channels

A **reference channel** is used to <u>reference</u> the value of another channel, which is identified by name. In this way a measurement can be used is multiple places without having to assign it to a channel variable.

To define a reference, use an ampersand followed by the name of the channel whose value you wish to reference, i.e. &channel. For example:

```
RA1S 1V &1V
```

In this (not very useful) example a voltage is measured once but reported twice – once by the original channel and once by the reference to the channel.

Names

If the "source" channel has a user-defined name then it must be used when defining a reference, e.g.

```
RA1S 1V("Voltage12") &Voltage12
```

If the source channel's name has spaces or special characters (anything other than A-Z, 0-9, or _) then it should be enclosed in quotes, e.g.

```
RAIS 1V("Voltage no. 12") 1+TK &"Voltage no. 12" &"1+TK"
```

Note that name comparisons are not case sensitive, so &BIG is a valid reference to 1R("big").

If there is more than one source channel with the same name (a practice that is not recommended) then the reference will refer to the first one defined. e.g.

```
RA1S 1V("a") 1R("a") &a
```

defines a reference to the voltage, not the resistance.

Options

A reference channel is a channel in its own right so, like any other channel, it can have its own channel options. However, because a reference channel does not physically measure anything, sampling options will not be applicable. It can have reporting options, e.g.

```
RA1S 1V("Voltage12") &Voltage12(Y1, "Pressure12~kPa")
```

In the above example a voltage based pressure sensor is sampled. Both the raw voltage and the pressure (calculated by applying polynomial **Y1**) are returned.

Reference channels inherit their data type (integer or floating point) and default units from the source channel. For example:

```
1C &1C
1C 210 Counts
&1C 210 Counts
```

The reference channel's units can of course be overridden:

```
1C &1C("~Woozles")
1C 210 Counts
&1C 210 Woozles
```

Sampling

For a reference channel that is included in a schedule, the source channel must be defined somewhere in the job. The source channel does not need to occur before the reference to it, but it must be somewhere between the **BEGIN** and **END**.

If a source channel is defined in the immediate schedule, then references to it can only be included in the immediate schedule (not any other schedule), and they must occur later on the same command line.

If the source channel has not been sampled at the time that the reference channel is sampled then the reference channel's value will be NotYetSet.

Note also that references are read-only; an expression can not be included, e.g.

```
&1CV=1 'error
```

* Expressions

References can be included in expressions. For example:

```
1CV = (&1TK + &2TK)/2
```

will calculate the mean of two previously sampled temperatures.

Examples

Some of the applications of reference channels are listed below. Many of these could also be done using channel variables, but using references is generally clearer and more efficient.

Same reading scaled two ways

The following will log the same reading in both degrees Celsius and Fahrenheit

```
S1=32,212,0,100"degF" 1TK(FF2) &1TK(S1,FF2)
```

* Multiple statistics from the same raw data

The following will calculate two different averages from the same raw data

```
RS1S RA10S 1TK(W)(AV,"10s_ave") RB1M &1TK(AV,"1min_ave")
```

❖ Testing one reading in multiple alarms

In this example a temperature is sampled once but then tested in three different alarm conditions.

```
1TK("indoor")
IF(&indoor<19)"too cold^M^J"
IF(&indoor><19,27)"nice^M^J"
IF(&indoor>27)"too hot^M^J"
```

Manually Poll Most Recent Sample

References allow you to make an ad hoc query for the most recent value of a channel that is being regularly sampled.

Expressions

The *DT80* has a powerful expression evaluation capability, allowing measured values to be manipulated using a variety of mathematical and logical operations.

An **expression** consists of one or more **operands** which are manipulated using **operators** to produce a numeric **result**. The result of an expression can be assigned to any of the channel types identified as "writable" in the table of channel types (P31). Expressions cannot contain any spaces.

Operands

An expression operand can be either

- a numeric constant, e.g. 27 or -2.95 or 2.222e-6 or 0x3fff (hexadecimal)
- one of the special constants PI (3.1415927) or E (2.7182818)
- a channel variable, e.g. 17CV
- a reference to another channel, e.g. &1TK or &"Reactor Temp"
- a sub-expression in parentheses, e.g. (1CV+1) or (COS(D2R(3CV))+1). The sub-expression will be evaluated first and the result will become the operand.

Operators

The following operators are supported. In the following table the placeholders x, y, etc. can be any of the operand types listed above

x+y addition		
		*
x-y subtraction		*
x*y multiplication		*
x/y division		F
x^y x raised to power y		F
x modulo y (remainder after division)		*
1 if x less than y, otherwise 0		I
$x \le y$ 1 if x less than or equal to y, otherwise 0		I
x>y 1 if x greater than y, otherwise 0		I
x>=y 1 if x greater than or equal to y, otherwise	0	I
x=y 1 if x equals y, otherwise 0		I
x!=y 1 if x equals y, otherwise 0		I
xANDy 1 if x is non-zero and y is non-zero, otherw	vise 0	I
1 if x is non-zero or y is non-zero, otherwis	se 0	I
xxory 1 if x is non-zero or y is non-zero but not b	ooth, otherwise 0	I
a?x:y x if a is non-zero, otherwise y		*
-x negative x		*
NOT <i>x</i> 1 if <i>x</i> is zero, otherwise 0		I
ABS(x) absolute value of x		*
SQRT(x) square root of x		F
LOG(x) base 10 logarithm of x		F
LN(x) base e logarithm of x		F
SIN(x) sine of x (x is in radians)		F
COS(x) cosine of x (x is in radians)		F
TAN (x) tangent of x (x is in radians)		F
ASIN (x) arcsine of x (result is in radians)		F
ACOS (x) arccosine of x (result is in radians)		F
ATAN (x) arctangent of x (result is in radians)		F
sn(x) apply span #n		F
SRn(x) apply reversed span #n		F
Yn(x) apply polynomial #n		F
T n(x) apply thermistor scaling #n		F
$\mathbf{F}n(\mathbf{x})$ apply intrinsic function $\#n$		F
D2R(x) x/57.29576 (convert degrees to radians)		F
R2D(x) $x * 57.29576$ (convert radians to degrees)		F
XY2MAG(x,y) convert rectangular coordinates x,y to pole	ar magnitude coordinate	F
XY2DIR(x,y) convert rectangular coordinates x,y to pole	ar direction coordinate (in radians, 0-2π)	F
MAGDIR2X (mag, dir) convert polar coordinates mag, dir to recta	ngular x coordinate (mag in radians)	F
MAGDIR2Y (mag, dir) convert polar coordinates mag, dir to recta	ngular y coordinate (mag in radians)	F

Data Types

❖ Integers and Floating Point

DT80 channels can return either a 32-bit signed integer or a 32-bit floating point value. Digital and counter channels return an integer value; most other channel types return floating point values.

The **Type** column in the above table indicates the data type that results from applying the specified operator. Operators marked **F** always result in a floating point value, operators marked **I** result in an integer, and operators marked * result in a floating point value if either of their operands is a floating point value. Note that a numeric constant is considered to be an integer unless it has a decimal point or exponent.

Note however that <u>channel variables</u> can only hold floating point values. Thus if an expression result is assigned to a channel variable then it will always be converted to a floating point value. This is not the case for a <u>CALC</u> channel, which can return either an integer or a floating point value.

Error Values

If an operand has an error value (e.g. overrange) then the result of any operator will also be an error value. For example, CALC=&1V/1000

will return a value of OverRange if the original 1V measurement that is being referenced in the expression was overrange.

Operator Precedence

Each operator is assigned a precedence level, as follows:

Precedence Level	Operators
1 (highest)	- (negative)
2	A
3	*, /, %
4	+, - (subtract)
5	<, <=, =, !=, >=, >
6	AND, OR, XOR, NOT
7 (lowest)	?:

When an expression contains more than one operator then the operator with the highest precedence is evaluated first. If the operators have equal precedence then they are grouped left to right – with the exception of ?:, which is grouped right to left. Parentheses may be used to create sub-expressions and thereby alter the order of evaluation.

Examples

```
Equal precedence operators are grouped left to right:
```

```
3CV=7-2+3 '= (7-2)+3=8

...except for ?:, which are grouped right to left:

3CV=1?0:2?3:4 '= 1?0:(2?3:4)=0

Changing evaluation order using parentheses:

4CV=1.5+2*3^2 '4CV=19.5

4CV=(1.5+2)*3^2 '4CV=31.5

4CV=((1.5+2)*3)^2 '4CV=110.25

Negative and subtract operators are different:

2CV=-5^2 'negative: 2CV=25
```

2CV=0-5^2 Logical Expressions

The selection operator (?:) is the easiest way to select either one value or another based on a conditional. For example, the following will set a channel to 999 if it is outside the range 0..100:

'subtract: 2CV = -25

```
2CV=((2CV<0)OR(2CV>100))?999:2CV
```

To select between three or more alternatives you can nest the selection operators. For example, to return -999 for under range and 999 for over range you could use:

```
2CV=(2CV<0)?-999:((2CV>100)?999:2CV)
```

Page 69

Combining Methods

The different scaling and calculation methods can be used together. The following comprehensive examples are the best way to demonstrate.

❖ Example 1

In this program, a **vector average** is calculated, because it is not meaningful to numerically average wind direction angles. The inputs are wind speed and direction.

```
BEGIN"Wind-01"
S1=0,50,0,1000"m/s" 'Wind speed calibration 0-50m/s = 0-1000mV
                            'Wind direction 0-2Pi radians = 0-1000mV
S2=0,6.2832,0,1000"radians"
Y3=0,3.6"km/h" 'Units text for wind speed report
Y4=0,1"Deg" 'Units text for wind direction report
3..6CV(W) = 0
RASS 'Take a reading every 5 seconds
 1V("rawspeed",S1,W)
 2V("dir",S2,W)
 CALC("speed",W)=(&rawspeed<0)?0:&rawspeed 'clamp neg speed values to 0
 3CV("sumX",W)=3CV+MAGDIR2X(&speed,&dir)
 4CV("sumY",W)=4CV+MAGDIR2Y(&speed,&dir)
 5CV("count",W)=5CV+1
 ' invalidate reported value if any sample is out of range
 6CV("invalid",W)=(6CV)OR(&rawspeed<-1)OR(&rawspeed>60)OR(&dir<-1)OR(&dir>7)
RB1M 'Calculate, report and log every minute
 ' Report average wind speed (999.9 if invalid)
 7CV(W)=XY2MAG(&sumX,&sumY)/&count
 CALC("Mean Wind Magnitude", Y3, FF1) = & invalid?999.9:7CV
 ' Report average direction (-1 if no wind, 999 if invalid)
 8CV(W) = (7CV > 0)?R2D(XY2DIR(&sumX,&sumY)):-1
 CALC("Mean Wind Direction", Y4,FF0)=&invalid?999:8CV
 3..6CV(W) = 0
LOGON
END
```

Example 2

This program scans ten channels and calculates a cross-channel average.

```
BEGIN"Wind-02"
RA10S

1CV(W)=0 'Clear 1CV

1..10V(+=1CV,W) 'Sum 10 voltages into 1CV

1CV=1CV/10 'Divide by 10 for average
END
```

```
2CV<0)?-999:((2CV>100)?999:2CV)
```

Running Average

A **running average** is a calculation to analyse data points by creating a series of averages of different subsets of the full data set. Is also called a **moving mean** or **rolling mean** and is a type of finite impulse response filter. Running average is used to smooth data by remove short term trends or noise from the data thus revealing longer term underlying trends

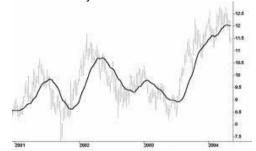


Figure 18: Running Average as depicted in a chart

The DT80 Can be to used to generate a running average of channel samples.

- It buffers specified number of channel samples and will calculate the Running average
- Subsequent channel samples will be added to the running average by removing the earlier samples and by keeping
 the sample size specified by the user
- Buffered sample can be reset at any time using the DELRSTAT command

The Format for Running average channel option

1TK(RAVN)

Where

• N is the buffer sample size (vary from 1- 3600)

Maximum of 100 channels with running averages can be added.

❖ Example

to create a running average of a temperature channel with a sample size of 100 and reset the buffer manually.

```
BEGIN"RAVG"
RA5S

1TK("RUNNING AVERAGE",RAV100)
RBX

DO"CLEAR"{DELRSTAT}
LOGON
END
```

The Configuration will return Not YetSet until it collects 100 samples

```
Running Average NotYetSet (R.Ave)
Running Average NotYetSet (R.Ave)
```

Once it collects the sample set the running average value displayed

```
Running Average 23.9 (R.Ave)
Running Average 23.9 (R.Ave)
```

Sampled values can be cleared by triggering schedule B in the above configuration

```
XB
DT85> Running Statistics Cleared
```

Derived Quantities

The *DT80* can automatically compute various commonly used **derived quantities** such as differences, rates of change, pulse widths and so on. These are calculated by including the appropriate channel option, as detailed below.

In each case the derived quantity is returned instead of the original reading.

Rates and Integrals

The following derived quantities are calculated based on the current and the previous channel reading.

Channel Option	Description	Formula
DF	Difference	Δx
DT	Time difference	Δt
RC	Rate of change	Δx / Δt
RS	Reading / time difference	x / Δt
IB	Integrate	(x – Δx / 2) Δt

The **DF** channel option returns the **difference** between the current and previous measurements; the **DT** option returns the **time difference** and the **RC** channel option combines the two to return the **rate of change** ($\Delta x / \Delta t$).

For example.

```
RA1S 1V &1V(DF, "DeltaV") &1V(DT, "DeltaT") &1V(RC, "RC~mV/s")

1V 29.4 mV

DeltaV 3.9 mV

DeltaT 00:00:00.992

RC 4.0 mV/s
```

In this case four channels are defined in the schedule. The first will measure a voltage and return the reading. The second channel will compare the newly updated value of 1V to the value it had when the channel was last evaluated (one second ago) and return the difference. Similarly the third and fourth channels will return the time difference (which will in this case always be close to one second) and rate of change, respectively.

The RS option is similar to RC except that the numerator is the actual reading, not the difference. This is intended for use with channels where the reading is already a difference. In the following example the counter is reset after each reading (using the R channel option), so the count reading is actually the number of counts since the last reading, so to calculate counts per second the RS option is used:

```
RA10S 3C(R,RS,"~counts/s")
```

Finally, the **IB** option is used to **integrate** a signal. It returns the area under a straight line connecting the current to the previous reading. For example:

```
RA20S

1V(W) 2#I(W)

CALC("Power~W")=&1V*&"2#I"

&Power(IB,W,+=5CV)

5CV("Energy~J")
```

The above example will, every 20 seconds, first measure a voltage and a current. These are then multiplied to give the instantaneous power in Watts, then integrated to give the energy used over the 20 second period. Finally, the energy values are accumulated in channel variable 5CV to give the total energy used.

Edge Timing

A number of channel options are provided for reporting details relating to the timing of digital transitions (edges).

As with the rate and integral options, these derived quantities are calculated based solely on the <u>current</u> and the <u>previous</u> channel readings.

The **TOR** and **TOF** options return the absolute date/time at which a last rising or falling edge occurred. If no edge has occurred since the last reading then a "zero" date/time value (normally presented as 00:00:00.000,01/01/1989) is returned.

The following options report the time interval between two edges:

- If a rising edge has occurred since the last reading on a channel, and another rising edge has occurred some time previously, then the TRR option returns the time interval between the two edges, otherwise it returns zero.
- If a rising edge has occurred since the last reading on a channel, and a falling edge has occurred some time previously, then the **TFR** option returns the time interval between the two edges, otherwise it returns zero.
- If a falling edge has occurred since the last reading on a channel, and another falling edge has occurred some time previously, then the **TFF** option returns the time interval between the two edges, otherwise it returns zero.

• If a falling edge has occurred since the last reading on a channel, and a rising edge has occurred some time previously, then the **TRF** option returns the time interval between the two edges, otherwise it returns zero.

For example:

```
RA1E 1DS 1DS(TOF,"-edge at") 1DS(TFF,"period")

1DS 0 State
-edge at 15:30:35.015 01/02/2007
period 00:00:00.000

1DS 1 State
-edge at 00:00:00.000 01/01/1989
period 00:00:00.000

1DS 0 State
-edge at 15:30:45.018 01/02/2007
period 00:00:10.003

1DS 1 State
-edge at 00:00:00.000 01/01/1989
period 00:00:00.000 01/01/1989
period 00:00:00.000
```

In the above example the A schedule runs when a rising or falling edge on digital input 1 occurs, and reports the time at which each falling edge occurs, as well as the time between successive falling edges (i.e. the period).

Note that it is <u>not</u> possible to set the schedule to only trigger on falling edges (using RA1-E), because then the state of 1DS would be zero each time the schedule ran. This would mean that no falling edges (i.e. current value = 0, previous value = 1) would be detected.

Statistical Channel Options

Overview

It is often convenient to sample channels frequently and a return and/or log a **statistical summary** at longer intervals (see *Statistical Report Schedules* (P53)). Statistical channels are sampled during the period between report times (at a rate governed by the statistical schedule, RS), and the statistical summary is generated and returned at report time, i.e. when the regular schedule runs.

Channels that require statistical sampling must include a channel option to indicate the statistical information to generate. Here's a summary of the statistical channel options — see also the Statistical (P43) category in the Table 4: DT80 Channel Options (P44) table:

Channel Option	Description	Appended to Units
AV	Average	(Ave)
SD	Standard deviation	(SD)
MX	Maximum	(Max)
MN	Minimum	(Min)
TMX	Time of maximum	(Tmx)
TMN	Time of minimum	(Tmn)
DMX	Date of maximum	(Dmx)
DMN	Date of minimum	(Dmn)
IMX	Instant of maximum (combines DMX and TMX)	(Imx)
IMN	Instant of minimum (combines DMN and TMN)	(Imn)
INT	Integral	(Int)
NUM	Number of samples	(Num)

The statistical option is defined by including it as a channel option in parentheses after the channel type. For example:

```
RA1M 3TT(AV)(NUM)
3TT 103.7 degC (Ave)
3TT 42 (Num)
3TT 110.2 degC (Ave)
3TT 60 (Num)
```

In this case you will see the **Sample** LED flash once per second (which is the default rate for RS), but data will only be returned once per minute. These data consist of average of the samples taken since the A schedule last ran, and the number of samples (which will normally be 60). Note that a tag, e.g. (Ave), is attached to the units to indicate the statistical function that has been applied.

Note There may be fewer than expected samples in the first sample period after starting a schedule. This is because, by default, schedule execution is synchronised to midnight (see *Time Triggers* — *Synchronizing to Midnight* (P56)) so a one minute schedule will always execute on minute boundaries.

If <u>insufficient</u> statistical samples have been taken at the time when the report schedule runs then an error message returned and the data value is flagged as "not yet set". The **SD** and **INT** options require a minimum of two samples, the others require at least one sample. To minimise the chance of this condition occurring:

- switch off the synchronise to midnight flag (/s), or
- ensure that the reporting schedule period is substantially longer than the statistical schedule period.

Statistical Functions

Average (AV)

The average or mean is the sum of all the channel readings divided by the number of readings. It is very useful in reducing sensor noise.

Standard Deviation (SD)

Standard deviation is a measure of the variability of the data about the average or mean. The variation may be due to electrical noise or process changes. The units of standard deviation are the same as the channel reading.

Maximum and Minimum (MX and MN)

The maximum and minimum of a set of channel readings can be reported with the MX and MN channel options.

The time at which these occurred can be reported with the **TMX** and **TMN** options, the date with **DMX** and **DMN**, and the combined date/time ("instant") with the **IMX** and **IMN** channel options.

For example:

```
RS1M RA30M 1TK(AV) RB1D 1TK(MX)(TMX)(MN)(TMN)

1TK 24.2 degC

1TK 21.9 degC

1TK 19.0 degC

1TK 33.9 degC (Max)

1TK 15:10:00.000 (Tmx)

1TK 12.9 degC (Min)

1TK 04:33:00.000 (Tmn)
```

The above job measures the temperature once a minute (RS1M). Every 30 minutes the average for the 30 minute period is returned by the A schedule. Once a day (at midnight), the daily min/max temperatures are returned, along with the times at which they occurred.

Integration (INT)

The integration channel option returns the integral (area under the curve) with respect to time in seconds using a trapezoidal approximation. The units of an integration are those of the original reading multiplied by seconds.

In the following example a sensor returns a voltage that is proportional to the flow rate (0-1000mV = 0-0.2 l/s):

```
BEGIN
RS100T
S5=0,0.2,0,1000"litres"
1CV=0
RA2S 1V(S5,INT,+=1CV,W) 1CV("Fuel Used",FF3)
END
Fuel used 0.012 litres
Fuel used 0.104 litres
```

Every 100ms, the voltage output from the sensor is measured, scaled by span \$5 (yielding a value in litre/s) and the integral is progressively accumulated (yielding a value in litres). This is then accumulated in 1CV (yielding the total number of litres used since the schedule started), which is reported every 2 seconds.

Note the differences between the **INT** and **IB** options (both of which calculate integrals):

- The IB option uses two points only (the current value and the previous value) and calculates the area under the curve using a single trapezoid. It does not involve the statistical schedule.
- INT is a statistical option. It calculates the integral using a trapezoid for each sample point measured by the statistical schedule.

Multi Value Statistical Options

The statistical options described here are special in that they return **multiple values**. A channel can only have one return value, so these options work by setting channel variables.

These channel options do not affect the usual reporting or logging of the channel's readings.

Histogram (Hx:y:m..nCV)

The *DT80* can be used to generate a histogram (frequency distribution) of channel samples by applying the histogram channel option, which instructs the *DT80* to

- divide the measured data range into a number of intervals called classes
- count the number of readings that occur in each class during the histogram period
- load each class count into a separate channel variable.

Then use another schedule to read, log and clear the channel variables.

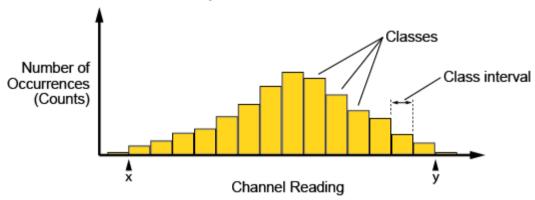


Figure 19: Histogram

In addition, the *DT80* automatically counts the number of under-range, over-range and total readings, and stores these in three separate channel variables.

The format of the histogram channel option is:

```
Hx:y:m..nCV
```

where:

- x and y are the lowest and highest channel readings of interest, as shown in the above diagram
- *m* and *n* denote the range of channel variables (*m*CV to *n*CV inclusive) to use for storing count values.

The channel variables are set as follows:

Channel Variable	Function
m cv	number of readings in the lowest class
(n-3)CV	number of readings in the highest class
(n-2)CV	number of readings under range (<x)< td=""></x)<>
(n-1)CV	number of readings over range (>y)
nCV	total number of readings including those out of range

The range x..y will therefore be broken up into (n-m-2) classes.

❖ Example — Histogram

To create a histogram of a temperature channel over five classes requires eight channel variables:

```
BEGIN"HISTO"

11..18CV=0

RAIS 1TT(H25.0:35.0:11..18CV)

RBX 16CV("Under") 11..15CV 17CV("Over") 18CV("Total")

RCX 11..18CV=0

END
```

The A schedule will report the temperature once a second. It will also accumulate a histogram with five temperature classes and intervals of 2°C:

- 11CV counts readings in the first class (25.0 to 26.999°C interval)
- 12CV counts readings in the second class (27.0 to 28.999°C interval)
- 13CV counts readings in the third class (29.0 to 30.999°C interval)
- 14CV counts readings in the fourth class (31.0 to 32.999°C interval)
- 15CV counts readings in the fifth class (33.0 to 34.999°C interval)

The following three CVs will also be updated:

- 16CV is the number of under-range samples (<25°C)
- 17CV is the number of over-range samples (>35°C)
- 18CV is the total number of samples (sum of 11..17CV)

The B schedule will, when polled, report the current histogram data. Polling the C schedule will clear the histogram data. A typical histogram report would look like:

```
XB
Under 7
11CV 19
12CV 33
13CV 102
14CV 71
15CV 22
Over 2
Total 246
```

Rainflow Cycle Counting

Rainflow cycle counting (also called rainflow analysis) is an internationally-accepted method of fatigue cycle counting used for monitoring long-term accumulative structural fatigue damage. The process reduces large quantities of cyclic data—collected from sensors attached to the structure over a long period of time—into relatively simple histograms.

As a structure deflects due to repetitive external influences, measurements produce arbitrary peak and valley sequences that form closed loops or cycles. Each loop or cycle has a size (the difference between peak and valley magnitudes), and rainflow analysis accumulates a profile of the number of cycles versus cycle size into a histogram.

A minimum cycle size can be defined that sets a noise rejection level, and cycle sizes below this level are rejected as noise and are not counted.

The DT80 implements the ASTM E 1049-85 standard: Standard Practices for Cycle Counting in Fatigue Analysis.

Real-time rainflow analysis can be carried out using the *DT80*'s **RAINFLOW** channel option, which instructs the *DT80* to monitor attached strain gauges at regular intervals and reduce the resulting large quantity of data into simple cycle histograms.

The DT80 can also produce a formatted report of the accumulated cycle histograms — see Reporting Rainflow Data (P77).

Although the rainflow cycle counting has been optimized for welded steel structures, it can be used to record arbitrary waveforms from other sources — temperature cycles in a furnace or electrical signals, for example.

Collecting Rainflow Data

Rainflow analysis is defined by the **RAINFLOW** channel option. Although this is generally used for channels measuring strain gauge inputs, you can also use it for any type of sensor that is monitoring a process that produces cycles of peaks and valleys with hysteresis.

The overall range of cycle sizes is divided into a number of smaller cycle size **classes** and, as the analysis proceeds, the number of cycles of each size class is counted. These counts are accumulated into the DT80's 32-bit signed **Integer Variables** (channel type nIV).

(These integer variables are only for use with rainflow analysis.)

The **RAINFLOW** channel option requires a maximum cycle size to be specified, a noise rejection level, and a range of sequential integer variables or channel variables that can be used for accumulating the cycle size counts and other information. It has the form:

```
RAINFLOW: a: b: c..dIV
```

where:

- a is the maximum cycle size expressed in the channel type units (for example, ppm)
- b is the **minimum cycle size** for noise rejection expressed as a percentage of a
- c and d denote the range of integer variables (cIV to dIV inclusive) to use for storing count values.

Therefore the range of cycle sizes is from zero to the maximum cycle size defined (a), and cycle sizes smaller than b% of a are rejected and not counted. For example, the channel option

```
(RAINFLOW: 1000:5:c..dIV)
```

sets the cycle size range to 0-1000 units, and cycle sizes less than 50 (5% of 1000) units are rejected as noise.

The number of variables allocated for the rainflow analysis must be set to the number of cycle size classes required over the cycle size range, plus seven (7) additional variables for summary data. For example, if you require 10 cycle size classes over the cycle size range then 17 variables will be needed. The variables can begin at any number in their range of 1 to 500 (*c*), and are used sequentially to the last variable number (*d*).

The use of variables in the allocated variable range is summarized in the following table. The first column shows how variables are used within the allocated range, and the last column shows how 20 variables are used. The last 7 variables contain various summary data.

c	dIV	IV Contents	Example: 2140IV
	C+0	Contains the count of cycles for the first cycle size class	21IV
	c+1	Contains the count of cycles for the second cycle size class	22IV
	C+2	Contains the count of cycles for the third cycle size class	23IV
	\downarrow	\downarrow	\downarrow
	d-7	Contains the count of cycles for the last cycle size class	33IV
	d –6	Contains the count of cycles that over-ranged the maximum cycle size	34IV
	d-5	Contains the count of all cycles	35IV
	d -4	Contains the maximum buffered cycles 0100 (or 99999 if the buffer has overflowed and buffered half-cycles have been lost)	36IV
ata	d-3	Contains the minimum valley encountered	37IV
γ	d-2	Contains the maximum peak encountered	38IV
mai	d –1	Contains the total number of good points	39IV
Summary data	d –0	Contains the total number of "in error" points (out of range, for example)	40IV

In practice, some cycles do not close immediately and are buffered until a closure is detected. Variable *d*–4 contains a count of these unclosed or "half cycles".

Note: The rainflow channel option can be used on a maximum of 16 channels.

Rainflow cycle data is collected at a rate dependent on the frequency of influences deforming the structure under test. These might be quite slow events (such as waves crashing against a sea wall), or quite fast (such as a high speed boat hull travelling through waves).

Place the channel being sampled for rainflow in a schedule that's triggered fast enough to take sufficient readings during a cycle to adequately characterise the loop closures. For example, the schedule

```
RA50T 3BGI(RAINFLOW:a:b:c..dIV,W)
```

measures the input every 50ms (20 times/sec), and counts loop closures. The $\overline{\mathbf{w}}$ channel option declares this as a working channel (does not return or log the individual samples of strain-stress.

Reporting Rainflow Data

Rainflow data is collected over long periods of time using the **RAINFLOW** channel option. Then, periodically, the rainflow cycle histogram can be retrieved by a computer, using the **RAINFLOW** command.

To report the rainflow cycle histogram, send the original rainflow channel option exactly as originally defined for the channel, but as a command. That is, send the command:

RAINFLOW: a: b: c..dIV

The *DT80* returns a tabular report as illustrated below: RAINFLOW: 72:5:1..27IV

01/01/2000 00:03:43 Rainflow (5% rejection) IV/CV Range Mean _____ 0.0 0.0 3.6 11.4 2 2. 2.7 7.2 3 3 11.3 6 10.8 12.4 5 5 14.4 6 11.9 9 6 6 18.0 12.8 7 2 7 21.6 12.3 25.2 0 8 8 0.0 28.8 9 9 0.0 10 10 32.4 0 0.0 11 11 36.0 18.0 1 12 39.6 0.0 0 12 13 13 43.2 0 0.0 14 14 46.8 0.0 0 15 15 50.4 0.0 0

16	16		54.0	0.0	0
17	17		57.6	0.0	0
18	18		61.2	0.0	0
19	19		64.8	0.0	0
20	20		68.4	0.0	0
21	21	>=	72.0	0.0	0
=====		====		========	=======
Total cycles					58
Peak/Valley mean					12.6
Max Peak					71
Min Valley					-1
Max buffered cycles				11	
Valid input points %			100.00		

The rainflow report provides a complete summary of the rainflow data for the collection period. The cycle size range for each class, the number of cycles in each class, and the mean for each class is shown, as well as the summary data.

Although the rainflow report cannot be logged in the *DT80*, the primary cycle count data used to make up the rainflow report can. For example, the program

```
BEGIN"Rainflow"
RA50T 2BGI(RAINFLOW:72:5:1..27IV,W)
RB7D 1..27IV
LOGONB
END
```

logs the histogram data every 7 days. Reports can be created manually after download of the primary cycle count data.

❖ Example — Rainflow Cycle Counting

Capture raw strain gauge data and perform rainflow cycle analysis using the program

```
BEGIN
RA50T 1BGI(RAINFLOW:1000:5:101..127IV,W)
END
```

This instructs the DT80 to

- collect current-excited bridge data (1BGI) every 50ms (RA50T) and carry out rainflow analysis over the range of zero to 1000 ppm
- apply a 5% rejection (that is, cycles smaller than 50ppm are rejected)
- accumulate cycles into histogram variables 101 through 127 (101..127); this gives 20 cycle size classes for cycle counts, and 7 others for summary information.

The matching rainflow report command

```
RAINFLOW:1000:5:101..127IV
```

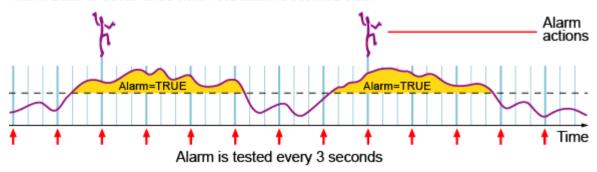
can then be used to return a summary report.

Part F - Alarms

Alarm Concepts

DT80 **alarms** allow decisions to be made based on the magnitude of *DT80* input channels, channel variables, timers, the clock/calendar, internal channels, system variables and so on. The decision is a **true** or **false** result of an alarm **condition test**. The true/false result is also known as the alarm **state**.

The *DT80* can be instructed to carry out actions when an alarm tests true. These actions can be setting the *DT80*'s digital state outputs, issuing messages, or executing commands to change the *DT80*'s operation.


Alarm transitions can also be logged to the DT80's internal file system for later analysis.

There are two types of alarms:

- single shot alarms (ALARM command) act once on the transition of the condition test from false to true
- repeating alarms (IF and DO commands) act repeatedly each time the enclosing schedule runs, while the condition tests true

Single-shot alarm RA3S ALARM ...

Alarm actions occur once when the alarm becomes true.

Repeating alarm RA3S ALARMR...

Alarm actions occur every 3 seconds while the alarm is true.

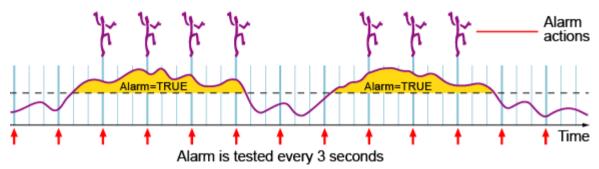


Figure 20: Comparing single-shot and repeating alarms (3-second schedule example)

Alarm commands can be included in any report schedule, and are processed in sequence with other schedule processes such as reading input channels and performing calculations.

Alarm Commands

The DT80 provides three main alarm commands, each with a similar basic syntax:

ALARMn(test) digitalAction" actionText" [commsProcess] {actionProcesses}

IFn(test) digitalAction" actionText" [commsProcess] { actionProcesses }
 (ALARMR is also accepted as a synonym for IF.)

DOn"actionText" [commsProcess] { actionProcesses }

where:

• *n* is the **alarm number**, used to distinguish logged alarms (optional)

- test is the alarm condition to test
- digitalAction is one or two digital output or CV channels which will follow the alarm state (optional)
- "actionText" is a text string to output if the alarm condition tests true (optional)
- commsProcess is a mailto: or sms: URI that specifies a message to send by email or SMS. Multiple URIs can be included, each enclosed by []. (sms: is valid for DT8xM models only)
- { actionProcesses} is a set of channel definitions and/or commands to be executed if the alarm condition tests true (optional)

These are explained further in the following sections.

Note that the DO command is the same as IF except that the alarm condition is assumed to be always true.

Alarm Number

Alarm commands can optionally be given a number (1-255), which is used to identify the alarm when an alarm transition is logged.

For example:

```
RAIS ALARM1(2TT<15) "Too cold" ALARM2(2TT>30) "Too hot" LOGON
```

will test a temperature once per second. If the temperature dips below 15°C an alarm record indicating that alarm #1 has triggered will be logged to the *DT80*'s internal file system. See *Logging and Retrieving Data* (P91) for more details about the logging of data and alarms.

Alarm numbers need not be allocated in order, and they need not be unique (although normally they would be) – whatever you select as the alarm number will be what is logged if the alarm is triggered.

Note that unnumbered alarms, e.g.:

 $IF(1CV>10){9CV=9CV+1}$

are not logged, even if logging is enabled for the schedule

Alarm Condition

The alarm condition compares a channel value to one or two **setpoints**. The state of the alarm is then set to true or false based on this test. (Note that in the case of the **DO** command, no alarm condition is specified – the state of the alarm is always true.)

Six different types of test are supported:

Condition	Alarm is true if
(chan==setpoint)	channel value is equal to setpoint
(chan!=setpoint)	channel value is not equal to setpoint
(chan <setpoint)< td=""><td>channel value is less than setpoint</td></setpoint)<>	channel value is less than setpoint
(chan>setpoint)	channel value is greater than or equal to setpoint
(chan> <setpoint1,setpoint2)< td=""><td>channel value is greater than or equal to <i>setpoint1</i> AND less than <i>setpoint2</i> (that is, between the two setpoints)</td></setpoint1,setpoint2)<>	channel value is greater than or equal to <i>setpoint1</i> AND less than <i>setpoint2</i> (that is, between the two setpoints)
(chan<>setpoint1,setpoint2)	channel value is less than <i>setpoint1</i> OR greater than or equal to <i>setpoint2</i> (that is, outside the setpoint range)

where:

chan is a standard channel definition, which will be evaluated (i.e. measured) in the usual way. One set of channel options may be included if required. If the channel is being assigned from an expression then the whole definition should be enclosed in parentheses, eg
 IF((CALC=&1TK*2)>52)

• setpoint is a constant (e.g. 2.77) or channel variable specifier (e.g. 13CV)

Note The equality (==) and inequality (!=) tests should normally only be used where the quantities being compared are integers. Floating point values are subject to rounding errors. For example, after adding 0.1 to a CV ten times, the result will not necessarily be exactly 1.0

In addition, a **time specifier** may be appended to the above. If a time specifier is present, the alarm will only be set true after the condition has been continuously true for the specified time.

A time specifier has one of the following forms:

Time Specifier	Condition must be continuously true for
/ns	n seconds
/ n M	n minutes
/nH	n hours
/nD	n days

Some sample alarm conditions are shown below:

Condition Alam is tide if	Condition	Alarm is true if
---------------------------	-----------	------------------

(2R(II)>51.5)	channel 2R value is greater than or equal to 51.5 ohms
(3+V(AV)<-200)	channel 3+V (averaged over schedule interval) is less than -200mV
((CALC=(&1TK+&2TK)/2)<50)	average of two thermocouple readings is < 50°C
(4ST==1)	today is Monday
(REFT<>-10,45)	temperature inside <i>DT80</i> is outside the range -10°C - +45°C
(T><9:00,17:30)	time is between 9am and 5:30pm
(32SV>10000)	10000 or more data records have been logged for schedule A
(1CV<2CV/2M)	1CV is less than 2CV, and has been for at least 2 minutes
(4DS==0)	digital input 4DS is low
(1CV(ND)>1)	1CV is greater than or equal to 1. Don't display this alarm.

Note that by default the value of the channel that is tested in an alarm condition is neither logged nor returned. It will, however, be displayed, unless you disable this using the ND or W options.

If you want to log or output the channel's value each time it is tested then include the LM (log measurement) option, e.g. ALARM(1TK(LM)>35) "Hot"

Complex Conditions

As indicated above, only relatively simple condition tests can be included in an alarm command. There are two ways to perform a more complex test.

* Boolean Expressions

An arbitrarily complicated **boolean expression** can be constructed and assigned to a CV, which can in turn then be tested in an alarm command. For example:

```
RA5S
1V 2V 3V 3CV
9CV=((&1V>2.2)AND(&1V/&2V<=0.9)AND(&3V>=(&1V+&2V)))OR(3CV=0.0)
ALARM(9CV>0.5)"Condition red"
```

Note that the syntax for boolean expressions is quite different to that used in alarm conditions.

In the above example 9CV will get the value 1.0 if the expression evaluates to true, otherwise 0.0

You can also use the result of a boolean expression in an **arithmetic expression**, making use of the fact that the value of the boolean expression is always 1.0 or 0.0. For example,

```
12CV=4CV*(1CV>2.5)+5CV*(1CV<2.5)
```

will set 12CV to the value of 4CV if 1CV is greater than 2.5, otherwise it will set it to the value of 5CV. In many cases, however, using the selection operator would be simpler:

```
12CV=(1CV>2.5)?4CV:5CV
```

See Expressions (P67) for more information about using expressions.

❖ Combining Alarms

An alternative method of building up a complex alarm condition is to chain a number of consecutive alarm commands together. They are combined using logical operators (AND, OR or XOR), which replace the *digitalAction*, *actionText* and *actionProcesses* of <u>all except the last alarm</u>. The actions associated with the combined test are attached to the last alarm. Any alarm delay period is also associated with the last alarm.

For example, the combined alarm

```
ALARM(1*TK>100)OR
ALARM(1+TK>100)OR
ALARM(1-TK>100)AND
ALARM3(T>10:00:00)"Temp Error"{1DBO=12}
```

produces a single alarm output based on several temperature tests and a time test. The combined alarm becomes true when any one of 1*TK, 1+TK or 1-TK exceeds 100°C after 10:00:00 am. Notice that the alarm conditions are evaluated sequentially ("left to right"); the three logical operators (AND, OR or XOR) all have equal precedence.

Note also that the type of alarm (single shot vs. repeating) and the alarm number are solely determined by the last channel in a chain of concatenated alarm channels e.g.

```
ALARM27 (1CV>1) AND
ALARM5 (2CV>4) "boo"
is exactly equivalent to
IF99 (1CV>1) AND
ALARM5 (2CV>4) "boo"
ie it's a single shot alarm with ID 5.
```

Alarm Digital Action Channels

One or two comma-separated **digital action channels** can be declared for each alarm. These channels will then <u>mimic the state of the alarm</u>. That is, these outputs are set to their default state if the alarm tests false, and are set to there non default state if the alarm tests true:

Digital action channels can be:

- digital outputs (nDSO)
- Attn LED output (1WARN)
- latching relay output (1RELAY)
- channel variables (nCV)

These will be set according to the following table:

Digital Action Channel	Value if Alarm FALSE	Value if Alarm TRUE
14DSO (DT80/82I/85)	1 (high/off)	0 (low/on)
13DSO (DT81/82)		
58DSO (DT80/85)	0 (low)	1 (high)
4DSO (DT81/82)		
1WARN	0 (LED off)	1 (LED on)
1RELAY	0 (relay open)	1 (relay closed)
ncv	0.0	1.0

Typically, the digital state outputs are used to annunciate the *DT80* alarm by switching devices such as relays, sirens and lights, or to directly control actuators and similar equipment.

For example,

```
RA1M ALARM(4TK<-1)3DSO"Heater on^M"
```

will check the temperature every minute. If it drops below -1°C a message will be output and digital output **3D** will go low, energising an external heater relay. The digital output will remain low (heater on) until the temperature (measured every minute) is no longer below -1°C.

Similarly,

```
RB10S ALARM(2+TC>2100)2CV,1RELAY"ReactorScram"
```

checks a temperature every 10s; if it exceeds 2100°C then the relay will close and 2CV will be set to 1.0 until the temperature drops back below the setpoint. Once this occurs the relay will open and 2CV will be set back to 0.0.

Alarm Action Text

Action text may be included in an alarm command. This text string is automatically returned to the host computer and/or logged to the internal file system and/or transmitted by email/SMS:

- once whenever the state of a single-shot alarm (ALARM) goes from false to true, or
- repeatedly at the controlling schedule's rate while a repeating alarm (IF or DO) remains true.

Up to 511 characters of action text can be included in each alarm. Note however that the resultant string (after processing any substitution characters; see *Substitution Characters* (P83)) may be truncated depending on its final destination:

Destination	Max number of characters that will be output
host computer via command interface	511
LCD display	16
log file	set by ALARMS: Wn (alarm width) schedule
-	option (default 60, max 245)
email	255
SMS	160

Setting the alarm message switch (P261) to /z stops the return of the action text to the host – in a similar way to the NR (no return) channel option.

Destination for Text

Action text is normally enclosed in "double quotes", in which case it is returned to the host computer using the currently active communication port. If, however, the action text is instead enclosed in 'single quotes', the actionText is sent exclusively to the RS232 Host Port on the logger. This is useful for communicating with external modems when they are in command mode and when the host port is used for other purposes.

Substitution Characters

Special substitution characters can be placed into actionText. These instruct the DT80 to dynamically insert the following information when the alarm returns and/or logs its action text:

Alarm text	where	Substitutes the following	Example
1		DT80 serial number, :, alarm number	080035:8
11		! character	!
@		time at which action text was returned (in P39 and P40 format)	12:13:14.634
@@		@ character	@
#		date at which action text was returned (in P31 format)	17/9/2007
##		# character	#
?C		standard channel name	2PT385
?N		user channel name	Boiler
?R		relation (test condition)	>100
?U		channel units	degC
? V		channel value when alarm tested true (use FF n etc. channel options to control format)	100.2
? A	A = any letter (A-Z) other than CNRUV	not valid	
? n F p	<i>n</i> = 1-1000, <i>p</i> = 0-7	value of nCV in fixed point format, p decimal places	-1257.42 (<i>p</i> =2)
? n E p	<i>n</i> = 1-1000, <i>p</i> = 0-7	value of nCV in exponential format, p decimal places	-1.26E3 (<i>p</i> =2)
? n M p	n = 1-1000, p = 0-7	value of nCV in mixed format, p significant digits	-1.3E3 (<i>p</i> =2)
?n F	<i>n</i> = 1-1000	same as ?nF1	-1257.4
?nE	<i>n</i> = 1-1000	same as ?nE1	-1.3E3
?nM	<i>n</i> = 1-1000	same as ?nM1	-1E3
? nA	A = any letter (A-Z) other than FEM	not valid	
?n\$	n = 1-50	value of string variable <i>n</i> \$	east
? n	n = 1-1000	same as ?nF1	-1257.4
??		? character	?
?		same as ?V	100.2
С	c = any character	С	a

Note Substitution characters are not case sensitive (?v is equivalent to ?V)

Special Characters

Special characters may be inserted in alarm strings using control character (e.g. ^M) or backslash (e.g. \013) notation. See ASCII-Decimal Tables (P394) for more information.

For example

```
ALARM(3TT>120)"\192 hautes temp\233ratures!! ?v \176C^M^J"
```

will return/log the following string when the specified temperature is exceeded:

```
À hautes températures! 129.4 °C
```

In this example the \192 and \233 insert the accented characters, \176 inserts the degree symbol, and ^M^J adds a carriage return/line feed pair. Note also the !! to generate a single exclamation mark, and the ?v substitution string, which is replaced by the channel value.

If the software used to enter the program text supports it, you could alternatively have entered the special characters directly, i.e.

```
ALARM(3TT>120)"À hautes températures!! ?v °C^M^J"
```

Be aware that many extended ASCII character codes display differently on the *DT80*'s LCD compared with the host computer. See *ASCII-Decimal* Tables (P394).

Examples

❖ Substitution Characters

```
The following command:
```

```
ALARM(9TK("Oven 9")<200)"Alarm: SN ! at # @, ?n value is ?v ?u"[sms:+61400123456] would, on DT8xM models, send an SMS alarm message similar to the following:
```

```
Alarm: SN 081234:0 at 17/5/2011 19:09:11.002, Oven 9 value is 187.2 degC
```

❖ Text Labels

The DO command in conjunction with alarm text provides a simple way to output a text string in a schedule, e.g.:

RA5M DO"Boiler 1^M^J" 1TK 2TK DO"Boiler 2^M^J" 3TK 4TK DO"^M^J"

will include a heading before each group of measurements:

```
Boiler 1
1TK 239.4 degC
2TK 99.9 degC
Boiler 2
3TK 212.4 degC
4TK 90.9 degC
```

Alarm Communication Actions

Alarm communication actions allow you to send the alarm action text (or other message) to one or more recipients via email and/or SMS.

Alarm Email Messages

To send an alarm email, add a mailto: URI (Uniform Resource Identifier), in square brackets, after the alarm text string. The URI consists of a recipient email address, followed by up to four optional parameters, i.e.

mailto:recipient-email?priority=priority&subject=subject&body=body&interface=iface

where:

- recipient-email is a comma-separated list of up to 5 email addresses in the usual format (e.g. jake@peg.edu). Note that there is no extra overhead in sending an email to multiple addresses the data is only sent once and the delivery to the required recipients is handled by the Internet email system.
- priority is high, normal (default) or low. A high priority message will be sent as soon as possible, with the "high importance" flag set (typically displayed as an exclamation mark in email clients). A normal priority message is also sent as soon as possible, but without the "high importance" flag. A low priority message will be queued and sent when a communications session next starts. (If a communications session is already active then it will be sent immediately.) If the Ethernet interface is used then all messages are either high or normal priority if low priority is specified then normal priority is assumed.
- subject is a string to use as the subject of the email. If not specified then "dataTaker SN serial alarm" is used as the subject (where serial is the DT80 serial number).
- body is a string to use as the body of the email. If not specified then the alarm action text is used.
- interface is applicable to DT8xM models only, and specifies the network interface to use: modem (default), or ethernet. For models without internal modem, Ethernet is always used and this option is ignored.

Notice that the format of this URI is identical to that used for email unloads (see Email (P103))

Send the alarm text (e.g. "Hi temp 3TK=47.2") in the body of an email to two recipients:

See Communications Sessions (P227) for more details about how email transmission is managed.

Note No more than 12 emails can be queued; any subsequent attempts will be discarded (a message will be written to the event log, and a warning email will be generated).

Examples

```
ALARM(3TK>45) "Hi temp ?n=?v"[mailto:fred@hsww.edu,george@hsww.edu]

Send a test email:

DO[mailto:cat@mammals.org?subject=test subject!&body=test body!]

Measure a temperature every 4 hours and generate an email, but send all emails in one daily batch at 9am:

RA4H IF(1TK<9999) "Temp at # @: ?v"[mailto:sullivanj@monsters.com?priority=low]

RB[0:0:9] DO{SESSION START}
```

Alarm SMS Messages

DT8xM models only

Sending an alarm SMS is similar to sending an email – add an sms: URI in square brackets. An SMS URI consists of the recipient phone number, then up to two optional parameters, i.e.

sms:recipient-phone?priority=priority&body=body

where:

- recipient-phone is the destination phone number. The acceptable number formats will depend on the country. For example, in Australia you can enter a standard mobile number (e.g. 0400123456) or a fixed line number with area code (e.g. 0398765432). The safest approach, however, is to use international format, i.e. a "+", then country code, then area code with any leading zero dropped, then the number (e.g. +61400123456).
- priority is normal (default) or low. A normal priority message will be sent as soon as possible. Low priority
 messages are queued and will be sent at the start of the next communications session. Unlike email, if a session is
 already active then low priority SMS will still be deferred until the start of the next session (see below).

body is a string to use as the body of the text message. If not specified then the alarm action text is used.

Note that sending an SMS in the middle of an active session may cause the established data connection to be disrupted and the session to end prematurely. For this reason, SMS messages are normally sent at the start of the session, and low priority SMS messages that occur during a session are deferred until the start of the next session.

See Communications Sessions (P227) for more details about how SMS transmission is managed.

Note No more than 5 SMS messages can be queued; any subsequent attempts will be discarded (a message will be written to the event log, and a warning SMS will be generated).

Examples

Send the alarm text to an email address and two phone numbers:

IF(1CV<10)"LowPress: ?v"[sms:+61400123456][sms:+12125550909][mailto:bunny@rodents.org]

(Note that, unlike email, sending to multiple SMS recipients involves multiple operations, each of which will be charged at the applicable SMS rate.)

Send a test SMS:

DO[sms:+61400123456?body=Test only!]

Limits

Be aware of the following command length limits when crafting complex alarm commands. These limits apply to the resultant string after substituting any replaceable parameters:

Element	Max number of characters
Complete command line	1023
Email recipient(s)	255
Option list: priority, subject, body	511
Email subject	255
Email message body	255
SMS phone number	19
SMS message body	160

Note also that if any special characters (e.g. @, :) appear within a component of an email or SMS URI then they should be replaced with the appropriate "escape sequence", to prevent them being confused with the characters used to separate the various URI components.

See URI Escape Characters (P104) for more details.

Alarm Action Processes

Action processes can be any *DT80* functions to be executed when an alarm is true. These functions can be reading input channels, setting output channels, calculations, setting parameters and switches, and so on.

In addition, action processes are a very powerful programming facility for the *DT80*. Use them to perform a wide range of program-related functions such as re-programming on events, adaptive schedules (see examples below), programmed calibration cycles, management of digital state outputs, and management of the Serial Channel.

Action processes are also useful with unconditional alarm commands (**DO** commands) as a means of executing a *DT80* command (as opposed to a <u>channel</u>) within a schedule. See *Executing Commands in Schedules* (**P56**) for more details.

Action processes are placed within braces { } as the last element in an alarm command. Each "process" is either:

- a channel definition (e.g. 1+V(=1CV) or 3DSO=0), or
- a command (e.g. XC or P12=5 or SATTN or LOGONA), or
- a schedule trigger re-definition (e.g. RA100T)

Alarm commands cannot be included.

Any number of processes may be included, but they must all be on the same line. Processes can be separated by semi-colon (;) or space characters.

Order of Execution

When an alarm is triggered, things happen in the following sequence:

- 1. Digital action channels (if any) are set to the required value
- 2. Alarm text (if any) is generated and returned/logged
- 3. Email/SMS communication actions (if any) are queued for transmission
- 4. Any <u>channels</u> in the action process list are evaluated, left to right. All channels in an alarm process list are treated as working channels they are neither returned, logged nor displayed.
- 5. Any commands or schedule trigger re-definitions are queued for execution, working left to right.
- 6. Any further channels or alarm commands in the current schedule are executed

7. Any queued commands, including the ones generated by the alarm, are executed.

```
For example, the job
BEGIN
RA5S ALARM1(3TK>30){XB 1DSO=0 SATTN} 4V(NR)
RC1S 1V
RBX 1SERIAL("{boo!}")
LOGON
END
```

will perform as follows:

- 1. Schedules A & C will become due at the same time, because A's scan rate is an exact multiple of C's. A will run first, because, as noted in *Triggering and Schedule Order* (P55), A comes before C in the priority order.
- 2. Channel **3TK** exceeds 30 so the alarm is triggered. The alarm is numbered and logging is enabled so an alarm record will be logged, although the alarm text field will be an empty string.
- 3. Channel 1DSO is evaluated output 1D is set low.
- 4. The command string XB; SATTN; is queued for execution.
- 5. Channel 4V is evaluated. It's value is logged and displayed but not returned.
- 6. Schedule A is now finished; schedule C is selected to run next. It does not actually run, however, because there are queued commands to execute.
- 7. The XB command is now executed. This causes the B schedule to become due.
- 8. The SATTN command is executed, which turns on the Attn LED
- There are no more queued commands so the C schedule can now run. Channel 1v is evaluated and logged/displayed/returned.
- 10. Schedule B is also due, so it now runs. The **1SERIAL** channel is evaluated, which causes a string to be sent out the serial sensor port.
- 11. There is nothing further to do so the logger idles until schedule C next becomes due.

In most applications the ordering is not particularly important as all of the alarm actions occur within a very short space of time. However, it can cause surprises in some circumstances, as illustrated below.

❖ Trap – Commands Don't Affect Channels in Same Schedule

Any commands executed in an action process list will <u>not take effect until after all channels have been processed</u>. For example, if you wanted some measurements to be returned in fixed format mode and some in free format, you might try:

RAIS DO{/H/R} 1V DO{/h/R} 2V ' does not work!

but in fact both channels will be returned in free format mode.

To achieve the desired result you need to do something like:

```
RA1S 1V DO\{/H/R XB\}
RBX 2V DO\{/h/R\}
```

In this example 1V will be returned in free format mode, then we switch to fixed format mode, then we issue the command to poll schedule B. Schedule B will then do the same thing: return 2V in fixed format mode, then switch back to free format mode so that the next time schedule A runs it will return its value in the correct format.

Note In the *DT80*, commands have higher priority than schedules. If there are any queued commands outstanding, they will be executed ahead of any schedules that happen to be due. However, once a schedule starts executing, it always runs to completion – any queued commands will be held off until the schedule completes.

* Trap - Don't Use DELAY Between Commands

The **DELAY=**ms function is a channel, not a command. It therefore cannot be used to insert a delay between two commands. For example, if you wanted to light the **Attn** LED for 5 seconds to indicate that a measurement was about to be taken, you might try

```
RA20M DO{SATTN; DELAY=5000; CATTN; XB} RBX 1V 'does not work! but this is no good because the DELAY, being a channel, is executed first, then SATTN; CATTN; XB in quick succession.
```

```
The PAUSE ms command does the same thing as DELAY except that it is a command, so you can use: RA20M DO{SATTN; PAUSE 5000; CATTN; XB} RBX 1V ' OK
```

(The semicolons between commands are optional in most cases. They are included in the above example because they make the program a little more readable, especially when commands with space-separated parameters are used.)

Note also that a simpler way to implement the above functionality would be to not use commands at all, e.g.:

```
RA20M 1WARN=1 DELAY=5000 1WARN=0 1V or, even better:
```

```
RA20M 1WARN(5000,R)=1 1V
```

Examples

❖ Controlling a System

Alarm action processes can be used to control a system or process. This is often preferable to the method used in the example in *Alarm Digital Action Channels* (P82) because it allows some hysteresis to be included.

For example,

```
RA1S
   ALARM(1TK<74.75)"Heater ON"{1DSO(W)=0}
   ALARM(1TK>75.25)"Heater OFF"{1DSO(W)=1}
```

is a simple heater control for a water bath. The two alarms work to hold the temperature at 75°C ± 0.25°C.

❖ Adaptive Scheduling

Adaptive scheduling is the dynamic adjustment of the acquisition of data about a system or process as the system or process changes.

As the examples below show, adaptive scheduling can reduce total data volume while giving greater time resolution when required.

The schedule:

```
RA15M

1V("Wind speed",S1)

ALARM(&1V>5.25){RA2M}

ALARM(&1V<4.75){RA15M}
```

measures wind speed

- every 2 minutes if wind speed is greater than 5m/s, or
- every 15 minutes if wind speed is less that 5m/s

Note the deliberate 0.5m/s hysteresis to prevent oscillation around the switchover point. If the measured wind speed exceeds 5.25m/s, schedule A's trigger is re-defined to run every 2 minutes. When it drops below 4.75m/s it is reset back to every 15 minutes.

The following job:

```
RC30M 1TK("Oven Temp")
RD1M ALARM(5TK>120){GC} ALARM(5TK<110){HC}
LOGONC HC
```

continuously monitors the temperature of an oven and logs the temperature whenever it exceeds 120°C.

Initially the logging schedule (C) is halted (HC). Schedule D checks the temperature every minute, and when it exceeds 120°C schedule C is started (GC), and it is stopped again once it goes below 110°C.

Using an Alarm to Poll a Schedule

As mentioned above, if any channels are included in an action process list then they cannot be logged, returned or displayed. This limits the types of channels that can usefully be included in an action process list to:

- output channels (e.g. 2DSO=0)
- calculations (e.g. 1CV=1CV+1)
- channels that assign to a CV (e.g. 2*V(=2CV))

If you need to conditionally take measurements and log/return them, you will need to set up a separate schedule and then use the alarm to poll it.

For example, the job:

```
BEGIN
1..3CV(W)=0
RA1S
    1CV(W)=1CV+1
    ALARM(1CV>3CV){XB 2CV(W)=2CV+1 3CV(W)=2^3CV}
RBX LOGONB
    1..5TK
END
```

logs data at increasing intervals as the experiment proceeds. The program calculates the next log point as an incrementing power of 2 seconds — that is, it logs the temperatures at t = 0, 1, 2, 4, 8, 16,... seconds. The following table lists the values of the three CVs at the point at which the **ALARM** statement is executed.

Time (s)	1CV	2CV	3CV	
0	1	0	0	Alarm active – B schedule polled
1	2	1	2	Alarm active – B schedule polled
2	3	2	4	
3	4	2	4	Alarm active – B schedule polled
4	5	3	8	
5	6	3	8	
6	7	3	8	
7	8	3	8	Alarm active – B schedule polled
8	9	4	16	
				etc.

(Remember that (1CV>3CV) means 1CV is greater than or equal to 3CV.)

The following example will log all voltage readings that exceed 200mV:

```
BEGIN
RA1S IF(2V(=1CV)>200){X}
RX 1CV("Vout~mV")
LOGONX
END
```

Note that assigning to a CV in this way and then reporting the CV value is preferable to including 2V in both schedules. Alternatively, a reference (&2V) could have been used.

* Executing Commands in Schedules

The following will output a directory listing every time a positive edge is received on digital input 7:

```
RA7+E DO{DIR"B:"}
```

Selecting a Job to Run

The following schedule

```
RA1SERIAL""

1SERIAL("%1d",=1CV)

IF(1CV><0.5,1.5){RUNJOB"MIX"}

IF(1CV><1.5,2.5){RUNJOB"CHURN"}

IF(1CV><2.5,3.5){RUNJOB"GRIND"}
```

will run when a character is received on the serial sensor port. If the character is 1, 2 or 3 then the indicated job will be loaded and run, replacing the current job.

* Automatic Data Archive

The schedule command

```
RE1D DO{COPYD dest=a: sched=A start=new}
```

instructs the *DT80* to — every midnight (1D trigger) — move all new data for schedule A to an archive file on the USB memory device.

Page 88

Alarm Records

Real Time Alarm Return

If an alarm is triggered while free format mode (/h) is selected, the configured alarm action text (if any) will be returned.

If an alarm is triggered while fixed format mode (/H) is selected, a fixed format **alarm record** will be returned. This has a similar format to a fixed format data record (see *Format of Returned Data* (P26))

For example, the job

```
BEGIN"B1" RB1S ALARM8(1V(S1)>1.5)"OverPressure ?vMPa^M^J" END would, when triggered, return text similar to the following if normal (/h) mode was selected:

OverPressure 1.563MPa
```

In fixed format (/H) mode, however, it would return an alarm record:

```
A,080035, "B1",2006/04/16,14:32:01,0.254870,0;B,8,1,"OverPressure 1.563MPa^M^J";0078;3D95
```

An alarm record consists of:

- the usual fixed format header and trailer (serial number, job name, timestamp, error check fields)
- a 0 to indicate real time (as opposed to logged) data
- the schedule (B)
- the alarm number (8)
- the transition type (1 false to true)
- the alarm text string (if any). Note that control characters (ASCII code < 32) are not output; they are left in the string in
 ^x notation.

The real time return of alarm action text or alarm records can be disabled using the /z switch.

Logging Alarms

Alarm records may also be **logged** to the *DT80*'s internal file system. This will occur if an alarm number is provided (e.g. **ALARM7**), and logging is enabled for the enclosing schedule.

As with data, when logged alarm records are unloaded, they will be returned as fixed format records, as illustrated above.

By default, an alarm record is only logged when an alarm is triggered, i.e. its state changes from false to true. However, by setting parameter **P9=3**, the *DT80* will also log a record when the alarm goes <u>inactive</u> (true to false).

Also note that <u>numbered IF</u> and <u>DO</u> commands (which are seldom used) will log an alarm record every time their schedule executes, while their condition is true.

The following table summarises what is logged, and what is returned for the various types of alarm command.

Alarm Command	State/Transition	Parameter 9 (default P9=1)	Logged Transition Type, Alarm Text	Returned AlarmText
ALARM (test) "actionText"	False to true ↑	Х	_	actionText
	Continuing true	Х	_	_
	True to false ↓	x	_	_
ALARMn(test) "actionText"	False to true ↑	P9=1 or 3	1, "actionText"	actionText
		P9=0 or 2	_	actionText
	Continuing true	X	_	_
	True to false ↓	P9=0 or 1	_	_
		P9=2 or 3	3,"ALARM <i>n</i> FALSE"	_
IF (test) "actionText"	False to true ↑	Х	_	actionText
(or ALARMR)	Continuing true	Х	_	actionText
	True to false ↓	Х	_	_
IFn(test) "actionText"	False to true ↑	P9=1 or 3	1 , "actionText"	actionText
(or ALARMR)		P9=0 or 2	_	actionText
	Continuing true	Х	2 , "actionText"	actionText
	True to false ↓	P9=0 or 1	_	_
		P9=2 or 3	3,"ALARM <i>n</i> FALSE"	_
DO" actionText"	х	х	_	actionText
DOn" actionText"	х	Х	2 , " actionText"	actionText

Polling Alarm Inputs

The current values of the channels being tested in alarm conditions can be polled (requested) by the host computer at any time. There are three commands for polling alarm data:

Command	Function
? n	returns the current input value of alarm n (if $n = 0$ then all un-numbered alarms are returned)
? <i>X</i>	returns the current input values of all alarms in schedule x , where $x = A, B,K, X$
?ALL	returns the current input values of all alarms in all schedules

The output of each of these commands consists of:

- the alarm number (An). When un-numbered alarms are polled, the alarm number is returned as A0
- the schedule to which the alarm belongs
- the alarm condition (so that un-numbered alarms can be distinguished). For an alarm with no condition (i.e. DO), the word DO is shown
- the current value of the channel being tested in the alarm condition

For example

```
BEGIN
RA2S
ALARM4(2R>50)"High R"
ALARM(1CV<>-10,10){2CV=2CV+1}
IF(2CV>4){1V(=9CV)}
ALARM5(9CV<100){RA100T}
END
PALL
A4 A 4R>50 1300.6
A0 A 1CV<>-10,10 99.0
A0 A 2CV>4 102.0
A5 A 9CV<100 0.0
```

If the DT80 is set to formatted mode (/H) then formatted mode records containing the same information are returned.

The dEX web interface will also indicate the status and value of alarm channels.

Part G – Logging and Retrieving Data

Logging Data

By default, the *DT80* returns measurement data to a host computer in real time. However, the *DT80* can also automatically record each reading taken for some or all of a schedule's channels. These data are stored in the *DT80*'s internal memory, and can be retrieved at a later date, using a USB memory device or via one of the communications ports, or via the web interface (Series 2 only).

Each reading is automatically timestamped.

Logged data is retained in the internal memory until it is explicitly cleared, even if the DT80 is reset or loses power.

Enabling and Disabling Data Logging

LOGON and LOGOFF Commands

By default, data logging is <u>disabled</u> when a schedule is entered. The following commands switch logging on or off. They may be entered as part of a job, or they may be sent at any time after a job has started running:

Command	Function
LOGON	Enables logging (data and alarms) for all schedules.
LOGOFF	Disables logging (data and alarms) for all schedules.
LOGONsched	Enables logging for schedule sched (data and alarms)
LOGOFFsched	Disables logging for schedule sched (data and alarms)

For example the following job defines a schedule and enables logging: BEGIN"LUMPY" RA2M 2V 3V LOGONA END

This will create a store file with the default size. Every two minutes, two voltages will be measured and the results will be stored, along with the time at which the measurements were taken.

Disabling Data Logging for Specific Channels

If logging is enabled for a schedule then by default <u>all</u> channels defined therein will be logged. To disable logging for specific channels:

- use the NL (no log) channel option, or
- use the W channel option (working channel; do not log, return or display)

How Data and Alarms are Stored

The DT80 File System

The *DT80*'s internal flash memory is organised as a DOS-compatible file system, which uses files and folders in a similar way to a desktop computer. When a USB memory device is inserted it is treated in a similar way. Note that:

- the USB memory device, if present, is referred to as drive A:
- the DT80's internal file system is referred to as drive B:
- the DT80's internal RAM disk (a small but higher speed file system) is referred to as drive D:

(The **DIR** and **DIRTREE** commands can be used to explore the contents of either drive. For example **DIRTREE B**: will list the names of all files and directories on the internal file system.)

The standard internal file system has a capacity of 128Mbyte. The *DT80* stores approximately 90,000 data values per megabyte of memory, so the internal memory can hold approximately 10,000,000 data values.

The internal RAM disk has a capacity of 128kbyte (approx. 10,000 data values).

Note the RAM disk (D:) may be cleared if all power to the *DT80* is lost (including the lithium memory backup battery). It should not normally be used for long term data storage.

Store Files

When a job is first entered, a directory (folder) is created on the internal file system: **B:\JOBS** jobname. This folder contains files which record the job's program text and other details about the job.

For each of the job's schedules that contain loggable channels (that is, channels which do <u>not</u> specify the **NL** or **W** options), a data storage sub-folder for that schedule is then created: **B:\JOBS**\jobname\sched.

Finally, a store file is created in the schedules data storage folder. Note the following important points:

- A store file is a <u>pre-allocated</u>, <u>fixed size</u> file. The size of the file (as returned by the <u>DIR</u> command, for example) does not change are data is stored.
- A store file contains two <u>fixed size</u> sections one for **data** (measured channel values), one for **alarms** (text strings which are logged when a particular condition is true). The sizes of these sections is configurable on a per-schedule basis.
- A store file is a <u>binary</u> file. The data contained in it are not directly human-readable. See Retrieving Logged Data
 (P95).
- A store file has a name of the form **DATA** sched.**DBD**.

```
For example, the job:
BEGIN"BUMPY"
RA2M 2V 3V
RB1S 2DS
RK20S 1V(W)
LOGONA LOGONK
END
would create the following store files:
B:\JOBS\BUMPY\A\DATA_A.DBD
B:\JOBS\BUMPY\B\DATA B.DBD
```

Note that no file is created for schedule K because all of its channels are specified as "working", or "non-loggable" channels. Note also that a file <u>is</u> created for schedule B, even though it initially has logging disabled. This ensures that storage will be available if logging is enabled (using the **LOGONB** command) at some later time.

In the above example, the store files would all have the same, default size (approx. 1Mbyte).

How Much Data Can I Store?

Each time a schedule executes (assuming logging is enabled for the schedule), it writes one **data record** to its store file. A data record consists of the values of all channels defined in the schedule, other than those for which logging has been disabled (using the **NL** or **W** channel options).

As a rule of thumb, one data record uses **10 + (10 x numberOfLoggedChannels)** bytes, assuming "normal" channel types (time/date channels and \$ strings require more space)

```
So for the schedule:
```

```
RA1S 1V 2CV(NL) 3TK
```

each data record will use 30 bytes, so the default 1Mbyte allocation for data is enough for 1,048,576 / 30 = 34,952 data records. The store file will therefore contain the most recent 9 hours or so of readings, assuming a 1 second scan rate.

How Many Alarms Can I Store?

Normally, one alarm record is logged each time a numbered alarm is triggered, i.e. its state goes from false to true. However, as discussed in *Logging Alarms*(P89), the true-to-false transition may optionally also be logged, and numbered **IF** and **DO** alarm commands may log a record each time their schedule executes while their condition is true.

As a rule of thumb, one alarm record uses 12 + alarmWidth bytes, where alarmWidth is set using the ALARMS: Wn schedule option; see Schedule Options (P46). So assuming the default setting of 60 is used, each alarm record will use 72 bytes. The default 100kbyte allocation will therefore store 102,400 / 72 = 1,422 alarm records.

How Fast Can I Log Data?

The time taken to log one data record for a schedule is essentially the sum of:

- measurement time the time taken to acquire data for all channels in the schedule. For digital channels and channel variables (CVs) this is close to negligible; for analog measurements it can be significant (normally at least 30ms per measurement); for serial channels it can be very significant (possibly many seconds for SDI-12, for example)
- processing time the time taken to perform any linearisation or other data manipulation calculations that may be required
- communications time the time taken to format and return real time data values over a communications link
- logging preparation time the time taken to generate a data record to be logged
- file system time the time taken to physically write the data to the internal flash disk or external USB device.

The first three of these depend on the job and the logger settings. We can largely eliminate them by defining a job consisting only of CVs, and switching off real time data returns (/r).

As discussed above, there is a storage overhead associated with each data record; hence 20 records each with one channel will require more space than one record with 20 channels. The same goes for time – there is a fixed time overhead in preparing a data record, plus a variable time which depends on the number of channels.

The following table list some typical logging rates:

Schedule	Description	Logging rate
/r RA("B:") 1CV	log one CV to internal memory	55 records/s
/r RA("B:") 120CV	log 20 CVs to internal memory	40 records/s
/r RA("A:") 1CV	log one CV to 512M USB device	4 records/s
/r RA("A:") 120CV	log 20 CVs to 512M USB device	3 records/s

There may be some variation in performance depending on the brand and capacity of the USB device, but in general logging to USB will be around an order of magnitude slower than logging to the internal flash memory.

Logging Options

Various data logging parameters can be changed by means of **schedule options**. These options are inserted in a schedule definition just before the schedule trigger. See *Schedule Options* (P46) for details.

Schedule options can be used to specify:

- the logging destination. Using the "A:" schedule option it is possible to configure a schedule to data directly to a USB memory device. In this case the store file will be placed in the A:\SNserial-num\JOBS\jobname\sched folder.
- the space allocated for data. This can be specified in bytes, records, or (for time-based schedules) as a time period ("I want to store 30 days of data")
- the space allocated for alarms
- whether new data/alarm records are permitted to overwrite old records (OV) or whether logging should stop when the store file is full (NOV).

For example, the following schedule definition:

RA(DATA: 30D) 1M 1V 2V LOGONA

will allocate a store file with space for 43,200 data records (30x24x60). No space is allocated for alarms because no alarms are defined in this schedule.

Note When determining how much space to allocate for data storage, it is important to ensure that <u>adequate free space</u> <u>remains</u> on the 128MB internal flash memory. If you choose to retrieve logged data by either:

- · unloading it to an FTP server, or
- unloading in DBD format via the web interface (dEX)

then there must be sufficient space available on the internal drive to create a temporary file prior to sending to the server. The space required will depend on the amount of data being unloaded. If you unload the entire contents of a 10MB storefile to FTP in DBD format then you will need 10MB of free space for the temporary file. If you unload in CSV format then the space required will be of the order of 10MB, but may be less or more depending on the data values.

As a rule of thumb, if you plan to use one of the above unload methods then you should generally size your storefiles so that they occupy no more than 50% of the total space on the *DT80* internal drive.

Note It is normally better to always log data to the internal file system. Logging directly to a USB device is possible, but is subject to the following caveats:

- The logging performance is significantly slower than for the internal drive.
- There is the potential for data corruption if the USB device is removed during a write operation. Be sure to always halt logging and use the REMOVEMEDIA command (see *Using a USB Memory Device* (P113)) to shut down the device prior to removing it.
- The DT80's USB socket is designed for easy access, and will not necessarily retain a USB device securely over a long
 period, particularly if the DT80 is wall mounted or subject to vibration.

Factors Which May Prevent Logging

When a job is loaded onto the *DT80*, the logger will attempt to create all required store files. If this is not possible then the job will <u>not</u> be loaded.

Insufficient Space to Create Store File

When a job is entered, the *DT80* attempts to create a store file of the required size. If, however, there is insufficient free space on the selected logging drive (or it is not present at all) then an error will be reported and the job will <u>not</u> be loaded.

To determine how much space is available on the internal file system for creating new store files, see *Checking Logging Status* (P94).

Because the store files are fixed size, a lack of free disk space will normally not be a problem once the job has been started successfully.

If, however, the job is configured to log direct to a USB device, and the device is removed during operation, then a "Cannot log" error message will be displayed on the LCD and the **Attn** LED will start flashing. The schedule will still execute – channels will be measured and values returned – but no data will be logged.

If the USB device is replaced with a new one during operation then the *DT80* will attempt to create store files on the new device. If this fails (e.g. there is insufficient free space) then again the job will keep running, with the **Attn** LED flashing. Once you insert a USB device on which the store files can be created, then the **Attn** LED will stop flashing.

Store File Full

Normally, when a store file fills up it will automatically begin overwriting the oldest logged data. However, in some circumstances the older data may be more valuable than the newest. In these cases you would use the **NOV** (no overwrite) schedule option. If this option is set then logging for that schedule will stop when the store file becomes full, and the **Attn** LED will start flashing.

Logging will resume (and the Attn LED will stop flashing) if you delete the logged data from the storefile using the DELD command.

To determine how many records have been logged to a store file, see Checking Logging Status (P94).

Pre-existing Store Files

When a job is entered, the *DT80* checks whether there are any pre-existing store files associated with the job name. For example, if you enter a job called "FIDO" (using **BEGIN"FIDO"** ...) then the *DT80* will check to see if there are any existing store files under the **B:\JOBS\FIDO** directory.

If there are existing store files, the *DT80* then checks to see whether the existing store files were created by the <u>same</u> job as the one being entered (this information is encoded within the store file). Note that to be considered the same, the new job's program text must be <u>identical</u> to that used to create the store files.

If the new job matches then logging will commence and data will be added to the existing store files.

If, however, the job being entered is <u>not</u> the same as the job used to create the store files then the new job will <u>not be loaded</u> and an error message will be displayed, e.g.:

```
Cannot log: job 'FIDO' has existing data/alarms
```

To get around this you need to either:

- rename the new job, or
- remove the existing data in the store files, using DELD.

This check ensures that all data in a store file is consistent.

Checking Logging Status

A number of commands can be used while a job is running to monitor the data logging status. You can also determine all these details via the web interface.

Free Space for Creating New Store Files

To determine how much space is available on the internal file system for creating store files you can use the **DIR B:** command (or **DIR A:** for a USB device). This will list the various files stored in the root directory, and will then show the remaining free space, e.g.:

```
3 File(s) 42902196 Bytes free
```

Alternatively, system variable 1SV (P36) will return the current free space, in kbytes (1kbyte = 1024 bytes), on the internal file system (or 3SV for a USB device), e.g.:

```
1SV 41896.0
```

Number of Records Logged

To determine how many records have been logged to a store file, and the associated date/time range, you can use the LISTD command. See LISTD – List Available Data (P95).

The number of logged data and alarm records for each schedule of the current job are also available in system variables 30SV - 53SV (see *System Variables* (P36)), e.g.

```
32sv 28.0
```

Retrieving Logged Data

Overview

There are several different ways to retrieve logged data from the DT80.

- Use the **Retrieve Data** function in *dEX*. The graphical web-based interface allows you to select the desired time range, among other options. Data will be downloaded to your computer and saved as a CSV or DBD format file.
- Interactively send a data unload command (COPYD) to the logger's command interface, which will output logged data
 in CSV. fixed or free format to the active communications port.
- Insert a USB memory device and use COPYD to unload data to file(s) on the USB device in the desired format (CSV/DBD/fixed/free). To automate this process the command can be placed in an ONINSERT file on the USB device, so that the unload is performed as soon as the USB device is inserted.
- Include a COPYD command in your job to periodically unload data to a remote FTP server, or an email address, or to a file on the internal file system or USB device.
- Use COPYD (manually, or from the job possibly in response to some event) to unload data to a local **archive file**. An archive file is a DBD file which contains a read-only snapshot of the main store file, with any empty space removed. Archive files can then be unloaded at a later date (using COPYD) into a CSV format file.
- Use an FTP client to access the DT80's FTP server and collect any archive files or locally stored CSV files.

Unload Commands

The DT80 provides three related commands for unloading and managing logged data:

- LISTD gives details of the data available to unload, such as the number of logged records and the time range that
 they cover.
- COPYD is used to extract selected data from store files and save it in the selected format to the selected destination.
- DELD is used to remove data from a store file.

These three commands share a similar syntax: the command is followed by zero or more space-separated **options**. Each option has the form *name=value*. The *value* may optionally be enclosed in quotes, i.e. *name="option value"*. A typical command line might be:

```
COPYD start=new dest=a:
```

Option names and values are not case-sensitive, and the options may be specified in any order.

Option names (not values) may also be abbreviated, so long as the result is not ambiguous. Thus the following is equivalent to the previous command line:

```
copyd DEST=A: ST=NEW
```

All options have a default value, which will be used if the option is not specified.

LISTD – List Available Data

Using LISTD

In its simplest form, the LISTD command will list details for all store files associated with the current job. For example:

LISTD

Job	Sch	Type		Ov	Lg	Go	Recs	Capacity	
=======	===	=====		==	==	==		=======	
*SAMPLE	Α	Data	Live	Y	Y	N	46	34952	
*SAMPLE	Α	Data	Arc				38	38	
*SAMPLE	В	Data	Live	Y	Y	N	23	52428	_
*SAMPLE	В	Alarm	Live	Y	Y	N	3	1455	
*SAMPLE	В	Data	Arc				19	19	
*SAMPLE	В	Alarm	Arc				2	2	

First	Last	File
===========	=======================================	
2010-03-01 09:54:23	2010-03-11 19:32:00	B:\JOBS\SAMPLE\A\DATA_A.DBD
2010-03-01 09:54:23	2010-03-04 18:50:55	B:\JOBS\SAMPLE\002_20100311T193043.DBD
2010-03-01 09:54:24	2010-03-11 19:32:00	B:\JOBS\SAMPLE\B\DATA_B.DBD
2010-03-01 09:54:40	2010-03-11 19:32:00	B:\JOBS\SAMPLE\B\DATA_B.DBD
2010-03-01 09:54:24	2010-03-04 18:50:55	B:\JOBS\SAMPLE\002_20100311T193043.DBD
2010-03-01 09:54:40	2010-03-01 09:54:48	B:\JOBS\SAMPLE\002_20100311T193043.DBD

(The above listing has been split in order to fit with this manual's page width.)

Each row of the report describes a **store**. A store is a set of logged data or alarm records for a particular schedule. Each store is contained within a **store file** (.DBD file). There can be multiple stores in the one store file.

There are two different types of store file: live (Live) and archive (Arc).

❖ Live Store Files

Live store files are the files to which data and alarm records are written, as they are sampled. Each schedule (that has loggable channels) has a live store file called **DATA_s.DBD**, which contains one data store and/or one alarm store. In the above example, there are three live stores listed:

- schedule A's data store, which currently contains 46 logged data records out of a capacity of 34952
- schedule B's data store, which currently contains 23 logged data records
- schedule B's alarm store, which currently contains 3 logged alarm records

In this example schedule A does not have any alarms defined, so it does not have an alarm store in its live store file.

For each live store, the following information is listed:

- Ov (Overwrite) column: indicates whether old records will be overwritten by new ones. (This is controlled by the OV and NOV schedule options, see Schedule Options (P46).)
- Lg (Log) column: indicates whether logging is currently enabled for this schedule. (This is controlled by the **LOGON** and **LOGOFF** commands, see *LOGON* and *LOGOFF* commands (P91).)
- Go column: indicates whether the schedule is currently running. (This is controlled by the G and H commands, see Halting & Resuming Schedules (P55).)
- Recs column: current number of logged records
- Capacity column: maximum number of records that can be stored. (This is controlled by the **DATA** and **ALARMS** schedule options, see *Schedule Options* (P46).)
- First column: timestamp of the oldest logged record in the store
- Last column: timestamp of the newest logged record in the store
- File column: name of the store file that contains this store

❖ Archive Files

An archive file contains a "snapshot" of a live store file. Archive files have the same format (.DBD) as live store files, except that all empty space is removed for each store.

Archive files are created by using the COPYD command to unload data from a live store file in .DBD format and save it to a file. By default, archive files have an automatically generated file name which indicates the date and time at which they were created.

An "archive file" is therefore really just an unload output file, as is a CSV file. The difference is that because it is still in the logger's native .DBD format, the *DT80* knows exactly what is in it – which schedules, channels, time ranges and so on. Archive files will therefore appear in a **LISTD** report, whereas CSV format files will not. You can also selectively unload data from an archive file the same as you would from a live store file.

In the sample **LISTD** output shown above, one archive file has been created, named **002_20100311T193043.DBD**. The name indicates that it was created on 11-Mar-2010 at 19:30:43. The file name does not indicate anything about the time range covered by the records therein – this information is obtained from the **LISTD** report.

In this case the archive file contains three stores:

- a snapshot of schedule A's data store, which contains 38 data records
- a snapshot of schedule B's data store, which contains 19 data records
- a snapshot of schedule B's alarm store, which contains 2 alarm records

Notice that for an archive file, the number of records in each store is always equal to the capacity.

Also note that the Ov, Lg and Go columns are not applicable for archive files, as you cannot log new data to an archive file.

❖ Orphans

You may occasionally see the word [orphan] displayed at the end of a row in a **LISTD** report. This indicates that the job used to generate the data in the file is no longer present on the *DT80*. In other words, the store file has lost the "parent" job that created it – hence the name.

For example

```
B:\JOBS\WEST3\000_20100312T143919.DBD [orphan]
```

indicates that version of the WEST3 job that created the data saved in this archive file no longer exists – it may have been modified or deleted.

Orphaned <u>live</u> store files should normally never occur, because the *DT80* will refuse to load a job if logged data exists that was generated by a different job with the same name. Note however that any archive files that may be lying around are not checked, so if you change the contents of an existing job then its archive files will become orphans.

Orphan store files are ignored by COPYD, so if you wish to keep the data in them you will need to manually copy the files using the COPY command, or retrieve them using an FTP client.

LISTD Options

The **LISTD** command supports a number of options which can be used to filter the results, so the report will only list information for the data and alarm stores that you are interested in.

♣ Job

By default, **LISTD** will show details for the currently loaded job only. If there is no currently active job and you just type **LISTD** then an error message will be returned.

To show details for all jobs present on the logger, use the job=* option. So continuing the previous example:

LISTD job=*

Job	Sch	Type		Ov	Lg	Go	Recs	Capacity	
=======	===	=====		==	==	==			
*SAMPLE	Α	Data	Live	Y	Y	N	46	34952	
*SAMPLE	Α	Data	Arc				38	38	
*SAMPLE	В	Data	Live	Y	Y	N	23	52428	_
*SAMPLE	В	Alarm	Live	Y	Y	N	3	1455	
*SAMPLE	В	Data	Arc				19	19	
*SAMPLE	В	Alarm	Arc				2	2	
CONFIG	Α	Data	Live				204	52428	
CONFIG	В	Data	Live				204	34952	

First	Last	File
=======================================	=============	
2010-03-01 09:54:23	2010-03-11 19:32:00	B:\JOBS\SAMPLE\A\DATA_A.DBD
2010-03-01 09:54:23	2010-03-04 18:50:55	B:\JOBS\SAMPLE\002_20100311T193043.DBD
2010-03-01 09:54:24	2010-03-11 19:32:00	B:\JOBS\SAMPLE\B\DATA_B.DBD
2010-03-01 09:54:40	2010-03-11 19:32:00	B:\JOBS\SAMPLE\B\DATA_B.DBD
2010-03-01 09:54:24	2010-03-04 18:50:55	B:\JOBS\SAMPLE\002_20100311T193043.DBD
2010-03-01 09:54:40	2010-03-01 09:54:48	B:\JOBS\SAMPLE\002_20100311T193043.DBD
2010-02-19 14:35:25	2010-02-21 00:10:25	B:\JOBS\CONFIG\A\DATA_A.DBD
2010-02-19 14:35:25	2010-02-21 00:10:25	B:\JOBS\CONFIG\B\DATA B.DBD

The list is now longer because it contains details for another job that happens to be present on the logger, called CONFIG.

Notice also that the job SAMPLE is prefixed by an asterisk (*) to indicate that it is the currently active job.

The Ov, Lg and Go columns are not shown for the CONFIG job, as they only have meaning for the currently active job.

You can also specify an explicit job name for this option, e.g.

LISTD job=config

❖ Schedule

By default, **LISTD** returns details for all schedules. If you are only interested in a particular set of schedules then the **sched=** option can be used. For example:

LISTD job=config sched=B

The value for the sched option is actually a list of schedules to include, e.g.

```
LISTD sched=ABK
```

would include details for schedules A, B and K only.

❖ Data and Alarms

By default, **LISTD** returns details for both data and alarm stores. You can restrict it to one or other of these store types using the **data=** and **alarms=** options. These are both yes/no options so you can select just data, just alarms, or both (selecting neither, i.e. **data=N** alarms=N, is generally not useful!)

For example, if you are only interested in alarms:

LISTD data=n

Job	Sch	Туре	Ov	Lg	Go	Recs	Capacity
=======	===		==	==	==	=======	
*SAMPLE	В	Alarm Live	Y	Y	N	3	1455
*SAMPLE	В	Alarm Arc				2	2

First	Last	File
=======================================	=======================================	
2010-03-01 09:54:40	2010-03-11 19:32:00	B:\JOBS\SAMPLE\B\DATA_B.DBD
2010-03-01 09:54:40	2010-03-01 09:54:48	B:\JOBS\SAMPLE\002_20100311T193043.DBD

Live and Archive Files

By default, **LISTD** returns details for both live and archive files. You can select which you want to include using the **live=** and **archive=** options. These are both yes/no options and they work in much the same way as the **data=** and **alarm=** options.

❖ Source Drive

Store files may exist on any of the three file system drives – **A:** (USB device), **B:** (internal file system) and **D:** (RAM disk). By default, **LISTD** searches all three drives. Using the **src=** option you can restrict the search to one or more of these drives.

For example, if you are only interested in seeing what store files are on a USB device you can use LISTD src=a

Drive letters can be combined, so the default setting is src=abd.

❖ Source Path

By default, LISTD will search for store files in appropriate folders under B:\JOBS, and/or D:\JOBS and/or B:\Snserial\JOBS. The exact search path depends on the src, job and sched option settings.

Alternatively, you can force a particular root folder to search using the **path** option. If this option is set to a valid folder path (which must end in a \ character) then only store files in the specified folder (or any subfolders) will be returned. For example:

LISTD path=b:\myarchives\

You can also specify a single .DBD file name. **LISTD** will then list the details for just that store file. For example: **LISTD** path= B:\JOBS\SAMPLE\002_20100311T193043.DBD

LISTD Option Summary

The following table summarises the available **LISTD** options:

Option	Value	Description	Default Value
job=	jobname	include specified job only	_ (none)
	*	include all jobs	<u></u>
	(none)	include current job only	
sched=	schedule-list	include specified schedules only	XABCDEFGHIJK
data=	Y/N	include data stores (yes/no)	Y
alarms=	Y/N	include alarm stores (yes/no)	Y
live=	Y/N	include live stores (yes/no)	Y
archive=	Y/N	include archive stores (yes/no)	Y
src=	drive-list	search for store files on specified drives only	ABD
path=	folder-path\	search for store files in specified folder or sub-folders only	(none)
	file-path	list details for specified store file only	
	(none)	search path based on src, job and sched options	

COPYD - Unload Data

The COPYD command is used to **unload** data and alarms from one or more store files. That is, data is read from the source .DBD file(s), transformed into the desired output format (CSV, DBD etc.), then written to the desired destination (comms port, file, FTP server).

The **COPYD** command supports many options, which are used to:

- select the data or alarm stores from which you wish to unload,
- select the range of data records to unload,
- select the format you want it in,
- · select where you want it to go, and
- select what to do with the source data after it has been unloaded.

Selecting the Stores to Unload

The first group of **COPYD** options are used to select the set of data/alarm stores from which to unload. These options are identical to those used for **LISTD**, apart from some different defaults, and are listed in **COPYD** Option Summary (P106).

Note that by default COPYD does not unload from archive files - specify archive=Y to include them.

Selecting the Range of Data to Unload

The second group of COPYD options allow you to further refine the selection of what data to unload, by specifying a time range of interest.

Start and End Times

By default, all available data in the selected data/alarm stores will be unloaded. To select a smaller range, use the **start=** and **end=** options.

- If the start= option is specified then only records with timestamp later than or equal to the indicated time will be unloaded.
- If the end= option is specified then only records with timestamp less than the indicated time will be unloaded.

The actual start and end times can be specified in a number of different ways. These formats are all based on the ISO8601 time format, which is

```
yyyy-mm-ddThh: mm: ss. ttt
```

Time components may be omitted, starting from the subseconds field. If a time component is not specified then 0 is assumed.

Date components may also be left off, starting with the days field. Missing date components are assumed to be 1. If all date components are omitted then a date of 'today" is assumed.

If just the date part is specified, the trailing T is still required, to eliminate any possible ambiguities.

Some examples of possible **start=** and **end=** option values:

Value	Description
2010-02-15T12:05:02.25	12:05:02.25, 15-Feb-2010
2010-02-15T	midnight, 15-Feb-2010
2010-02T	midnight, 01-Feb-2010
13:20	13:20 today
0	midnight today

For example, to unload all data logged between 9:00am and 5:30pm today:

```
COPYD start=9 end=17:30
```

Relative times can also be specified by prefixing either the date or time part with a minus sign.

If the date part is relative, i.e.

```
-ddThh: mm:ss.tt
```

then this means "the specified time (hh: mm: ss.tt), dd days ago".

If the time part is relative, i.e.

```
-hh: mm: ss. tt
```

then this means "the current time, minus the specified offset (hh: mm: ss. tt), rounded down to the smallest specified time component"

Some examples may clarify this. These assume that the current time is 17:05:22.888, 20-Feb-2010

Value	Description
-1T17:30	5:30pm yesterday (17:30:00.000, 19-Feb-2010)
-7T	midnight 7 days ago (00:00:00.000, 13-Feb-2010)
-0:10	10 minutes ago, rounded down to the minute (16:55:00.000, 20-Feb-2010)

-2	2 hours ago, rounded down to the hour (15:00:00.000, 20-Feb-2010)
-48	48 hours ago, rounded down to the hour (17:00:00.000, 18-Feb-2010)
-48:00:00.000	exactly 48 hours ago (17:05:22.888, 18-Feb-2010)

Calculated times can be specified by replacing either or both of the date and time parts with channel variable references,

```
mCVT hh: mm: ss.tt or
yyyy-mm-ddTnCV or
mCVTnCV
```

If a channel variable is used for the <u>date</u> part then the CV value should be in seconds since 1-Jan-1989. The current date, in seconds since 1-Jan-1989, can be obtained using D(=mCV).

If a channel variable is used for the <u>time</u> part then the CV value should be in seconds since midnight. The current time, in seconds since midnight, can be obtained using T = mCV.

For example:

Value	Description
1CVT2:30	2:30am on the date specified by 1CV
T22CV	the time specified by 22CV, today
7CVT8CV	the time specified by 7CV, on the date specified by 8CV

Unloading New Data Only

The **start**= option may also be set to the special value of **new**. This will unload all data logged <u>since the last unload</u>. For example.

```
RA1H DO{COPYD start=new}
```

will, every hour, unload all data logged since the last unload.

Unload requests can come from users of the web interface, or users of the command interface, or from schedules in the running job. If these requests specify **start=new** then the question then arises: what was the "last unload"?

The *DT80* is capable of tracking up to 40 "last unload" points – that is, the time at which a particular user last unloaded a particular store.

In order to identify the "user", the **id**= option is used. This is an arbitrary number which is used to track when <u>you</u> last unloaded data from a store.

If this option is not specified then the default setting of id=0 will be used.

Thus start=new really means "unload all data logged since the last time this store was unloaded with this id value"

For example, suppose Fred has a USB memory device with the following command in its ONINSERT job (see *ONINSERT Job* (P60))

```
COPYD start=new id=27 dest=a:
```

Every time Fred plugs his memory stick into the *DT80*, it will unload all data logged since he last plugged in his device.

Ginger's memory stick contains a similar ONINSERT job:

```
COPYD start=new id=111 dest=a:
```

Because Ginger has used a different id value, when she plugs in her USB device she will get the data logged since she plugged in her device.

(This may or may not be the desired behaviour. For example, suppose Fred and Ginger are employed to collect data from the *DT80* on alternate weeks, with both of them bringing the data back to the same central office. In this scenario you would normally use the <u>same</u> <u>id</u> value on each device.)

The value used for the id= option can be any integer; the only requirement is that it be different for each of the unload "users" between which you want to distinguish.

By default, the **COPYD** command uses a setting of **id=0**. When an unload is done using *dEX* (the web interface), it uses a value of **id=1**. Thus if you choose to specify an **id** value, choose a value other than 0 or 1.

Note that the *DT80*'s set of stored "last unload" times will be retained following a hard reset. However, they will be cleared if a different job is loaded.

❖ Lost Unload Data

Suppose that after unloading all new data onto his memory stick, Fred then loses it on the way back to the office. When he goes back to the *DT80* with a new memory stick, he needs a way of repeating the last unload he did, so that he gets a new copy of the data he lost, plus anything that has been logged since.

The **start=new2** option can help here. This will unload all data logged since the <u>second last</u> unload command, excluding any **start=new2** unloads.

So to recover the lost data, Fred would use the following command:

```
COPYD start=new2 id=27 dest=a:
```

which is the same as his normal command, except with new2 rather than new

If (perish the thought) this unload data was also lost, Fred can simply repeat the same command. This will work because the unload will start from, as stated above, the second last non-start=new2 unload, which is the same starting point as the original lost unload. Once he successfully gets the data to the office he can go back to using his regular start=new command.

Step Size

If you have a very large data set on the logger then it may take considerable time to unload. The **step=** option allows you to download a smaller sample of data points so that you can get a guick overview of the data.

To use this feature, specify **step**=interval, where interval is the required minimum time interval between successive samples.

For example, the following schedule executes every 100ms so it will log 864,000 samples per day (approx. 20MB)

RA(DATA:1D)100T 1V

To get a quick picture of the day's data you could download samples at, say, 10s intervals rather than 100ms, which would result in a more manageable 8640 data points. The command for this would be:

```
COPYD step=10
```

Fractional times can also be specified, e.g. step=2.5, which would set the minimum interval between unloaded samples to 2.5 seconds.

Note also that the *DT80* is returning the original samples, just fewer of them. It is not performing any averaging or minimum/maximum detection, so by using the **step**= option you may miss peaks in the data.

Selecting the Data Format

The third group of COPYD options is concerned with the format of the unloaded data.

❖ Data Format

Data and alarms can be unloaded in one of four different formats:

- CSV format (Comma Separated Value). This is the default. CSV files can be imported into any spreadsheet or data analysis package.
- DBD format. Unloading in this binary format creates an **archive file**, from which you can then unload at a later date. DBD files can also be opened by certain PC data analysis packages.
- fixed format. This text-based format is similar to CSV, and can be read by applications such as DeLoad.
- free format. This text-based format can be customised using the DT80's switch and parameter settings.

These formats are described in more detail in Format of Returned Data (P26).

To set the COPYD output format, use the format = option, which may be set to csv, dbd, fixed or free.

Note Unloading in any of the text based formats (CSV, fixed or free) is significantly slower than unloading in DBD format. If you have very large store files then you may prefer to unload to DBD, transfer the DBD file(s) to the PC, and then use a utility such as *dump_dbd* (or other DBD-aware application) to convert to CSV, rather than doing the conversion on the *DT80*.

Merged Files

By default, **COPYD** will merge data from the selected store files into a single output file. This is not a true "merge", in that duplicate records are not eliminated, and records in the resulting file will not necessarily be in time order. However, these issues are relatively easy to deal with using a host tool such as a spreadsheet package.

For example, suppose there are two jobs on the logger, HEDGEHOG and ECHIDNA. The former has one schedule (A), with logged data and alarms. ECHIDNA has a two schedules, J and K, with logged data only. Some time ago an archive file was generated for ECHIDNA.

The source store files on the logger are therefore:

```
B:\JOBS\HEDGEHOG\A\DATA_A.DBD (data and alarms for HEDGEHOG schedule A)
```

B:\JOBS\ECHIDNA\J\DATA_J.DBD (data for ECHIDNA schedule J)

B:\JOBS\ECHIDNA\K\DATA_K.DBD (data for ECHIDNA schedule K)

B:\JOBS\ECHIDNA\000 20091225T123409.DBD (archive file containing ECHIDNA J & K data snapshot)

We now wish to retrieve all available data to a USB memory device:

```
COPYD job=* archive=Y dest=a:
```

This will then create a single output file:

```
A:\SN081234\JOBS\001_20100313T181008.CSV
```

This file will contain, in order, the following elements:

- a CSV header row for all of ECHIDNA's channels: J data, K data
- schedule J data values from live store file
- · schedule J data values from archive file
- schedule K data values from live store file
- · schedule K data values from archive file
- a CSV header row for all of HEDGEHOG's channels: A data, A alarms

- schedule A data values
- schedule A alarm values

It is also possible to unload to separate files, by adding an option:

```
COPYD job=* archive=Y dest=a: merge=N
```

This will then create output files similar to the following:

 $\textbf{A:} \\ \texttt{SN081234} \\ \texttt{JOBS} \\ \texttt{ECHIDNA} \\ \texttt{001} \\ \texttt{20100313T181008} \\ \texttt{J.CSV} \\ \texttt{(J data from live store file)} \\$

A:\SN081234\JOBS\ECHIDNA\002_20100313T181008_K.CSV (K data from live store file)

 $\textbf{A:} \\ \textbf{SN081234} \\ \textbf{JOBS} \\ \textbf{ECHIDNA} \\ \textbf{000_20091225T123409_J.CSV} (\textbf{J data from archive file}) \\ \textbf{A:} \\ \textbf{SN081234} \\ \textbf{JOBS} \\ \textbf{ECHIDNA} \\ \textbf{000_20091225T123409_J.CSV} (\textbf{J data from archive file}) \\ \textbf{A:} \\ \textbf{A:}$

A:\SN081234\JOBS\ECHIDNA\000_20091225T123409_K.CSV (K data from archive file)
A:\SN081234\JOBS\HEDGEHOG\003 20100313T181008 A.CSV (A data and alarms)

Notice that the archive file (which was originally created by merging data from J and K schedules) has now been "unmerged" into its constituent schedules. Also notice that for data sourced from archive files, the original archive file name is preserved (apart from the file extension, which was changed to .CSV to suit the new file format, and the schedule suffix).

Merging works in a similar way for other output formats (DBD, fixed and free) – the various parts are combined in the same order as for CSV.

Selecting the Unload Destination

The dest= option is used to specify where the unloaded data should go. The five broad choices are:

- display the data, i.e. return it to the active comms port on which the COPYD command was sent. This is the default for text-based unload formats. It is not applicable for DBD format unloads, as DBD is a binary format.
- write it to file(s) on the internal file system. This is the default for DBD format unloads.
- · write it to file(s) on a USB memory device
- upload the data to an FTP server
- send the data as an attachment to an email address (DT8xM models only).

To display the data interactively, no option is required as this is the default. For example, just typing COPYD

will unload all data for the current job to the active comms port, in CSV format.

During an unload to the active comms port, the *DT80* disables real time data and alarm return, command echo and error messages, to prevent these messages being mixed in with the unload stream. These functions will be re-enabled once the unload completes.

❖ Local Files

To output to a file or files in the default location on the internal file system, use **dest=B:**. The actual folder(s) used depend on the **job=** and **merge=** settings:

job	merge	Destination folder
job=*	merge=y	B:\JOBS
job=jobname (or omitted)	merge=y	B:\JOBS\jobname
job=*	merge=n	B:\JOBS\job1, B:\JOBS\job2,
job=jobname (or omitted)	merge=n	B:\JOBS\jobname

By default, each file created will have an auto-generated filename which identifies the time that the unload took place, e.g. **001_20100910T120900.csv**. (The **001_** is a sequence number.) For **merge=n** unloads, the schedule name will be appended of each output file, e.g. **001_20100910T120900_A.csv**.

The same goes for unloading to a file on the USB memory device, except that this time you would use **dest=A:**. Files will then be written to **A:** \Snserial-num\JOBS or a subfolder of this, depending on the options.

You can also specify an alternative destination folder, e.g.

```
COPYD dest=B:\mydir\x1\
```

(Note that the trailing backslash is required), in which case files will be written to **B:\mydir\x1** or a subfolder of this, depending on the options.

Finally, you can also specify an explicit destination file name, e.g.

```
COPYD dest=a:\mydir\data2009.dbd
```

For merge=N unloads the schedule name will be appended, e.g. data2009_B.dbd.

FTP Server

The DT80 is also able to unload data to files on a remote server, using FTP (File Transfer Protocol).

An FTP transfer is initiated by specifying an **FTP Uniform Resource Identifier** (URI) as the value of the **dest=** option. This URI has the form:

ftp://username:password@host-ip:port/pathname?priority=priority&interface=interface

where:

- username is the user name to use when logging in to the FTP server
- password is the password to use when logging in to the FTP server
- host-ip is the IP address of the computer running the FTP server. This may be specified in numeric form (e.g. 192.168.1.23), or as a domain name (e.g. ftp.datataker.com).
- port is the TCP port number to use optional, default is port 21.
- pathname is the path (and, optionally, filename) into which to write the unloaded data.
- priority is optional and is either normal (default) or low. A normal priority unload will immediately trigger a
 communications session if one is not already active, while a low priority unload will be queued until a session next
 becomes active. This option is only applicable if the internal modem is being used. For Ethernet, the priority is always
 normal.
- *interface* is applicable to DT8xM models only, and specifies the network interface to use: modem (default), or ethernet. For models without internal modem, Ethernet is always used and this option is ignored.

For an FTP transfer, the destination folder(s) are created in the same way as for a local unload. For example: COPYD job=CAT9 dest=ftp://harryp:snitch@ftp.hsww.edu/transfig/

In this example, the *DT80* will log in to the FTP server **ftp.hsww.edu** using the username **harryp** and the password **snitch**, create the folder **/transfig/CAT9**, then unload all data for the CAT9 job to a file such as **002_20100314T090500.CSV** in that folder.

If an explicit filename is specified then data will be written to that file, e.g.

COPYD dest="ftp://harryp:snitch@ftp.hsww.edu/transfig/my data.csv"

Note When retrieving logged data by unloading it to an FTP server there must be sufficient space available on the *DT80* internal flash drive to create a temporary file prior to sending to the server. The space required will depend on the amount of data being unloaded. If you unload the entire contents of a 10MB storefile to FTP in DBD format then you will need 10MB free for the temporary file. If you unload in CSV format then the space required will be of the order of 10MB, but may be less or more depending on the data values.

The unload data file will be queued for transfer using a communications session. The configured unload priority (normal or low) determines whether or not a communications session will be immediately started in response to the unload.

See Communications Sessions (P227) for more details about how FTP transmission is managed.

Note No more than 12 FTP transfers can be queued; any subsequent attempts will be discarded (a message will be written to the event log, and the start=new pointer will not be updated, so the next unload will contain additional data).

Note also that:

- The DT80 always uses passive mode FTP transfers. Passive transfers are less likely to cause problems with network firewalls.
- If there are special characters, e.g. @ in the username or filename parts of the URI then they must be **escaped**, i.e. replaced by a special numeric sequence (% followed by the character's ASCII code, in hexadecimal). @ characters should threfore be replaced with %40, e.g if your FTP username is **lucy@cows.org** then this would be specified as: dest=ftp://lucy%40cows.org:m00@ftp.cows.org/bovine23/

If there are spaces in the URI then then entire URI should be enclosed in quotes, as in the above example. Alternatively, space characters can be escaped by replacing them with %20.

See URI Escape Characters (P104) for more details.

Email

Unloads can also be sent via email. In this case the data file is included as an attachment to the email.

Specifying an email destination is similar to FTP, except that a mailto: URI is used. This has the form:

mailto:recipient-email?priority=priority&subject=subject&body=body&interface=interface

where:

- recipient-email is a comma-separated list of up to 5 email addresses in the usual format (e.g. jake@peg.edu.au).
 Note that there is no extra overhead in sending an email to multiple addresses the data is only sent once and the delivery to the required recipients is handled by the Internet email system.
- priority is high, normal (default) or low. A high priority message will be sent as soon as possible, with the "high importance" flag set (typically displayed as an exclamation mark in email clients). A normal priority message is also sent as soon as possible, but without the "high importance" flag. A low priority messages will be queued and sent when a communications session next starts. (If a communications session is already active then it will be sent

immediately.) If the Ethernet interface is used then all messages are either high or normal priority – if low priority is specified then normal priority is assumed

- subject is a string to use as the subject of the email. If not specified then "dataTaker SN serial alarm" is used as the subject (where serial is the DT80 serial number).
- body is a string to use as the body of the email. If not specified then the alarm action text is used.
- *interface* is applicable to DT8xM models only, and specifies the network interface to use: **modem** (default), or **ethernet**. For models without internal modem, Ethernet is always used and this option is ignored.

Notice that the format of this URI is identical to that used for email alarms (see Alarm Email Messages (P84))

See Communications Sessions (P227) for more details about how email transmission is managed.

Note No more than 12 separate emails can be queued; any subsequent attempts will be discarded (a message will be written to the event log, and the **start=new** pointer will not be updated, so the next unload will contain additional data).

For example, the following has merge=n set, so it will send two emails (one for schedule A's data, one for schedule B). Each email will be directed to two recipients.

COPYD merge=n sched=AB dest=mailto:harpo@marx.org,groucho@marx.org

If merge=y had been used then each recipient would get a single email with a single merged file attached, containing data from both schedules.

Unload Destination Replaceable Parameters

The **dest=** option can include embedded **replaceable parameters**. These are special text sequences which will be replaced with dynamic values when the unload command is processed. The following replaceable parameters may be used:

Parameter	Substitutes the following	Example
?(timestamp)	time (yyyymmdd Thhmmss) at which unload started	20110414T120344
?(seq)	3-digit sequence number	007
?(serial)	6-digit DT80 serial number	089999
?(nCV)	value of channel variable ncv (integer part only)	23
?(n\$)	value of string variable n\$	ABCD

For example,

COPYD dest=ftp://bee@ftp.honey.net/data/?(serial)/?(timestamp).csv will write files such as /data/081122/20110104T030001.csv on the FTP server.

In the following example a very similar job is deployed to a number of different sites – the only difference being that the first line of each job sets string variable 1\$ to a unique site code (e.g. "BKLO" or "CTVA"). Then the following command is placed in **ONINSERT.DXC** on a USB memory device:

COPYD dest=a:\?(1\$)\

When this is plugged into the logger it will generate files such as \BKLO\002 20110202T112233.csv on the USB device.

❖ URI Escape Characters

If any of the following characters are used <u>within</u> an FTP or email URI component (FTP user name, FTP password, FTP folder or file name, email recipient, email subject or email body), after applying any replaceable parameter substitutions, then they must be replaced with "escape sequences", as follows. This prevents them being confused with the characters used to separate the various parts of a URI.

Character	Replace with
&	%26
/	%2F
:	%3A
;	%3B
=	%3D
?	%3F
@	%40

❖ Limits

Be aware of the following command length limits when crafting complex unload commands. These limits apply to the resultant string after substituting any replaceable parameters:

Element	Max number of characters
Complete command line	1023
FTP credentials and host name, or email recipient(s)	255
FTP path and filename	255
Option list: priority, session, subject, body	511
Email subject	255
Email message body	255

Other Options

The final COPYD option is delete=. If this is set to Y then following a successful unload, the records just unloaded will be deleted from the source DBD file.

In most cases there is no benefit in doing this, and it would also mean that for example the **start=new2** feature would no longer work because the data will no longer be present on the logger.

This option may however be useful if you have a **NOV** (no overwrite) store file, or if you want to create archive files (possibly in response to events) where there is no overlap between successive archive files.

Option Conflicts

Certain combinations of COPYD options are invalid, and will result in a "parameter/option conflict" error message. In particular:

- If format=dbd then the step= option is not supported. All records in the specified time range will be unloaded.
- If **format=dbd** then **dest=stream** is not valid: DBD format data can only be output to a file (either local or on an FTP server). If DBD format output is specified then the default value of **dest** is **B**: rather than **stream**.
- If merge=n then dest=stream is invalid.
- If start=new or end=new (or new2) then the job= option is invalid: tracking of the last unloaded record is only supported for the current job.
- If delete=y then the start= option is invalid: data are always deleted from the start of the storefile

COPYD Option Summary

The following table summarises the available **COPYD** options:

Option	option Value Description Default Value			
	Store selection options			
job=	jobname	Unload specified job only	(none)	
	*	Unload all jobs		
	(none)	Unload current job only		
sched=	schedule-list	Unload specified schedules only	XABCDEFGHIJK	
data=	Y/N	Unload data (yes/no)	Y	
alarms=	Y/N	Unload alarms (yes/no)	Y	
live=	Y/N	Unload from live stores (yes/no)	Y	
archive=	Y/N	Unload from archive stores (yes/no)	N	
src=	drive-list	Search for store files on specified drives only	ABD	
path=	folder-path\	Search for store files in specified folder or sub-folders only	(none)	
_	file-path	Unload from specified store file only	.` ′	
	(none)	Search path based on src, job and sched options	-	
Data Range o	· · · · · · · · · · · · · · · · · · ·			
start=	yyyy-mm-dd T hh: m	Unload records later than or equal to specified timestamp.	start with oldest	
	m:ss.tt	Date/time components may be omitted, starting with least significant.	logged record	
	-ddThh: mm:ss.tt	timestamp is specified time, dd days ago	•	
	-hh: mm: ss.tt	timestamp is current time, minus the specified offset, rounded down to the smallest specified time component	.	
	mCVThh: mm:ss.tt	date part of timestamp is <i>m</i> CV value (seconds since 1-Jan-1989)	•	
	yyyy-mm-dd T n CV	time part of timestamp is <i>n</i> CV value (seconds since midnight)	•	
	mCVTnCV	date and time parts of timestamp given by mCV and nCV	•	
	new	Unload new records logged since the last unload of this store with the same id value	•	
	new2	Unload new records logged since the second-last unload (excluding start=new2 unloads) of this store with the	•	
-		same id value	1 20 1 4 4	
end=	as for start= , except new , new2	Unload records earlier than specified timestamp	end with latest logged record	
id=	integer	Arbitrary user identifier for tracking last unload time	0	
step=	number	Minimum time interval between successive unloaded records (0 = unload all records)	0	
Output Forma				
format=	csv, dbd, fixed, free	Unload data in the specified format	CSV	
merge=	Y/N	Generate a single merged output file (yes/no)	Y	
Unload Desti	nation options			
dest=	stream	Unload to active comms port (CSV/fixed/free format only) (requires merge=Y)	stream (CSV/fixed/free), or	
	B:	Unload to B: \JOBS and/or subfolders	B: (DBD)	
	A:	Unload to A: \Snserial-num\JOBS and/or subfolders		
	path\	Unload to path and/or subfolders		
	path\filename	Unload to file filename		
	ftp://user:pwd@	Unload to <i>path</i> on FTP server (autogenerated filename)		
	ip/path/	Can include priority= and interface= URI options		
	ftp://user:pwd@	Unload to file filename on FTP server	-	
	ip/path/filename	Can include priority= and interface= URI options		
	mailto:email-addr		•	
		Can include priority=, subject=, body= and		
		interface= URI options		
Other option	s			
delete=	Y/N	Delete records from source files after successful unload	N	

Aborting an Unload

The Q (quit unload) command can be used to abort all current and pending COPYD unloads. It has no effect on unloads initiated via the Retrieve Data function in dEX.

Note that this command will <u>not</u> prevent queued unload data files from being sent via FTP or email during a communications session. The only way to prevent transmission of already queued files is to clear the queues using the **SESSION CLEAR** command.

Detecting Unload Status

The system variable 29SV can be used to determine the success or otherwise of the last COPYD command.

29SV	Meaning
0	No unloads have been attempted
1	Unload in progress
2	Last unload was successful
-16 -17	File transfer error: could not open destination file (directory or read-only file exists with same name)
-17	File transfer error: could not write to file (disk may be full)
-20	Source store file error: problem accessing file
-21 -22	Source store file error: store file is corrupted
-22	Source store file error: some other problem
-30	Unload output file could not be queued for transmission because communications session queue is full
-99	Unload was aborted by user (Q command)

Any negative value indicates that the unload was unsuccessful. If **start=new** was specified then the data pointer will <u>not</u> have been updated so the next unload will contain the data associated with the unsuccessful unload.

Note For unloads to a remote destination (email/FTP), the unload is considered "successful" once it has been queued for transmission. In this case 29SV will be set to 2 but this does <u>not</u> necessarily mean that the data has successfully reached the destination server. The *DT80* will repeatedly attempt to send a queued unload following a server or network outage. For more details, see *Communications Sessions* (P227).

Further COPYD Examples

Precise hourly data ranges

The following fragment will unload hourly data to an FTP server with the boundaries of each unload occurring precisely on the hour. This is achieved by using the end=-0 option. This time value has a leading minus sign, so it is interpreted as a relative time. An offset of 0 means "now", but recall that one of the properties of a COPYD relative time spec is that the time is rounded down to the start of the smallest specified time interval. In this case only the hours part of the time has been specified, so the resulting time will be rounded down to the start of the hour.

```
RA1H DO{COPYD start=new end=-0 dest="ftp://blah.fr/leData.csv"}
```

Capturing Pre-Trigger Data Using Archive Files

Archive files can be used for applications such as capturing pre-trigger data leading up to some event. For example:

```
BEGIN"SPARROW"
1..2CV(W)=0
RA(DATA:200R:OV)1S 2V
ALARM(1DS(LM)==0){2CV=1}
1CV(W)=1CV+2CV
IF(1CV>100){1..2CV(W)=0; COPYD format=dbd}
LOGONA
END
```

In this example, a small store file is declared for schedule A (capacity 200 records). The channel of interest (2V) is measured and logged once per second, with old values being overwritten. When digital input 1D (1DS) goes low we counting samples, accumulating the count in 1CV. After a further 100 samples have been taken schedule A will then execute the COPYD command, which will create an archive file on the local file system. The end result is that each archive file that is created will contain 100 samples taken just prior to the trigger event, and 100 samples taken immediately after.

Note If data are being logged at a relatively fast rate, the earliest samples may be overwritten before they can be copied into the archive file, which may result in fewer than expected pre-trigger records being present in the archive file. In the above example there might be 198 samples in the archive (98 pre-trigger, 100 post-trigger)

If you need to have exactly the right number of samples then you should halt sampling for the duration of the archive operation, i.e.:

```
IF(1CV>100){1..2CV(W)=0; HA; COPYD format=dbd; GA}
```

❖ Multiple Network Interfaces

In this example, a DT8xM is configured to perform regular daily data unloads to an FTP server on the local Ethernet LAN, which does not have an Internet connection. In the event of an alarm condition, however, the modem interface (which is the default) is used to send an email alert.

```
BEGIN"LYREBIRD"
RA2S
IF(1TK(LM,"Ambient")<>5,35)[mailto:alert@womble.org]
RB1D
DO{COPYD dest=ftp://cat:dog@10.33.112.99/lyrebird/?interface=eth start=new}
END
```

Notice also that option values (but not option names) can be shortened if desired, e.g. **interface=eth** is equivalent to **interface=ethernet**.

DELD - Delete Logged Data

The **DELD** command is used to **delete** data and alarms from one or more store files.

The **DELD** command options are used to:

- · select the data or alarm stores from which you wish to delete records
- select the range of data records to delete

The options used to select the set of data/alarm stores from which to delete are identical to those used for **LISTD**, apart from some different defaults, and are listed in *DELD Option Summary* (P109).

Note that by default **DELD** does not delete archive files – specify **archive=Y** to include them.

You can specify a range of data to delete using the **end=** option, which works in the same way as the equivalent **COPYD** option. That is, you can delete all data older than the specified time.

Note that **DELD** does not support the **start**= option.

For example, to delete all logged data for the current job which is older than 30 days, including data in archive files, use:

DELD archive=Y end=-30T

Some points to note:

- Once the required records have been deleted from an archive file, if the archive file is then empty then the file will be
 deleted.
- Live store files are not deleted, even if all records have been deleted.
- If any orphan store files are found (live or archive) then they will be deleted.

DELD Option Summary

The following table summarises the available **DELD** options:

Option	Value	Description	Default Value
Store selection options			
job=	jobname	Delete records for specified job only	(none)
	*	Delete records for all jobs	_
	(none)	Delete records for current job only	
sched=	schedule-list	Delete records for specified schedules only	XABCDEFGHIJK
data=	Y/N	Delete data (yes/no)	Y
alarms=	Y / N	Delete alarms (yes/no)	Y
live=	Y/N	Delete from live stores (yes/no)	Y
archive=	Y/N	Delete from archive stores (yes/no)	N
src=	drive-list	Search for store files on specified drives only	ABD
path=	folder-path\	Search for store files in specified folder or sub-folders only	(none)
	file-path	Unload from specified store file only	•
	(none)	Search path based on src, job and sched options	
Data Range options			
end=	yyyy-mm-dd T hh:m m:ss.tt	Delete records earlier than specified timestamp. Date/time components may be omitted, starting with least significant.	delete all records
	-ddThh: mm:ss.tt	timestamp is specified time, dd days ago	•
	-hh: mm: ss. tt	timestamp is current time, minus the specified offset, rounded down to the smallest specified time component	•
	mCVThh: mm: ss.tt	date part of timestamp is mCV value (seconds since 1-Jan-1989)	
	yyyy-mm-dd T n CV	time part of timestamp is nCV value (seconds since midnight)	
	mCVTnCV	date and time parts of timestamp given by mCV and nCV	
	new	Delete records logged prior to the last unload of this store with the same id value	
	new2	Delete records logged prior to the second-last unload (excluding start=new2 unloads) of this store with the same id value	
id=	integer	Arbitrary user identifier for tracking last unload time	0

Deleting Store Files

❖ Deleting Jobs

A job's store files are physically deleted when the job is deleted using **DELJOB** (see *Deleting Jobs* (P59)). However, note that as a safeguard against accidental deletion, you first need to "empty" the store files using **DELD**.

Therefore, to delete all trace of job WEST3, you could send the following sequence:

```
DELD j=west3
Deleting: WEST3 A Data
Deleting: WEST3 B Alarms
DELJOB "west3"
Deleting: WEST3
Done
```

Deleting All Jobs

The **DELALLJOBS** command is a quick way of deleting <u>all</u> jobs and their store files.

This command will:

- · halt and delete the current job, including any logged data and alarms
- delete all other stored jobs and logged data, i.e. all files under the B: \JOBS directory.

Note that the program files for any locked jobs will not be deleted. Use the UNLOCKJOB command first.

Background Commands

DT80 commands are normally executed sequentially – if you type two commands in quick succession then the second one will not be carried out until the first command has been completed.

However, if a large amount of data has been logged then the **COPYD** command can take a significant amount of time to execute. This could potentially cause subsequent commands to be delayed for a long time, which is undesirable in many applications.

To address this problem, the **COPYD** command is designated as a **background command**. Background commands can execute "in parallel" with other commands.

When a background command is started (e.g. you type **COPYD**), the transfer will commence but you will notice that the DT80> prompt is returned immediately, indicating that further commands may be entered and they will be acted on immediately, even though the unload operation is still in progress. Similarly, if an **ALARM** statement triggers an action command then it will be executed immediately, without having to wait for the background command to complete.

There are situations, however, where sequential execution is required. For example, it is common to execute a **COPYD**dest=a: command to copy logged data to a USB memory device, followed by a **REMOVEMEDIA** command to shut down the USB port to allow the memory device to be removed. Clearly the **REMOVEMEDIA** command can only be carried out once the **COPYD** command has finished.

The DT80 uses the following rules:

1. A sequence of commands on the same command line always executes sequentially. So if you enter:

COPYD; HA; COPYD; SATTN

all on the one line, or if you include them all in a single alarm command string, e.g. RA1D DO{ COPYD; HA; COPYD; SATTN }

then the HA; COPYD; SATTN commands will be delayed until the first COPYD completes.

2. If a background command is in progress and you attempt to execute another background command then the new command will be delayed until the first command completes. Because of Rule 1, any commands that occur after the new command on the same command line will also be delayed.

For example, the command line

COPYD dest=A:: REMOVEMEDIA

will operate as expected, i.e. the **REMOVEMEDIA** will not be executed until the copy completes.

By contrast,

COPYD dest=A:

REMOVEMEDIA

will likely cause various error messages to be returned, because the **REMOVEMEDIA** will execute in parallel with the **COPYD**, causing the memory device to be shut down prematurely.

Simultaneous Unloads

Because of Rule 2 above, only one **COPYD** command can execute at any one time – if you or your job tries to start a second then it will remain pending until the first unload completes.

It is permissible, however, to perform a <u>web</u> unload (using the *dEX* **Retrieve Data** function) at the same time as a **COPYD** unload or another web unload.

Obsolete Commands

The COPYD, LISTD and DELD commands replace a number of other unload related commands. These commands are still supported but are considered obsolete and may be removed in future firmware versions.

The following table lists the commands (not all possible combinations are shown), and their current equivalents.

Old command	Replacement
υ	COPYD format=free alarms=N src=AB
A	COPYD format=free data=N src=AB
/H U	COPYD format=fixed alarms=N src=AB
usch	COPYD format=free alarms=N src=AB sched=sch
u"job"sch	COPYD format=free alarms=N src=AB sched=sch job=job
<pre>U"job"sch(start) (end)</pre>	COPYD format=free alarms=N src=AB sched=sch job=job start=start
	end=end (format of start and end is a little different)
u"job"sch "ftp-URI"	COPYD format=free alarms=N src=AB sched=sch job=job dest=ftp-URI
COPYDATA	COPYD format=dbd archive=Y src=B dest=A:
MOVEDATA	COPYD format=dbd archive=Y src=B dest=A: delete=Y
ARCHIVE	COPYD format=dbd src=B dest=B:
DIRJOB	LISTD archive=N
DIRJOB*	LISTD archive=N job=*
DELDATA	DELD alarms=N
DELALARMS	DELD data=N

The DT80 File System

Internal File System (B:)

The *DT80* uses a Windows compatible FAT16/FAT32 file system for storing logged information (data and alarms) and system information. The internal file system uses flash memory, so all files will be preserved even if the *DT80* is reset or loses all power. The size of this file system for a standard *DT80* is 128Mbyte.

The internal file system is used to store information such as:

- program text for stored jobs (e.g. B:\JOBS\MYJOB\PROGRAM.DXC)
- store files (e.g. B:\JOBS\MYJOB\A\DATA_A.DBD)
- archive files (e.g. B:\JOBS\MYJOB\A\009_20100401T090002.DBD)
- other unload output files (e.g. B:\MYDATA\MYJOB\021 20100101T190012.CSV)
- current profile settings (B:\INI\USER.INI)
- system event and/or error logs (B:\EVENTS\EVENT.LOG and ERROR.LOG)
- documentation files (e.g. B:\DOC\DT8x Users Manual.pdf)
- dEX(web interface) Files (e.g. B:\WWW\index.html)

Note Path and file names shown above are for illustrative purposes only, and may change in future firmware revisions.

A typical directory listing (see *File Commands* (P113)) of the internal file system might look like: DIRTREE B:

Volume in drive B has no label.

```
2006/02/06 12:13
                     133120 <RO>
                                       - FAILSAFE
2006/02/06 12:13
                                 <DIR> - EVENTS
2006/02/08 12:17
                       1501
                                            EVENT.LOG
2006/02/06 12:36
                                 <DIR> -
                                          INI
2006/02/08 10:56
                        199
                                            USER.INI
2006/02/07 10:50
                        213
                                            USER.BAK
2006/02/06 12:14
                                 <DIR> - JOBS
2006/02/06 15:17
                                 <DIR> -
                                          SPARROW
2006/02/06 15:17
                                 <DIR> -
2006/02/06 15:56
                       4208
                                                 DATA_A.DBD
2006/02/06 15:19
                       3028
                                                 001_20060206T151936.DBD
2006/02/06 15:56
                       4208
                                                002 20060206T155654.DBD
2006/02/06 16:33
                       4208
                                                003_20060206T163356.DBD
                        138
2006/02/07 13:02
                                               STATUS14
2006/02/07 13:02
                        121
                                              PROGRAM.DXC
2006/02/06 16:01
                                 <DIR> -
                                            UNTITLED
2006/02/08 10:53
                                              STATUS14
2006/02/08 10:53
                                              PROGRAM.DXC
2006/02/07 13:03
                                 <DIR> -
                                            DTCAN169
2006/02/07 13:03
                                 <DIR> -
2006/02/07 13:03
                    1051584
                                                 DATA_A.DBD
2006/02/07 13:03
                                  <DTR> -
2006/02/07 13:03
                    1049104
                                                 DATA D.DBD
2006/02/07 13:03
                       3466
                                               STATUS14
2006/02/07 13:03
                      17523
                                               PROGRAM.DXC
          25 File(s)
                       63074304 Bytes free
```

In this example there are three jobs stored on the *DT80*: SPARROW (one schedule; three archive files have been created at various times; in the case of the first one the store file was not yet full at the time it was created, hence its size is smaller than the others), UNTITLED (no schedules have logging enabled, hence no store files) and DTCAN169 (two schedules with logged data).

External USB Devices (A:)

An external USB memory device plugged into the DT80 can be used to store:

- store files (e.g. A:\SN081234\JOBS\MYJOB\A\DATA_A.DBD) for schedules that are configured to log directly to the USB device (using the "A:" schedule option)
- archive files (e.g. A:\SN081234\JOBS\MYJOB\A\001_20060401T090002.DBD)
- an ONINSERT job (A:\SN081234\ONINSERT.DXC) which will run when the memory device is inserted into this DT80
- an ONINSERT job (A:\ONINSERT.DXC) which will run when the memory device is inserted into any DT80
- other files which have been manually copied from the DT80, e.g. event logs
- other files not related to the DT80

Notice that *DT80* related files are always stored in a subtree whose name is based on the *DT80* serial number. This allows data from a number of different *DT80*s to be collected on the one USB device.

A typical directory listing (see *File Commands* (P113)) of a USB device might look like: DIRTREE A:

Volume in drive A is JD1

```
2006/02/06 12:40
                                   <DIR> -
                                            SN080043
2006/02/06 12:40
                                   <DIR> -
                                              JOBS
2006/02/06 12:40
                                   <DTR> -
                                                UNTITLED
2006/02/06 12:40
                                   <DIR> -
                                                   Α
2006/02/06 12:40
                     1048784
                                                     DATA A.DBD
2006/02/07 13:36
                                                DTCAN169
                                   <DTR> -
2006/02/07 13:36
                                   <DIR> -
                                                   Α
2006/02/07 13:36
                        8928
                                                     001_20060207T133615.DBD
2006/02/07 13:36
                                   <DIR> -
                                                   D
2006/02/07 13:36
                        4788
                                                     002_20060207T133615.DBD
2006/01/27 10:46
                                   <DIR> -
                                            SN080122
2006/01/27 10:46
                         202
                                              ONINSERT, DXC
2006/02/07 17:46
                                   <DIR> -
                                              JOBS
2006/02/07 17:46
                                   <DTR> -
                                                XΔM
2006/02/07 17:46
                                   <DIR> -
                                                   Α
2006/02/07 17:46
                     1048784
                                                     DATA_A.DBD
2006/02/07 17:46
                                   <DTR> -
                                                   R
2006/02/07 17:46
                     1048784
                                                     DATA_B.DBD
```

18 File(s) 125306880 Bytes free

In this case the memory device has been used in two different *DT80*s. Serial number 080043 has logged some data directly to the device as part of job UNTITLED, while archive files have been created for job DTCAN169 – probably using COPYDATA. Serial number 080122 has logged data directly to store files on the device, and it also has an ONINSERT job defined, which will run whenever the memory device is plugged into *DT80* serial number 080122.

Supported USB Device Types

For an external USB memory device to be recognised by the DT80, the device must:

- draw no more than 100mA from the USB bus, and
- support the standard USB "mass storage" device class interface (this includes most USB "memory sticks", MP3 players and USB hard disks, but does <u>not</u> include devices such as USB printers, modems and so on), and
- have the primary disk partition formatted using a FAT16 or FAT32 file system.

USB memory devices are nearly always shipped pre-formatted using a FAT16/FAT32 file system.

If a memory device is inserted that is not properly formatted, the *DT80* will display: USB device unrecognised on the LCD.

Formatting a USB Memory Device

The **FORMAT A:** command (see *File Commands* (P113)) can be used to re-format the device. This will delete <u>all</u> data from the device. Alternatively the device can be formatted in a Windows based computer.

Note For larger capacity USB memory devices (1Gbyte and above), it is recommended that you <u>always format the device in the logger</u> before using it for the first time. This is because the *DT80* will format the device in a way that maximises performance and minimises the time taken to read the device each time it is inserted. In particular:

• for capacities in the range 1-2GB, the *DT80* will create a **FAT16** file system, whereas Windows will normally format the device as **FAT32** by default. FAT16 is less space-efficient if there are many small files, but it is faster.

• for capacities 4GB and above, the *DT80* will create a **FAT32** file system. It will, however, select a larger allocation unit size to maximise speed at the expense of space efficiency.

Note that even though Windows and the *DT80* may use different formatting parameters, Windows will always be able to read a *DT80*-formatted device, and vice versa.

Using a USB Memory Device

❖ Startup

When a USB memory device is first plugged in, the *DT80* needs to read various information from the device before it can be used. This process can take several seconds (possibly a minute or more for large media), but it is a <u>background</u> operation so sampling and logging can continue. The *DT80* displays

Reading USB device

on the LCD while this operation is in progress.

Once the USB device is ready, it can be accessed in the same way as the internal drive.

❖ Removal

Important The USB device must not be removed while it is being accessed. Doing so may result in data corruption.

To safely remove a USB device, you should always first issue the **REMOVEMEDIA** command. This command is also one of the default options on the front panel function menu (P118). This command will:

- 1. suspend logging for any schedules that are configured to log directly to the USB memory device. This will cause an error message to be returned, and the **Attn** LED will start flashing.
- 2. make sure that all required information has been fully copied to the device and all files are closed
- 3. shut down the device. If the device has an indicator light, it should now be off.

If you change your mind and want to keep using the device, you will now need to remove it and then re-insert it.

File Commands

The *DT80* provides a number of general purpose file manipulation commands. These will work both for files stored on the internal file system (**B**:) and an external USB memory device (**A**:), if one is present.

Command	Function
COPY source dest	reads the file source and creates a copy called dest. If dest is a folder name (i.e it ends
	with a \ character) then a file will be created with the same name as the source.
COPY source ftp-URI	uploads the file source to the FTP server pathname specified by ftp-URI
COPY ftp-URI dest	downloads the FTP server file ftp-URI and writes it to local file dest
RENAME source dest	rename file path source to file path dest
RENAME ftp-URI destfile	rename FTP server file path ftp-URI to file name destfile
DIR path	lists the contents of directory path. If path is not specified, B:\ is assumed.
DIR ftp-URI	list contents of FTP server folder path ftp-URI
DIRTREE path	lists the contents of directory path and all sub-directories. If path is not specified, B:\ is
	assumed.
TYPE source	displays the contents of file source. Use only with text files.
DEL source	deletes the file source. Use with care!
DELTREE path	deletes the directory path and all subdirectories. Use with care!
FORMAT A:	deletes <u>all</u> files from the USB memory device and re-creates the file system. Use with care! For best performance, it is recommended that new USB devices be formatted in the <i>DT80</i> before use.
FORMAT B: DELETEALL	deletes <u>all</u> files from the internal flash drive and re-creates the file system. This command would normally only ever be used if the <i>DT80</i> 's internal compact flash card was replaced. After executing this command it will be necessary to repeat the firmware upgrade process in order to re-install system files (e.g. for the web interface) onto the internal flash drive.

Note These commands are for advanced users only. In most cases the standard *DT80* commands (e.g. **LISTD**, **DELD** and so on) are preferred. Furthermore, note that file names or locations may be subject to change in future firmware versions.

The *DT80*'s default directory is **B:**\. So the command **DIR JOBS** is equivalent to **DIR B:****JOBS**.

For example, if you want to copy the *DT80*'s system event log to a USB memory device for later analysis you could use:

COPY EVENTS\EVENT.LOG A:\EVENT_20060219.LOG

Done

Note that wildcards (e.g. "*.LOG") are not supported by any of these commands.

Important The DeTransfer program, which is often used to supervise the DT80, has a number of special commands that begin with a \ (backslash) character. These are interpreted by DeTransfer and not sent to the DT80. In order to send a \ character from DeTransfer, you need to enter a double backslash (\\). For example, the above example would be entered into DeTransfer as follows:

COPY EVENTS\\EVENT.LOG A:\\EVENT_20060219.LOG

This rule applies to <u>DeTransfer</u> only; it does <u>not</u> apply to the "Text" window in <u>DeLogger</u>, nor to the web interface Command window

Data Recovery

Prevention

If you accidentally remove a USB device while it is being accessed, then it is possible that the file system on the USB device may be corrupted. (The same applies if you remove a USB memory device from a Windows computer without selecting the "Safely Remove Hardware" option.)

The internal file system or USB memory device may also be corrupted if the logger suddenly loses all power while it is writing to the disk.

To minimise the chance of data loss due to these causes, remember to:

- ensure that the battery link is in place. This will allow the *DT80* to keep operating normally for a period of time, in the event of an external power failure
- always use the REMOVEMEDIA command before removing the memory device if there are schedules logging directly to the USB device

Note that the *DT80* provides some protection against <u>gradual</u> power failure (e.g. the internal battery becoming discharged). If it detects that the supply voltage is becoming critically low, the *DT80* will automatically close all store files and force the unit into low power **sleep** mode (P297). The *DT80* will remain asleep until the power supply recovers to an adequate level.

Recovery

❖ Media Removal

If a USB device was accidentally removed while it was being logged to, you should plug it into a Windows computer. Before attempting to open any of the files, run a Windows file system check utility (e.g. type chkdsk drive: at a command prompt, where drive is the drive letter assigned to the USB device). This will detect and if possible repair any inconsistencies in the file system structure.

Note that even if there are no file system errors, there may still be corruption in one or more <u>store files</u> (<u>DATA_x.DBD</u>) if they were being actively logged to at the time of the media removal. Copy the files to the host PC and verify that they can be opened successfully and all the expected data is there.

If the files appear to be damaged (e.g. they don't open correctly in *dump_dbd*) then the original files on the USB device should be <u>deleted</u> before inserting the device back into the *DT80* and re-enabling logging. This avoids having the *DT80* attempt to log data to a damaged file, possibly causing more damage in the process.

❖ Power Failure

If external power was lost and the battery link was not present or the internal battery was flat, then the internal file system may be corrupted (if it was being written to at the time of the failure).

When power is restored, the *DT80* will attempt to automatically repair the file system (using the **B:\FAILSAFE** file) if necessary.

Before re-enabling logging, it would be prudent to manually copy to a USB device the store files for the job that was active at the time of the failure, e.g.:

COPY B:\JOBS\JOE\A\DATA_A.DBD A:\JOE_SAVE\DATA_A.DBD and verify that they can be opened on the host PC.

❖ Store File Recovery

If a store file is damaged, contact dataTaker technical support for assistance. We <u>may</u> be able to recover data from the file. But note that prevention is always better than cure.

❖ Badly Formatted Device

In exceptional cases, a severely corrupted memory device may result in a fatal error occurring on the *DT80* when the device is inserted, and this may cause the *DT80* to reset. If this is the case, you can try holding down the **Cancel/Func** button while inserting the memory device. This will cause the *DT80* to not attempt to read the device; instead it will display USB device unrecognised. You can now reformat the device using the **FORMAT A:** command.

Part H - DT80 Front Panel

The DT80 front panel user interface comprises:

- a 2 line by 16 character back-lit liquid crystal display (not DT81)
- 6 keys (not DT81) Up, Down, Left, Right, Cancel/Func and OK/Edit
- 4 status indicator lights (3 for DT80 Series 1) Sample, Disk, Attn and Power.

The display provides information about data logger status, channel data, alarms and store operation. In addition the display will indicate conditions that require attention and USB memory device status.

The *DT80* from cannot be programmed from the front panel. However, pre-defined commands can be issued by selecting from the function list via the front panel.

Figure 21 DT80 Front Panel

Display

(Not applicable to DT81)

The display normally shows the current value for each channel and alarm in the current job. Each channel or alarm is shown one at a time. The **Up** and **Down** directional keys on the front panel are used to scroll through the available channels, as well as various status screens. The channels and alarms are arranged in the same order that they are defined in for the current job.

Displaying Channels and Alarms

When channel data is displayed, the top line of the display shows the channel identification. The default is the channel number and type. If channel identification text has been entered as a channel option, then the first 16 characters of that text is displayed.

The bottom line on the display shows the most recent reading as a numeric value or bar graph. If the channel or alarm has not yet been sampled, the display shows "NotYetSet".

When alarms are displayed the top line of the display identifies the alarm and the state of the alarm – ON or OFF. If the alarm channel definition includes identification text, then this is displayed when the alarm is not true. If the alarm contains action text, this is displayed when the alarm is true.

* Example

As an example, assume that the following job has been defined:

```
BEGIN"MYJOB"

RA1M 1TK("Boiler Temp",FF0)

2LM35

ALARM4(3V>2000)"Over voltage"

1CV(W)=1CV+1

ALARM7(4TT("Oven OK")>107)"Oven Over Temp"
```

The following "screens" will then be available. These can be scrolled through using the **Up** and **Down** arrows on the keypad. Pressing **Down**

Display screen	Comments
DT80 V9.00 MYJOB	The default "sign-on" screen indicates the <i>DT80</i> 's firmware version number and the name of the currently loaded job (No current job is displayed if there isn't one)
Date: 23/10/2009 Time: 16:44:02	Current date and time (format can be changed using P31 and P39)
Battery: 90% ↓ -290mA 6.2V	Internal battery status. This shows the approximate battery charge as a percentage, a charge (↑) or discharge (↓) indicator, battery current (negative=discharging) and the battery terminal voltage. NC is displayed if the internal battery is not connected. This screen is not present on models with no internal battery charger, e.g. DT82E
Telstra 3■□□ 203.112.100.109	Internal modem status. While the modem is connected the display shows the mobile carrier name, network type (e.g. '3' for 3G), signal strength and IP address. If the modem is not connected then modem status is shown e.g. Modem is off . This screen is only present on models with an integrated modem (DT8xM)
Eth IP: Auto 192.168.11.160	Ethernet port mode (Automatic, Manual or Disabled) and current IP address
Boiler Temp 97°C	First user channel (user defined channel name)
Channel 2LM35 17.9 °C	Second user channel (default channel name)
Alarm4 OFF 1356.3 mV	Alarm #4 state
Oven Over Temp 117.2 °C	Alarm #7 state (alarm text replaces channel name when alarm is active)

Note that channel 1CV is not displayed because it is defined as a working (W) channel. Working channels are neither logged, returned nor displayed.

Bar Graph

The channel value can be shown as a bar graph instead of a numeric value by using the **BG** channel option. The **BG** option allows the values to be set that represent the left and right side of the graph scale. The channel label can be used to set the graph scale labels. For example:

```
Display screen

E--Fuel Level--F

displays zero scale (no bars) if measured voltage < 10mV; displays full scale (16 bars) if voltage > 900mV
```

Controlling what is shown on the display

All defined channels and alarms will be shown on the display, except for:

- channels which specify the ND (no display) channel option
- working channels (W channel option)
- un-numbered alarms
- alarms where the channel in the alarm condition is a no-display (ND) or working (W) channel

For example:

```
4TT ' displayed

3CV(W)=3CV+1 ' not displayed

ALARM1(2CV>10)"Quokka" ' displayed

ALARM(2CV>20)"Platypus" ' not displayed

ALARM2(2CV(ND)>30)"Echidna" ' not displayed
```

Auto-scrolling

The *DT80* may also be configured to automatically scroll through the channel display screens. This is useful in applications where the *DT80* is mounted behind a glass panel – the display is visible but the keypad is inaccessible.

To enable auto-scroll set the following profile:

```
PROFILE DISPLAY AUTOSCROLL_INTERVAL=10S
```

which in this case will automatically switch between channel display screens every 10 seconds. If this profile is set to 0 then auto-scroll is disabled.

Pressing a key on the keypad while auto-scroll is active will temporarily suspend auto-scroll and allow you to manually navigate through the screens. By default, auto-scroll will resume (if it is enabled) 30 seconds after the last key press. This time can be changed using:

```
PROFILE DISPLAY AUTOSCROLL DELAY=1M
```

which in this case will wait one minute before resuming auto-scroll.

Auto-acknowledge

In applications where the keypad is inaccessible, the following profile can be set to automatically acknowledge (clear) any pop-up messages after a period of time:

PROFILE DISPLAY AUTOACK DELAY=1M

Set to 0 to disable this feature.

Pop-up Messages

The display may also show temporary status screens, such as.

Display screen	Comments
Reading USB device	When a USB device is inserted the <i>DT80</i> needs to read certain system information from it before it can be used.
USB device unrecognised	This indicates that the <i>DT80</i> does not recognise the device as a valid USB mass storage device.
Processing ONINSERT.DXC	If the USB memory device contains a file called ONINSERT.DXC then it will be automatically loaded and run by the <i>DT80</i>
Copy→USB 1/3	This indicates progress during a COPYD operation where the destination is set to the USB device. The numeric counter on the top line indicates the data/alarm store being processed (store 1 of 3), while the bargraph shows unload progress for each store.

Interactive Screens

In some situations the display will prompt for information to be entered via the keypad.

Display screen	Comments
Run ONINSERT?	This is displayed briefly following insertion of a USB memory device that contains an ONINSERT.DXC file. Press OK/Edit to allow the file to execute (which is the default), or press any other key to skip execution of the file.
Enter SIM PIN:	For models with an integrated modem, this screen will be displayed if the inserted SIM card has a PIN set. Use the Up and Down keys to change the value of each digit, and use the Left and Right keys to select the digit to edit. Press OK/Edit when done.

Display Backlight

The display backlight will normally only stay on for 30 seconds after the last key press. The actual period that the backlight stays on for after a key press is controlled by **P17** in seconds.

Parameter **P20** (P258) can be used to further control the operation of the backlight, for example setting **P20=0** will cause the backlight to be always off, while **P20=1** will leave the backlight always on (except while the logger is sleeping).

User Defined Functions

(Not applicable to DT81)

The user can define up to 10 named macros called functions. These functions can be executed by the user via the LCD and keypad of the *DT80*.

Defining Functions

Functions are defined using the following profile settings, one pair for each of the 10 available functions:

```
PROFILE FUNCTION F1_LABEL=label
PROFILE FUNCTION F1 COMMAND=command string
```

These will define the label to display on the LCD (up to 16 characters), and the command string to execute when the function is selected. Substitute **F2**, **F3** etc. in the profile key names to define further functions.

Enclose label or command string in double quotes if they contain spaces or special characters.

For example:

Command	Description
PROFILE FUNCTION F1_LABEL=Start	This function would display Start and when selected would
PROFILE FUNCTION F1_COMMAND=G	issue the G or go command to the logger which would start
	all schedules
PROFILE FUNCTION F2_LABEL="Temp \176F"	This function would display Temp °F and when selected
PROFILE FUNCTION F2_COMMAND=REFT(S2,=5CV)	would measure the logger's internal temperature and store the scaled value to channel variable 5CV
PROFILE FUNCTION F3_LABEL=Upload	This would display upload and when selected would unload
PROFILE FUNCTION F3_COMMAND="copyd	new data to an FTP server
<pre>start=new dest=ftp://x.com/unit42/"</pre>	
PROFILE FUNCTION F4_LABEL=Clear	This function would display Clear and would set channel
PROFILE FUNCTION F4_COMMAND=120CV(W)=0	variables 1-20 back to zero.

Selecting Functions

Pressing the **Cancel/Func** key will cause the function list to be shown on the display. One function is shown at a time, and only those functions which have a command defined are shown. The up and down direction keys can be pressed to scroll through the list of functions. Once the desired function is visible on the display it can be executed by pressing the **OK/Edit** key. If you wish to exit the function list without executing any function then press the **Cancel/Func** key to cancel the function selection process.

After selecting the function to execute, the display will indicate that the function selected has been initiated.

Default Functions

Following reset, the DT80 automatically defines three commonly used functions:

- Remove USB disables USB memory device to allow safe removal
- Copy logged data unload all logged data for current job to USB memory device
- Auto Ethernet IP sets Ethernet port to AUTO and forces the DT80 to re-acquire an IP address

For models with an integrated modem, the following additional functions are defined by default:

- Start comms starts a communications session
- Stop comms ends a communications session
- Check signal continuously measure and update signal strength

These functions can be redefined or removed if desired by changing the profile settings, or using the *dEX* configuration builder (see *Keypad Functions* (P144)).

Keypad operation

(Not applicable to DT81)

Direction Keys

The up and down direction keys allow scrolling through the available channels, alarms and status screens on the display. When the function list is shown, then the up and down direction keys allows scrolling through the list of available of functions.

When entering the SIM PIN/PUK code via the keypad the left/right direction keys select the digit and the up/down keys change the value.

OK (Edit) Key

The **OK/Edit** key is used to select a function to execute when the function list is displayed. The edit function will be used in a later firmware version that supports editing of values.

Cancel (Function) Key

The **Cancel/Func** key is used to enter the function list display. It can be pressed again to exit the function list without selecting a function.

Special Key Sequences

* Entering Bootstrap Mode

Holding down the **OK/Edit** key during the logger reset or power-up sequence will force the logger into bootstrap mode. This would only be required if there is a corruption of the firmware in the logger.

Status Indicator Lights

Sample Indicator

The **Sample** indicator is illuminated whenever any channel in the current job is sampled. This includes all analog, digital and internal channels.

Disk Indicator

The **Disk** indicator is illuminated whenever the internal disk is reading or writing. For example, the disk indicator will illuminate when writing data to the internal data store or when unloading data from the data store.

Power Indicator

not present on DT80 Series 1

This indicator flashes every 3 seconds while the logger is awake. A long "LED on" time followed by a short "LED off" time indicates that the logger is externally powered; a short "on" time followed by a long "off" time indicates battery power.

Attn Indicator

This LED is used to:

- warn that an unexpected DT80 reset has occurred, e.g. due to a power failure (flashing)
- warn that logging has been partially or fully suspended (flashing)
- indicate a warning state under the control of a user program (continuously on)

Unexpected Reset

A message such as the following may be displayed following *DT80* reset, in conjunction with a flashing **Attn** LED. Press any key to clear the message and the flashing LED.

Display	Comments
DT80 restarted Power loss	The <i>DT80</i> lost power, both external and the internal battery. This message may also be displayed if the hardware reset button (accessed using a paper clip) is pressed.
DT80 restarted Safe mode	A "triple-push" reset was performed (by pressing the hardware reset button three times within 10s), which temporarily restores factory settings
DT80 restarted SW exception	This indicates a possible problem with the <i>DT80</i> firmware. Contact dataTaker Technical Support if you see this message.
DT80 restarted All mem cleared	The <i>DT80</i> lost power, and all internal RAM has been cleared, probably due to the internal Lithium memory backup battery being flat. Programs and logged data will not be affected but you will need to reset the <i>DT80</i> 's time/date.

Logging Suspended

If data for one or more schedules cannot be logged for some reason then the *DT80* will continue to run the job but it will flash the **Attn** LED and display a message such as the following. Pressing a key will clear the message from the display, but the **Attn** LED will keep flashing until space is made available (e.g. by deleting data or inserting a USB device)

Display	Comments
Cannot log Data full	One or more schedules have been set to "no-overwrite" mode (NOV schedule option), and the allocated space is now full
Cannot log No USB device	The "A:" schedule option (log directly to USB device) has been specified, but no USB device is inserted.

User Control

You can also turn the **Attn** LED on or off using the **SATTN** (Set Attention) and **CATTN** (Clear Attention) commands. Alternatively, the **1WARN** channel type (which works in the same way as a digital output channel) may be used.

For example:

RA1S ALARM1(3TT>500)"Meltdown"{SATTN}
will cause the LED to come on and stay on if the alarm is triggered, and
RA1S 1CV=(1CV+1)%10 IF(1CV==0){1WARN(R,200)=1}
will give a 200ms flash every tenth time the schedule is scanned.

Part I – dEX

What is dEX?

The *DT80* provides an embedded **web interface (dEX)** that provides simple, intuitive access to the logger's operations using a standard web browser. You can view current sensor readings, job status and access data and other files stored in the file system.

The standard web interface is built into the logger's firmware. It does not need to be installed on the logger or on your PC. Simply use your existing browser to browse to the logger's IP address and the home page will be displayed.

❖ Important: dEX Version Covered in This Manual

This version of dEX that this manual references refers to is Version 1.50

dEX vs. Classic Web Interface

The DT80 actually features two web interfaces:

- **dEX**, also known as the **enhanced web interface**, is available on all Series 2 or later loggers. This uses *Adobe Flash* technology to provide a full-featured and easy to use interface.
- The classic web interface is available on all loggers. This HTML-based interface has fewer features than the
 enhanced interface, but it is customisable and is also more suitable for slow connections and small-screen web
 clients.

The following table summarises the differences between the two web interfaces:

Feature	dEX	Classic web interface
Display basic logger information (serial number, firmware version etc.)	yes	yes
Display schedule status (log/run status, number of logged records, etc.)	yes	yes
Display current channel values in tabular form	yes	yes
Display event logs	yes	yes
Display user manual, release notes, etc.	yes	yes
Graphically configure the logger, i.e. define schedules, channels and global settings without using the logger command language	yes	-
Display selected channels in a configurable "mimic" displays, including trend charts	yes	-
Unload data and save to CSV or DBD file	yes	-
Text command window (similar to DeTransfer)	yes	-
Display current job's program text	yes	-
Display file system free/used space breakdown	yes	-
Display TEST and SERVICEDATA command response	yes	-
User customisable branding (images, web links, help pages)	yes	-
Menu options can be selectively disabled or restricted	yes	-
Suitable for low bandwidth connection e.g. dial-up modem	-	yes
Suitable for small screen client e.g. PDA	-	yes
User customisable HTML pages	-	yes

Connecting to the Web Interface

In order to access the DT80 web interface, a TCP/IP connection between the DT80 and the PC is required. You can either:

- connect the DT80's Ethernet port to a local area network, or directly to the PC using an Ethernet cross-over cable (see
 Ethernet Communications (P236))
- use DtUsb to provide a TCP/IP connection via a USB cable (see USB Port (P188))
- start a communication session using the integrated modem on DT8xM models (see Integrated Modem (P210))

Once a TCP/IP connection has been established, all you need to do is type the *DT80*'s IP address into the address field of your browser. The web interface home page should then be displayed.

dEX Home Page

For Series 1 loggers, when you enter the *DT80*'s IP address into your browser you will be immediately directed to the home page for the classic web interface (Series 1 loggers do not support *dEX*). See *Classic Web Interface* (P168) for more details.

For Series 2 or later loggers, you have the choice of running either *dEX* or the classic interface. The first screen you will see after browsing to the *DT80*'s IP address is the **Logger Home** screen, as shown below.

Figure 22: Logger home page

The **Logger home** page provides four options, which are organised into two tabs. With the **High speed connection** tab selected, you can:

- click **Configure the logger** to launch the *dEX* configuration builder. This allows you to configure the *DT80* using a graphical interface, rather than the logger's command language.
- click **Monitor the logger** to launch the *dEX* web interface, which allows you to monitor the current state of the *DT80*, unload data and use the command interface.
- click **Customise dEX** to launch an application which allows you to customise or restrict parts of the web interface. See *Customising the Web Interface* (P165).

Note The Configure the logger and Customise dEX options might not be visible if they have been hidden or deleted by an administrator.

To launch the classic web interface, select the Low speed connection tab, then click Launch web interface.

Once the desired interface (*dEX* or classic) starts up, you may wish to bookmark its home page so that in the future you can go straight to it, bypassing the **Logger home** screen.

When configuring the logger, it is often convenient to have the *dEX* configuration builder running in one browser tab, and the *dEX* web interface running in another. You can then easily switch between them without having to return to the Logger Home page.

Starting dEX

The *dEX* Configuration Builder and the *dEX* web interface are *Adobe Flash* applications. When you select either of these options on the **Logger home** screen, the following sequence of events takes place:

- 1. A check is made to see if the browser contains the required *Adobe Flash* plug-in. This plug-in is a software component produced by *Adobe Systems Inc.* which allows the web browser to run *Flash* applications such as the *DT80* web interface. The plug-in is also sometimes referred to as the "Flash Player". The Flash Player only needs to be installed once, so it is likely that your computer will already have it installed.
- 2. If the Flash Player is <u>not</u> already installed, or it is older than Version 10.0, then the browser will automatically attempt to download the required plug-in from the Internet and install it. The exact sequence of events will vary from browser to browser. You may receive various security alerts during this process which you will need to approve in order for the installation to complete. You may also require administrative rights for your computer; check with your IT department.
- 3. The selected dEX application will now be automatically downloaded from the logger onto your computer. The size of this file is approximately 1-2Mbyte, so this will take a few seconds over an Ethernet connection and considerably longer over a modem link. During this time a progress bar will be displayed.
- 4. The Flash Player will then launch the *dEX* application and the configuration builder or web interface main screen will appear in the web browser.

Note If your computer does not have the Flash Player installed, and does not have an Internet connection, then you will need to obtain and install the Flash Player manually. Using a computer which does have Internet access you can download the Flash Player package from www.adobe.com, transfer the installation file onto your computer and then launch it to install Flash Player.

Note If you press the **Refresh** or **Reload** button on your browser then the above process will be repeated. That is, the application will be re-downloaded and will then restart at the **Welcome** page. Most screens within the web interface application include an **Update** button – use this button (<u>not</u> the browser **Refresh** button) to update displayed information.

Browser Requirements

An Adobe Flash plug-in is available for most popular web browsers, including:

- Microsoft Internet Explorer Version 7 or later
- Mozilla Firefox
- Apple Safari
- Google Chrome

Once the plug-in is installed (which, as described above, is normally an automatic process), any of these browsers can be used to access the *DT80* Web Interface.

Note that JavaScript needs to be enabled in the browser options (this is normally the default).

Note: When connecting to dEX please be aware of the dEX version number. If it is not the correct version or if you are unsure if there has been any changes you may want to clear your browser cache before reloading dEX to ensure you have the latest version installed on your logger.

dEX Navigation

Back to the Main Menu (Home)

You can navigate back to the main menu at anytime by clicking on the top left company logo.

dEX Security

Enabling dEX Role Based Security

One of the new features of dEX is an optional role based security. This is both in the firmware and the dEX side once it is turned on. The user can turn on this role based security at anytime and it will restrict access to dEX and firmware programming functions. Once the security is enabled the user will be presented with a login screen as pictured below.

The security can be turned on by selecting the Security screen in the Customise dEX section of the application as pictured below. Click to check the checkbox to enable security.

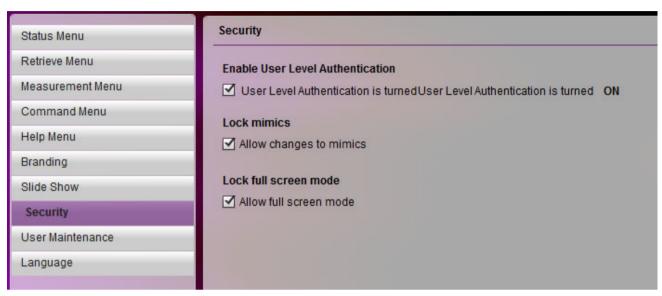


Figure 234: dEX enable Role Based security.

Once security is enabled a default user(Administrator) is automatically written to the system. The user credentials are below. You will need to use these credentials to login the next time you use dEX.

The default user is: username: admin password: admin

Figure 245: This menu item becomes available when security is enabled.

Figure 25: dEX Login Screen which is presented to the user when security is enabled

Figure 23: dEX logged in user Info

When security is enabled the logged in user info is displayed in the bottom right hand corner of the application. The full name of the user and the user role is displayed.

Figure 24: dEX Administartor Home

Figure 25: dEX Data Supervisor Home

dEX User Roles

There are three user roles in dEX

- Administrator
- Configure Logger User
- Data Supervisor

There are three main user roles with predetermined user rights

Create new users, modify existing users. Turn off security.

dEX User Rights

User rights based on the user role are detailed below.

User Role	dEX Access Rights	
Data Supervisor	Monitor the logger	
Main Functions: Unload data, view logger status, download data, delete data		
Config User	Configure the logger Monitor the logger Customize dEX	
Main Functions: Unload data, view logger status, download data, delete data, control current job, configure the logger and load new jobs		
Administrator	Full Access	
Main Functions: Unload data, view logger status, download data, delete data, control current job, configure the logger and load new jobs.		

• Further details on firmware security rights can be found in the security section of this manual

Adding dEX Users

dEX Administator users can add and maintain other users. Once security is turned on In the Customise dEX section a new menu item becomes available. Use the new User Maintenance screen to administer the user accounts you require. You can add up to five user accounts. Once you have added the fifth user the + User button is removed from view.

Figure 266: This User Maintenance screen as seen by a dEX Administrator.

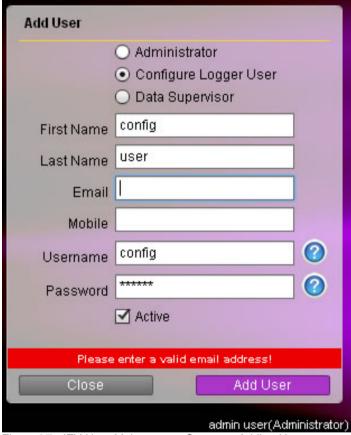


Figure 27: dEX User Maintenance Screen - Adding Users

New users require a valid email address. The mobile field is optional.

When the new user is added this panel will close and the new user will be added to the user listing on this screen.

Editing dEX Users

dEX Administrator users can edit user info, including change passwords, delete and invactivate user accounts. There logged in administrator cannot change their own role. You can change all the user details except the username. Click on the pencil icon to change a user password. The user interface will change to allow you to do this. Press the Change password button to submit the change. This function is separate from normal edit user process.

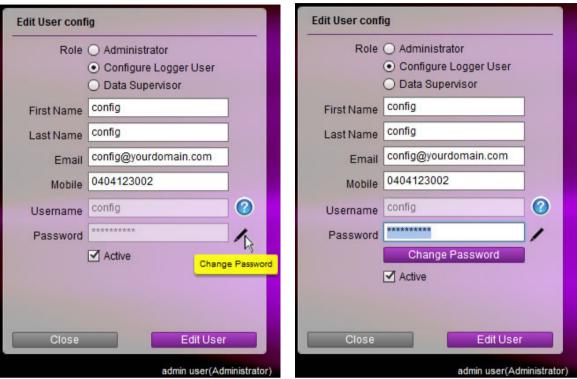
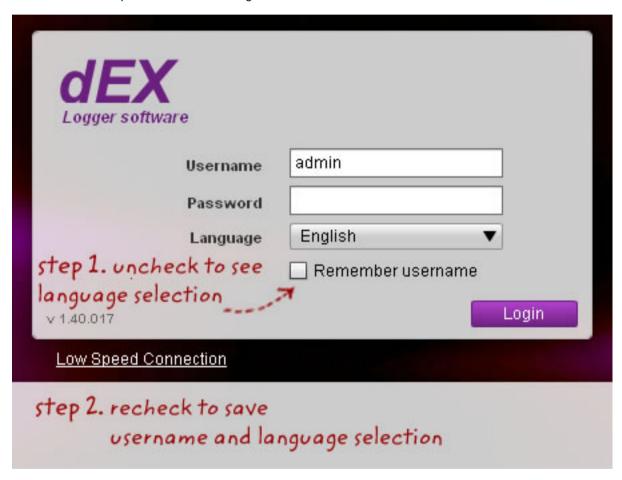


Figure 28: dEX User Maintenance Screen - editing users and changing passwords

Special Note: When using user security please logout via the application logout button which is located in the top right corner of the application interface. This will allow other users to loginto the application. Failure to do this will keep the current user session open until it times out 10mins later.

dEX Supported Languages


Supported Languages

Locale	API	
en_US	en	English(US)
fr_FR	fr	French
zh_CN	zh	Chinese(Simplified)

dEX currently supports three languages

Change Language – Security Enabled

User can change and save the language via the login screen. This setting is now stored on the users computer. If the user uses multiple devices these settings will need to be saved on each device.

Change Language – Admin and Config Users

Admin and Config users can change the language via Customise dEX.

Customise dEX > Language

dEX Configuration Builder

Configure the logger

This screen has two main views. The first displays the schedules and the associated channels in the left hand side bar menu. You can click on any defined schedule or channel to make changes.

The second view displays a the logger settings side bar menu.

You can navigate between these view by clicking on the logger model number or icon at the top of the side bar menu.

About Configurations

The dEX configuration builder is used to graphically define the DT80 configuration. A configuration comprises:

- a complete set of *DT80* **profile settings** (see *Profile Settings* (P262)). These are set using graphical controls in the configuration builder, then sent to the logger as a block of **PROFILE** commands.
- a *DT80* **job** (see *Jobs* (P57)), which will always be named **CONFIG**. This job consists of schedule and channel definitions, which again are set using graphical controls, plus any manually entered *DT80* commands that may be required. As with any *DT80* job, this dEX generated job is enclosed by **BEGIN** and **END** commands.

The configuration builder stores configurations in XML files. The current configuration is stored on the logger, while any number of other configurations can be stored in .dex files on the host computer. See *Managing Configurations* (P147) for more details.

Using the Configuration Builder

When the *dEX* configuration builder is started, the current state of the logger will be automatically loaded and displayed. That is:

- the current values for all profile settings are read and used to initialise the global settings pages
- the current configuration XML file is retrieved from the logger and opened, which will cause all defined schedules and channels to be displayed

Note The configuration builder can only retrieve configurations that it has created. It will not be able to display the current state if the logger has been programmed manually using textual commands. If this is the case then a warning will be displayed and a blank configuration will be loaded.

The following screenshot shows the general configuration builder screen layout:

Figure 27: Typical configuration builder display

Tree View

The area on the left of the screen shows a **tree view** of the current configuration. As configuration elements (channels and schedules) are defined, entries are added to the tree view. This part of the interface thus gives an overview of the configuration, showing which channels belong to which schedules.

The tree contains three "levels", with each level's entries indented further to the right.

- At the top level there is a single entry for the logger as a whole. This entry represents the logger's global settings, such
 as profile settings and statistical schedule rate.
- Beneath that are the schedules. In the screenshot three schedules have been defined: the built-in On logger activation entry represents the immediate schedule, and is followed by two user schedules, A and B (a.k.a "Schedule_1" and "Schedule_2").
- Finally, at the third level are the channels: in this case, "Indoor", "Outdoor" and "Wind Speed".

If you highlight an entry in the tree, its details will be displayed in the large **properties pane** area which occupies most of the screen area. The border between the tree view and the properties pane can be dragged left or right to adjust the width of these two areas.

If you double click on a tree entry, its name will become editable. This allows you to rename an existing schedule or channel. At the bottom of the tree view area are four buttons:

- The arrow buttons are used to re-order items in the tree by moving the highlighted entry up or down.
- The double rectangle button creates a duplicate of the currently selected channel
- The Recycle Bin button will delete the highlighted entry.

Finally, the small triangles next to the logger and schedule tree view entries can be used to hide/unhide all of their constituent entries, which can reduce clutter when you are working on a large configuration.

Properties Pane

The large **properties pane** on the right hand side is used to display all of the detailed settings for the selected tree view item. The layout of this area varies depending on the type of entry selected on the tree – logger, schedule or channel:

- If the Logger tree entry is selected, the properties pane shows some basic details of the logger, such as the model and the number of CEMs connected. This is also the place to set any of the *DT80*'s profile settings.
- If a schedule tree entry is selected then details of the schedule's trigger and storage options are shown.
- If a channel entry is selected (as is the case on the screenshot) then in most cases the top part of the properties pane will show the selected wiring configuration and channel number, while the lower part will feature a number of tabs containing detailed settings.

Menu

The **menu** bar across the top works in the same way as the menu bar in any other window-based application. Note that many of the menus have cascading sub-menus, as shown in the screenshot.

Six menus are provided:

- The **File** menu is used to clear the current configuration or load an existing configuration, which may be either the logger's current configuration or a locally saved file. This menu also allows you to save a completed configuration to the logger, which will also "activate" the configuration, i.e. it will start running. See *Managing Configurations* (P147).
- The **Edit** menu simply duplicates the functions of the tree view buttons.
- The View menu allows you to view the logger program generated from your current settings.
- The **Logger** menu can be used to perform a few basic logger management tasks, including setting the time, reloading the current configuration, halting and resuming schedules, and clearing all logged data.
- The Add menu is used to define new tree entries schedules and channels.
- Finally, the **Help** menu identifies the version of the configuration builder. It also provides links to various useful files on the *DT80*, including the user manual and firmware release notes, as well as links to online resources such as training documents and videos.

Banner Area

The banner area along the top of the screen contains:

- a Logger Home button, which returns you to the Logger Home page
- the dataTaker logo on the right hand side will jump to the dataTaker website, www.datataker.com

Note Navigating away from the configuration builder using the Logger Home button, or the dataTaker web link, or pressing the browser Refresh button will all cause any unsaved configuration entries to be lost. Be sure to save your work (using File / Save to disc...) before leaving the configuration builder.

It is often convenient to have the configuration builder running in one browser tab, and the *dEX* web interface running in another. You can then easily switch between them without having to return to the Logger Home page.

Defining Schedules

When the configuration builder starts up, two pre-defined schedules are shown: the immediate schedule (**On logger activation**) and one user schedule (A).

If you click on schedule A's entry in the tree view its details will be displayed in the properties pane. The **On logger activation** (immediate) schedule does not have a trigger or any storage options, so if you select it the properties pane will be blank.

Figure 29: Schedule configuration

Schedule Trigger

By default, the configuration builder sets a new schedule to a 5 second trigger. To change this time, simply alter the indicated number and/or time units.

To define a daily trigger at a particular time of day, select the **Daily at** option.

To define other types of schedule trigger (e.g. event triggered, manual trigger), click on **Advanced Triggering**, which will cause more controls to appear. Use the **Trigger** control to select the type of trigger (see *Types of Schedules* (P48)), then set any further details that may be required. For example, the following settings will trigger the schedule when a falling edge is detected on digital input 1D or 2D:

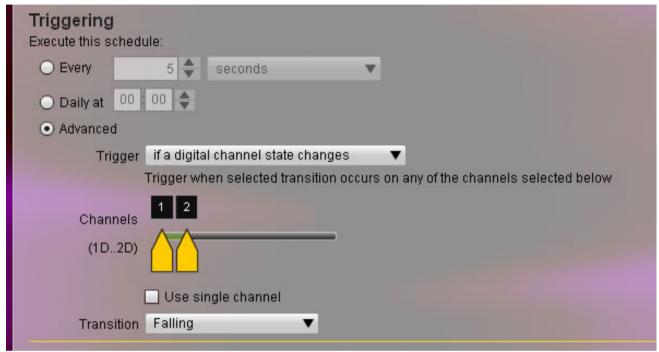


Figure 30: Schedule configuration - advanced trigger

Schedule Conditions

The **Conditions** area is used to define the schedule "while" condition (see *Trigger While* (P52)) – where, for example, a schedule will only trigger while a certain digital input is active. By default, there is no while condition.

Storage Settings

To set the schedule storage parameters, click on the **Storage** tab. This allows you to define various schedule options such as store file size and whether you want old data to be overwritten by new. See *Logging Data* (P91) for more details.

Note The **Enable Logging** control selects the <u>initial</u> logging state (on or off) for the schedule. Regardless of the setting, space will still be allocated for data storage, as specified in the data and alarms **Storage Size** controls. If you do not want to allocate any space for logging data then set the **Storage Size** controls to 0.

Managing Schedules

To add a new schedule, select the **Add** menu, then **Schedule**. This will add a new entry to the tree view, and display it with the name editable. Enter a name for the schedule then click the green tick.

To change the priority order of schedules, select a schedule on the tree and use the up/down arrow buttons at the bottom of the tree view to move it up or down. Note that if the schedule order is changed then the schedule identifier (A, B etc.) will change but the schedule name will remain the same. The topmost user schedule in the tree is always schedule A.

To delete a schedule and all of its constituent channels, select the schedule and click the Recycle Bin button.

Defining Channels

In the configuration builder, the *DT80*'s channel types are categorised as follows:

- Measurement channels include all analog, digital and internal channel types
- Control channels are digital outputs
- Serial channels currently include the SDI12 channel type only

- Reference, Calculation and Delay channels refer to the &chan, CALC and DELAY channels
- Action channels allow certain commands to be inserted into a schedule. These will be placed inside a DO{...} block so that they will be executed when the schedule is triggered.
- **Manual** channels allow entry of a channel definition using the *DT80* command language. Use this for any channel types not directly supported by the configuration builder.

To add a new channel:

- 1. In the tree view, select the schedule to contain the new channel, or select any existing channel within that schedule.
- 2. Select the **Add** menu, then find the required channel type.
- An entry for the channel will be added to the tree. Enter a name for the channel, and click the green tick (or press Enter).
- 4. For most measurement channels, you now need to select a wiring diagram from the available choices on the properties pane, and select the channel number.
- 5. If required, the other channel options in the tabs in the lower part of the properties pane can now be set.

Note All channel names in a configuration must be unique.

Measurement and Serial Channels

All measurement and serial channel types have a similar properties pane layout, as shown in Figure 22.

The control at the top of the screen specifies the specific channel type. In some cases this control is used to further refine the channel type selected in the **Add** menu, in other cases it is a fixed value. In the example shown, **Thermocouple** was selected in the **Add** menu, then **K-type thermocouple** was selected on this control.

Next comes the wiring configuration and channel number controls. These must both be set in order for the configuration builder to generate a correct logger program.

The remainder of the options are presented in five tabs in the lower part of the properties pane. These all have default settings; however you should check that these defaults match your requirements.

❖ General Settings

The most important setting on this tab is the **Log and display this value** checkbox. For intermediate calculation channels (working channels) this should normally be cleared to avoid cluttering the logged data with intermediate channels.

Note that the configuration builder does not support individual control of channel value display, logging and return (ND, NL and NR channel options).

This tab also sets the units string that will be included in CSV data headings and shown on the display (assuming that the "log and display" checkbox is ticked)

You can also assign the measured value to a channel variable. You may want to do this if the value is to be made available to a Modbus client system, for example. If you want to use the value in a calculation, then it is easier to just use a direct **reference** to the channel in the calculation; there is no need to assign it to a CV.

Some channel types may include other controls on this tab. For example, for an SDI-12 channel the device and register addresses are specified here.

❖ Scaling

The **Scaling** tab is where you define either a simple scaling factor (channel factor), or a span or polynomial. Selecting "Spans and Polynomials" will bring up a list of defined spans and polynomials on the left hand side. Clicking on an entry will show its details in the area on the right.

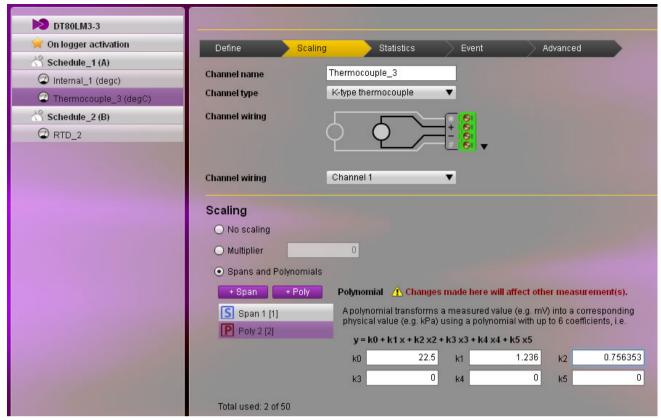


Figure 31: Defining a polynomial

Initially, no spans or polynomials will be defined. To add one, click the **Add** button, select **Span** or **Polynomial**, then enter the required coefficients. In the above screen shot, the following polynomial has been defined:

$22.5 + 1.236x - 0.000275x^{2}$

Note that span and polynomial definitions are <u>shared between channels</u>. If you now define a new channel, all previously entered spans and polynomials will be available for selection. This means that if you select an already defined polynomial and then edit it (change the coefficient values) then you may be affecting other channels. A warning is displayed when an existing span/polynomial is selected to remind you of this.

Statistics

The Statistics tab is used to define additional statistical report values for the selected channel.

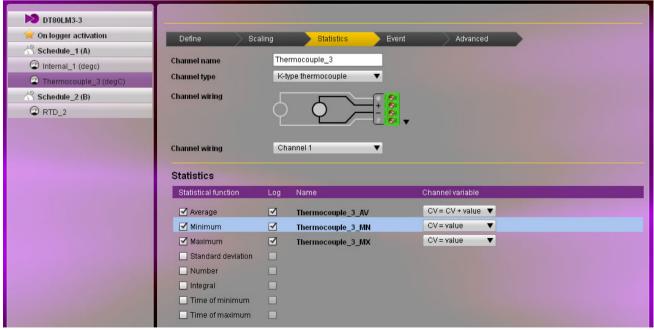


Figure 32: Defining additional statistical report values

For each row that is ticked, an additional measurement value will be calculated and reported. So in the above example a total of four values will be logged: the original measurement, plus the average, minimum and maximum values calculated over the period since the time the enclosing schedule was executed.

If any statistical values are defined for a channel, the channel will then be <u>sampled</u> at the statistical schedule rate, rather than the rate of the channel's own schedule. It will, however, still be <u>logged</u> at its own schedule's rate.

The statistical schedule rate is a global setting, which is set by clicking on the top level "logger" entry in the tree view.

For example, if the statistical schedule rate is set to its default of 1 second, and the above channel's schedule is set to its default rate of 5 seconds, then the sensor will be sampled once per second. Every 5 seconds it will log the instantaneous value of the sensor, plus the average, minimum and maximum, calculated over the previous 5-second period.

For each selected statistical value, an automatically generated channel name is used (e.g. "Indoor12_AV"), which consists of the channel name plus a suffix describing the statistical operation.

You can choose not to log a calculated statistical value. For example, it may be being used as an input to a calculation channel.

Finally, each statistical value may optionally be assigned to a channel variable. You may want to do this if the value is to be made available to a Modbus client system, for example.

❖ Event/Alarm

This tab is used to create an alarm channel. This will test the channel's measured value against a setpoint and then take some action if the condition is satisfied. Alarms are also referred to as "events" in the configuration builder.

The first step in defining an alarm is to specify the alarm condition.

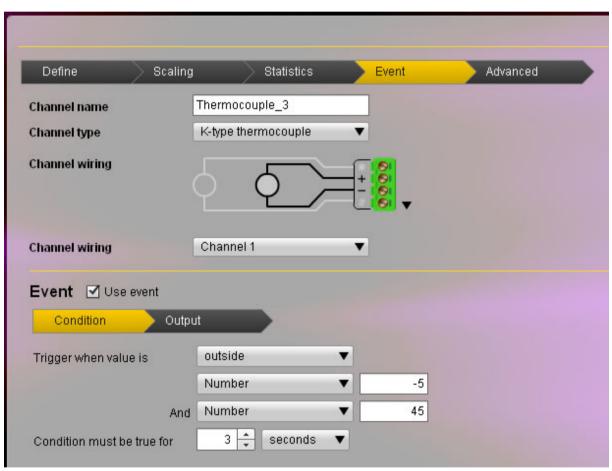


Figure 33: Defining an alarm condition

In the above example, the alarm condition will be true if the channel value is outside the range -5 to +45.

The next step is to define the actions to perform.

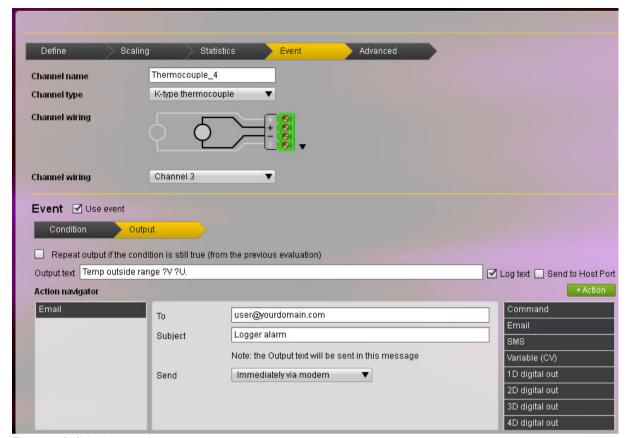


Figure 34: Defining alarm actions

The checkbox at the top specifies whether the actions should be repeated <u>each time</u> that the alarm condition tests true, or whether they should be performed <u>once</u>, when the alarm condition goes from false to true. In *DT80* parlance, the former is an **IF** channel, while the latter is an **ALARM**.

The **Output text** field specifies the alarm text, which will be logged to the schedule's alarm store when (or while) the alarm is triggered. Special "substitution characters" can be included, which will cause the *DT80* to insert certain dynamic values. In the example above, the **?V** and **?U** sequences will be replaced by the channel value and units respectively. The logged alarm string will therefore be something like:

```
Temp outside range: 49.2 degC
```

As well as being logged, the alarm text is also sent to the *DT80*'s currently active comms port. If the **Send to Host Port** option is set then it will instead be sent to the host RS232 port, regardless of which port is currently active. This is typically used for sending modem control messages.

Use the **Action Navigator** to add one or more actions to perform when (or while) the alarm is triggered. These actions may include:

- executing a DT80 command (or string of commands)
- · sending an email message
- sending an SMS message
- mirroring the state of the alarm (true or false) on up to two digital outputs or channel variables.

Each time an action is added, a panel appears on the right hand side containing details about the action. Adding or selecting an action will highlight its details panel and allow its settings to be modified.

In the example shown in Figure 29, three actions have been defined:

- The *DT80* relay output will mirror the alarm, so it will be closed while the alarm condition is true, open when it is false. The relay state will be updated each time the channel is evaluated.
- The command string: 9CV=9CV+1; XD will be executed, which will increment channel variable 9CV, then manually trigger schedule D.
- An email message will be sent to thomas@sodor.org. The subject of the message will be Logger Alarm and the
 message body will contain the output text, e.g. Temp outside range: 49.2 degC.

To remove an action, click the **Delete** button.

Advanced

The **Advanced** tab contains various other options, which will vary according to the channel type. For example, an analog channel might include input gain lock settings, while a frequency input channel might have a sample period setting.

For most channel types, data manipulation options (e.g. rate of change) can also be selected here.

Control Channels

Control channels are outputs, so many of the options to do with sampling or processing the channel return value are not relevant. Consequently there is only one tab for these channel types.

In the configuration builder, three different digital output channel types are provided (LED driver, Relay driver and Logic state). These all translate to the logger **DSO** channel type, the only difference between them is in the displayed graphics for the wiring diagrams and controls.

A typical properties pane display for a control channel is shown below.

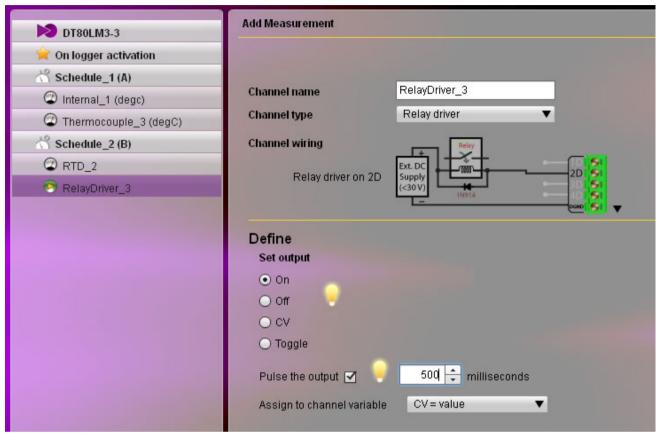


Figure 35: Defining a control channel

For digital outputs, the channel number is selected by choosing the appropriate wiring diagram, rather than setting a separate control (as is the case for analog channels).

The controls in the lower part of the properties pane select whether the control output state should be on, off, set according to a CV value (on if the CV is non-zero, off if it is zero) or inverted.

You can also specify that the output should be pulsed – that is, set to the specified state for the indicated time, then inverted. Thus in the above example the *DT80* relay will be held closed for 500ms then released.

Action Channels

An **action** is used to insert a command into a schedule. Currently, two actions are available – unload data via email and unload data via FTP.

These actions translate into commands of the form:

```
DO{COPYD dest=ftp://... format= sched= data= alarms= start= and
```

DO{COPYD dest=mailto://... format= sched= data= alarms= start= respectively. (See COPYD - Unload Data (P99))

* FTP Logged Data

The properties pane for the **FTP Logged Data** action is shown in *Figure 31*.

Figure 36: FTP action settings

The upper part of the pane contains controls for specifying the unload destination – FTP server details and destination path name. In this example, a replaceable parameter ? (serial) has been entered as the folder name. As discussed in *Unload Destination Replaceable Parameters* (Plo4), this will be replaced with the DT80 serial number when the unload command is executed. The file name field has been left blank, so a filename with the default format will be generated, e.g. 077 20110303T110908.csv.

The lower part of the screen defines the other options in the COPYD command, namely:

- unload format (CSV or DBD)
- · whether data or alarm records are included, or both
- the unload time range. The end time is always "now", while the start time can be either: the earliest available record, or the earliest record that has not yet been unloaded ("new data only"), or *n* minutes/hours/days ago.
- the schedules to include (on the Optional tab)

Email Logged Data

The properties pane for an email unload is very similar. The lower part is the same as for FTP. The upper part is where you specify the email destination – the recipient's email address (or addresses, comma separated), plus an optional custom message subject and body.

Special Channel Types

❖ Reference

A reference channel gets its value from another previously measured value. Thus if you add a reference channel you will be asked to select which existing channel you wish to reference.

Other than that, a reference channel is configured in a similar way to any other measurement channel, i.e. the same five tabs of options are displayed.

References are useful in alarms. You can define multiple alarm channels, all of which are testing a reference to a single measurement against different setpoints.

Note Reference channels cannot be added to the On Logger Activation (immediate) schedule, and channels in the On Logger Activation schedule cannot themselves be referenced.

❖ Calculation

A calculation channel gets its value from a mathematical expression, which may include references to other measurement channels. The result of the calculation can be logged, have statistics applied to it, and so on – the same as any other measurement channel.

The configuration builder provides an "expression builder" to make it easier to enter a valid expression. This will appear when you click inside the **Calculation** field.

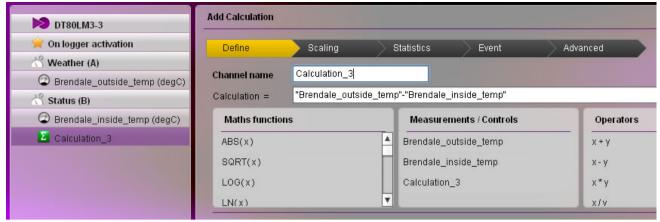


Figure 37: Defining a calculation

The three boxes below the calculation entry field list the available maths functions, operators and previously defined channels that can be referenced. Clicking on any of the items in these boxes will insert it into the calculation entry field. You can also edit the calculation field manually.

In the above example, the calculation channel is working out the mean of two separate thermocouple readings.

A new feature in the recent version of dEX will allow you to self reference a calculation channel. This can be used to define counter loops in dEX without using manual channels. All calculations can be reset with the new reset counter channel.

The new version of dEX now allows the reference the measurement channels from the on logger activation schedule.

* Reset Counter

This channel type allows you to reset counter loops that you have setup using the new self referencing option in a calculation channel .



Figure 38B: Reseting a Counter

Delay

The **Delay** channel inserts a fixed delay between the execution of the channels immediately above and below it in the tree view.

Manual Channel

This channel type allows you to manually define one or more channels. It is useful for situations where the configuration builder does not directly support the *DT80* channel type you wish to use – for example the generic serial channel (SERIAL).

Anything you type here will be copied verbatim to the generated *DT80* program – no syntax or consistency checking is performed by the configuration builder.

One substitution that will be made, however, is that any occurrences of \$name will be replaced by the actual name of the manual channel, as shown in its tree view entry.

Global Settings

Clicking on the top entry in the tree view will display the logger's **global settings**. A vertical menu of categories will be displayed. If you click on a category name then a set of related controls will be displayed in the main part of the window.

These controls cause the configuration builder to generate appropriate profile settings, which will then be included in your configuration. *Controls vs. Profiles* (P145) summarises the relationship between global settings controls and profile settings.

Site information

This page is provided as a way of identifying and documenting a configuration.

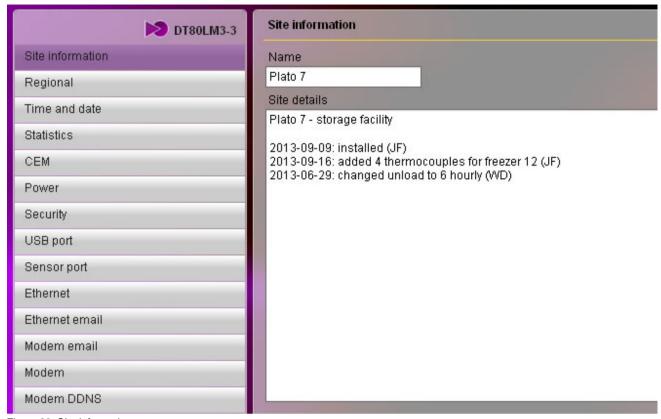


Figure 39: Site information page

As shown in Figure 33, there are two controls:

- Name is an optional configuration name. This will be shown on the home screen of the *DT80* LCD display. If not specified then the job name will be shown, which is always CONFIG for a job generated by the *dEX* configuration builder.
- Site details is a free text field, where you may wish to record further details about the site, a history of changes made to the configuration, and so on. This information is not used by the *DT80* at all.

Regional

The **Regional** page contains settings related to the region in which the logger is deployed:

- The **Mains frequency** setting should be set to the local power mains frequency. The *DT80* integrates analog measurements over an integral number of mains cycles, in order to provide maximum rejection of mains-related noise.
- Set the **Temperature units** to the desired units to be used for all temperature measurements.
- **Decimal point character** is used to select the number format used in CSV and free format data returned by the logger. See CSV Format Data (P27) for more details.

Time and Date

The Time and Date page contains time related settings:

- The **Time zone** control must be set if you are using NTP to synchronise the *DT80*'s system time; see *Automatic Time Adjustment (NTP)* (P268). If NTP is not used then this does not need to be set. Note that the city names are provided as a guide only, and do not take daylight savings into account.
- A button is provided for setting the logger date and time. The same function is provided on the Logger menu.
- There are controls relating to Network Time Protocol (NTP). The *DT80* can use NTP to synchronise its internal system time to a time server on the Internet. See *Automatic Time Adjustment (NTP)* (P268). If NTP is enabled then the time zone control must be set appropriately.

Statistics

Any channels which are configured to report statistical values will be sampled at this rate, which should always be faster than the channel's schedule's trigger rate. See *Statistical Report Schedules* (P53).

CEM

If your logger has Channel Expansion Modules connected then the **Number of CEMs** field must be set correctly, otherwise you will not be able to select the channel number for any CEM-connected sensors.

Note also that the configuration builder assumes that the CEMs' addresses are set sequentially starting at 1. That is, if you specify that two CEMs are connected then they must be set to addresses 1 and 2.

See The CEM20 (P377) for more details.

Power

This page contains a number of options that can be used to trade off the *DT80*'s speed and availability against power consumption.

Four aspects of *DT80* operation can be controlled on this page:

- Enabling low power **sleep** mode (see *Sleep Mode* (P297)) will reduce the *DT80* power consumption to very low levels after a defined period of inactivity and between scheduled measurements. However, during sleep no communications or other interaction with the logger are possible.
 - By default, sleep mode is disabled when the *DT80* is externally powered. For applications which use an external 12/24V battery you will probably want to clear this checkbox, so that the *DT80* can sleep while externally powered.
 - Sleep is also disabled by default if an Ethernet or USB cable is connected, because any USB/Ethernet connection will be lost when the *DT80* goes to sleep. You can force the *DT80* to go to sleep regardless of cable status by clearing the "disable sleep if using USB/ethernet" checkbox.
- The *DT80*'s **analog measurement subsystem** can be powered continuously, or switched on and off as required (see *Analog Warm Up Time* (P374)). The latter option saves power, but requires a short "warm up" time before each group of analog measurements, which will reduce the *DT80*'s maximum sample rate.
- The **display backlight** can be powered continuously (making the LCD easier to read), or switched on for a short time following a key press, or not used at all. See *Display Backlight* (P118).
- The **12V power output** can be enabled continuously (possibly also during sleep mode), or it can be configured to automatically switch on when a CEM measurement is required. See *Controlling 12V Power Output* (P289).

At the bottom of the page, a bar graph shows the relative power consumption of the selected settings. This is intended as a guide only, and the power increments shown on the graph are <u>not to scale</u>.

Security

Allowing access to the *DT80*'s servers via the Internet can present a security risk. This page allows you to restrict access to selected *DT80* services. See also *Security* (P257).

- The *DT80*'s **command**, **FTP** and **Modbus** servers can be selectively enabled or disabled. Note that the web (HTTP) server cannot be disabled via the *dEX* configuration builder, as *dEX* requires the web server in order to function. (Use manual profile commands if you wish to disable the *DT80* web server or set these servers to non-standard TCP port numbers.)
- The **FTP server credentials** (user name and password) can be set, and you can specify whether read-only anonymous FTP access to the *DT80* is permitted. These credentials are also used when connecting to the *DT80* from a remote PPP client.
- A **command server password** and **timeout** can be defined. If a password is set then the *DT80* will ignore anything sent to the command server until the password is sent. See *Password Protection* (P187).

Serial Port Controls

The three *DT80* serial ports (USB, host RS232 and serial sensor) are configured in a similar way: Each has its own page of controls.

- On the **USB port** page (not present on DT82 models), there is only one setting: the port function, which specifies whether the port should be used for command/PPP, PPP only, serial sensor or Modbus. You can also disable the port. See *Configuring the USB Port* (P188).
- On the **host port** page (not present on DT8xM models), you can set the port function, as well as the serial parameters (baud rate, flow control etc.) The flow control timeout (maximum time to spend waiting for a "clear to send" indication before sending anyway) can also be set. See *Configuring the Host RS-232 Port* (P197).
- On the **sensor port** page (not present on DT81/82E models) there are a similar set of controls for the serial sensor port, plus an extra one to select the port mode (RS232/422/485). See *Configuring the Serial Sensor Port* (P201).

Ethernet

On this page you can:

- enable or disable the Ethernet port.
- select automatic or manual configuration. Automatic is suitable if there is a DHCP server running on your local network, or if you a connecting directly to a single PC via a cross-over cable. Select manual if you wish to configure a static IP address.
- manually set up the required network parameters, if manual configuration was selected. These include IP address, subnet mask, gateway address and DNS server addresses. These are normally specified by your network administrator.

See How to set up Ethernet (P239) for more details.

Note If you are running the *dEX* configuration builder over the Ethernet connection then bear in mind that any change to these settings may result in the connection being lost.

Ethernet Email

The Ethernet email page is used to configure the required settings for sending email via Ethernet. This includes:

- a name to be used in the "From" field for all emails sent by the logger. Typically the name would be a site name. If not specified then a name based on the *DT80*'s model and serial number is used e.g. "DT85LM-3 098812".
- an email address to be used in the "From" field. This must be a validly formatted email address. If you are using a third-party email provider then this normally needs to be the address that is associated with your account. If any emails sent by the logger cannot be delivered then a "bounce" message will usually be sent to this address.
- details of the SMTP (email) server to use: server address and username and password, as specified by your ISP or network administrator.

See Setting Up Email (P238) for more details.

Modem Email

DT8xM models only

This page is similar to the **Ethernet email** page except that the settings relate to sending email via the integrated modem.

The **From Name** and **From email** settings specify the desired sender details, as for Ethernet. Note that if you are using the email service provided by your mobile carrier then the **From email** setting can usually be any address.

The *DT80* includes a list of SMTP servers provided by certain mobile carriers. If **Automatic** is selected then it will attempt to locate the correct SMTP server settings based on the inserted SIM card. If this doesn't work (a "SMTP server not set" error is returned when the *DT80* first attempts to send email) then you will need to select **Manual** and obtain the correct settings from your mobile carrier.

Note Not all mobile carriers provide an SMTP server. If your carrier doesn't then you will need to source a third party email provider.

See Email (P215) for more details.

Modem

This page contains settings for the integrated modem (DT8xM models only). The page is divided into four tabs:

- The General tab contains basic connectivity settings. If the SIM has a PIN set then it must be entered here.
 - This is also where the Access Point Name (APN) is set. The *DT80* includes a list of APNs used by certain mobile carriers. If one of the "set by SIM" options is selected then the *DT80* will attempt to locate the correct APN settings based on the inserted SIM card. If this doesn't work (an "APN not set" error is returned when the *DT80* first attempts to connect to the Internet) then you will need to select **Manual** and obtain the correct APN settings from your mobile carrier. See *Manual Configuration* (P214) for more details.
- The **Power** tab is used to configure communications session timing parameters such as when a session should start and how long it should persist for as described in Session Timing Settings (P228).
- The **Session connection** tab deals with communications session error handling. See *Session Failures* (P229) for more information.
- Finally, the **Network capabilities** tab allows you to restrict the modem to either 3G or GSM operation, or restrict it to particular frequency bands. These settings are seldom required as the *DT80* will automatically connect to the best available network that has adequate signal level. However, if you wish to force the *DT80* to connect to a particular mobile network, and you know its frequency band, then these settings can provide a way of doing this. See also *Network* (P224).

For regular models (no integrated modem), this page contains selected settings for an external modem. These correspond to profile settings in the **HOST MODEM** section.

Modem DDNS

This page contains settings for the *DT80*'s Dynamic DNS client, which allows you to access the logger from the Internet using a custom domain name. These settings are described in *Dynamic DNS* (P216).

Startup

The settings on this page control the *DT80*'s behaviour following a hard reset (**HRESET** command, power failure, hardware reset switch, or abnormal reset).

By default, the current job will be reloaded following reset, but this can be disabled by unticking the **Automatically activate** checkbox.

You can also make the *DT80* restore all digital outputs (including the latching relay output) to their previous state following reset (by default they will be reset to the "off" state), using the **Maintain digital outputs** checkbox.

Keypad Functions

This page allows up to ten commands to be added to the function menu that is displayed when the **Func** key is pressed. To add or edit a label or command click on the appropriate table cell, enter the new text then press Enter or click on another cell. See also *User Defined Functions* (P118).

LCD

The options on this page are mostly intended for applications where the display is visible but the keypad is not accessible. The **Auto-scroll** option will cycle through all defined channels on the display at the specified rate, while the **Auto-dismiss** option will automatically acknowledge any warning messages that may be shown on the LCD after they have been displayed for the specified time. See also *Display* (P115).

Calibration

This page contains a control to set the voltage drift threshold (in microvolts) for triggering an automatic recalibration of the *DT80*'s analog system. Automatic recalibration reduces the effect of temperature changes on analog measurements. See *Calibration and Characterisation* (P373).

Advanced

The **Advanced** page lists those profile settings that are not covered by controls on the previous pages. These profiles are less commonly used. Refer to *Profile Settings* (P262) for information on all profile settings.

Figure 34 shows a typical Advanced settings display.

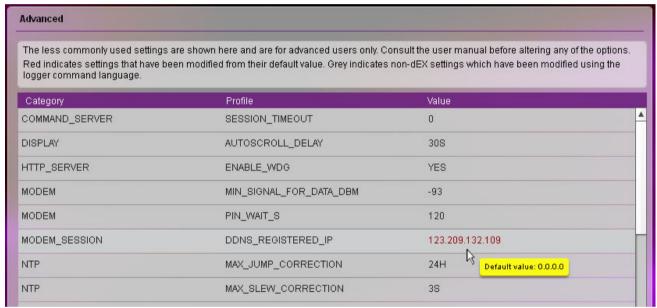


Figure 40: Advanced settings

Note the following points:

- To change a value, click on it and type the new value. No checking is performed on the entered value so carefully check the format and allowable range, otherwise an error may be generated when you try to load the configuration onto the logger. After entering a new value, press Enter or click anywhere else to commit the change.
- If a setting has a non-default value then it will be shown in red. In the above screenshot, the MIN SIGNAL FOR DATA DBM profile is set to -113, which is not the default.
- You may see some profile settings in grey, which cannot be edited. These are "hidden" profiles and are generally internal settings. Hidden profiles will not be included in your configuration and are normally invisible. If a hidden profile is present in this table then this is a warning that it is currently set to a non-default value and may affect the operation of the logger.

Controls vs. Profiles

The following table summarises the mapping between the controls described in this section and the DT80 profile settings, which are discussed in $Profile\ Settings\ (P262)$ and throughout this manual.

Category	Control	Default	Equivalent command language setting and default
Site	Name		PROFILE USER SITE=
information			
Regional	Mains frequency	50Hz	PROFILE PARAMETERS P11=50
	Temperature units	°C	PROFILE PARAMETERS P36=0
	Decimal point char	Standard	PROFILE PARAMETERS P38=46
Time & date		0	PROFILE LOCALE TIME_ZONE=0S
	Use NTP	no	PROFILE NTP BACKGROUND_ENABLE=NO
	NTP server	0.datataker.pool .ntp.org	PROFILE NTP SERVER= 0.datataker.pool.ntp.org
	Undata alaak ayany	3599 s	PROFILE NTP BACKGROUND_PERIOD=3599S
Statistics	Update clock every Stat. schedule rate	1s	RS1S
CEM	Number of CEMs	0	RSIS
Power	Allow sleep	yes	PROFILE PARAMETERS P15=0
i owei	Delay until sleep	30 s	PROFILE PARAMETERS P17=30
	Disable sleep if ext power	yes	PROFILE PARAMETERS P17-30 PROFILE PARAMETERS P15=0
	Disable sleep if Eth/USB	•	PROFILE PARAMETERS P15=0
	Power analog subsystem	only when taking a	PROFILE PARAMETERS P15-0 PROFILE PARAMETERS P21=0
	Power analog subsystem	reading	PROFILE PARAMETERS P21=0
	Display backlight	on when key pressed	PROFILE PARAMETERS P20=2
	12V power output	on when taking CEM reading	PROFILE PARAMETERS P28=0
Security	Command server	enabled	PROFILE COMMAND_SERVER PORT=7700
	FTP server	enabled	PROFILE FTP_SERVER PORT=21
	HTTP server	enabled (fixed)	PROFILE HTTP_SERVER PORT=80
	Modbus server	enabled	PROFILE MODBUS_SERVER TCPIP_PORT=502
	FTP username	DATATAKER	PROFILE FTP_SERVER USER=DATATAKER
	FTP password	DATATAKER	PROFILE FTP_SERVER PASSWORD=DATATAKER
	Anonymous FTP	enabled	PROFILE FTP_SERVER ALLOW_ANONYMOUS=YES
	Command password		PASSWORD=
	Command timeout	600 s	PROFILE PARAMETERS P14=600
USB port	Function	command	PROFILE USB_PORT FUNCTION=COMMAND
Host port	Function	command	PROFILE HOST_PORT FUNCTION=COMMAND
	Data rate	57600	PROFILE HOST_PORT BPS=57600
	Data bits	8	PROFILE HOST_PORT DATA_BITS=8
	Stop bits	1	PROFILE HOST_PORT STOP_BITS=1
	Parity	none	PROFILE HOST_PORT PARITY=NONE
	Flow control	software	PROFILE HOST_PORT FLOW=SOFTWARE
	Flow control timeout	60 s	PROFILE PARAMETERS P26=60
Sensor port	Function	serial sensor	PROFILE SERSEN_PORT FUNCTION=SERIAL
	Data rate	1200	PROFILE SERSEN_PORT BPS=1200
	Data bits	8	PROFILE SERSEN_PORT DATA_BITS=8
	Stop bits	1	PROFILE SERSEN_PORT STOP_BITS=1
	Parity	none	PROFILE SERSEN_PORT PARITY=NONE
	Mode	RS232	PROFILE SERSEN_PORT MODE=RS232
	Flow control	none	PROFILE SERSEN_PORT FLOW=NONE
	Flow control timeout	60 s	PROFILE PARAMETERS P26=60
Ethernet	Enable	yes	PROFILE ETHERNET ENABLE=YES
	Auto-config	yes	PROFILE ETHERNET IP_ADDRESS=AUTO
	Static IP address	0.0.0.0	PROFILE ETHERNET IP_ADDRESS=AUTO
	Subnet mask	255.255.255.0	PROFILE ETHERNET
			SUBNET_MASK=255.255.255.0
	Gateway address	0.0.0.0	PROFILE ETHERNET GATEWAY=0.0.0.0
	Primary DNS	0.0.0.0	PROFILE NETWORK DNS_SERVER_1=0.0.0.0
	Secondary DNS	0.0.0.0	PROFILE NETWORK DNS_SERVER_2=0.0.0.0
Ethernet	From name		PROFILE ETHERNET_SESSION SENDER_NAME=

Category	Control	Default	Equivalent command language setting and default
Email	From email	your.logger@	PROFILE ETHERNET_SESSION RETURN_ADDRESS=
		datataker.com	your.logger@datataker.com
	SMTP server		PROFILE ETHERNET _SESSION SMTP_SERVER=
	Username		PROFILE ETHERNET _SESSION SMTP_ACCOUNT=
	Password		PROFILE ETHERNET _SESSION SMTP_PASSWORD=
Modem	From name		PROFILE MODEM_SESSION SENDER_NAME=
Email		your.logger@	PROFILE MODEM_SESSION RETURN_ADDRESS=
		datataker.com	your.logger@datataker.com
	SMTP server	(*)	PROFILE MODEM_SESSION SMTP_SERVER=
	Username	(*)	PROFILE MODEM_SESSION SMTP_ACCOUNT=
	Password	(*)	PROFILE MODEM_SESSION SMTP_PASSWORD=
Modem	SIM PIN		PROFILE MODEM PIN=
(DT8xM	Mobile network	SMS and internet	PROFILE MODEM SMS_ONLY=NO
models)	APN	(*)	PROFILE MODEM APN=
	Username	(*)	PROFILE MODEM APN_ACCOUNT=
	Password	(*)	PROFILE MODEM APN_PASSWORD=
	Modem power	only when required	PROFILE MODEM_SESSION TIMING_CONTROL=NONE
	Leave on for at least	0 s	PROFILE MODEM_SESSION MIN_DURATION_S=0
	Once idle, leave on for	120 s	PROFILE MODEM_SESSION MIN_IDLE_S=120
	Force off after		PROFILE MODEM_SESSION MAX_DURATION_S=0
	Try to register for	60 s	PROFILE MODEM REGISTRATION_WAIT_S=60
	Retry interval	30 s	PROFILE MODEM RETRY_DELAY_S=30
	Heartbeat method	DNS	PROFILE MODEM_SESSION NETWORK_CHECK=DNS
	Ping servers		PROFILE MODEM_SESSION PING_SERVERS=
	Service	auto	PROFILE MODEM SERVICE=AUTO
	GSM bands	quad-band	PROFILE MODEM GSM_BANDS=7
	3G bands	tri band	PROFILE MODEM 3G_BANDS=19
Modem	Assume modem present	if DSR active	PROFILE HOST_MODEM DETECTION=DSR
(standard	Modem power control	none	PROFILE HOST_MODEM EXT_POWER_SWITCH=NONE
models)	Reset modem if idle for	43200 s	PROFILE HOST_MODEM MAX_CD_IDLE=43200
Modem	Enable DDNS	no	PROFILE MODEM_SESSION DDNS_ENABLE=NO
DDNS	Logger domain name		PROFILE MODEM_SESSION DDNS_HOST_NAME=
		members.dyndns.org/	PROFILE MODEM_SESSION DDNS_SERVER_URI=
		nic/update	members.dyndns.org/nic/update
	Server port	80	PROFILE MODEM_SESSION DDNS_SERVER_PORT=80
	Username		PROFILE MODEM_SESSION DDNS_ACCOUNT=
	Password		PROFILE MODEM_SESSION DDNS_PASSWORD=
Start up	Automatically activate	yes	PROFILE STARTUP RUN=CURRENT_JOB
	Maintain digital out/relay	no	PROFILE STARTUP MAINTAIN_OUTPUTS=NO
Keypad	Label x 10	(varies)	PROFILE FUNCTION Fn_LABEL=
	Command x 10	(varies)	PROFILE FUNCTION Fn_COMMAND=
LCD	Auto-scroll interval	disabled	PROFILE DISPLAY AUTOSCROLL_INTERVAL=0S
	Auto-dismiss after	disabled	PROFILE DISPLAY AUTOACK_DELAY=0S
Calibration	Enable auto calibration	enabled	PROFILE SWITCHES K=ON
		3 μV	PROFILE PARAMETERS P0=3
	recalibration		

Table 5: Global logger controls and equivalent profile settings.

In the above table (*) indicates that a suitable default value will be set automatically if possible, based on the inserted SIM.

Managing Configurations

Common Tasks

The File menu is where you manage the logger configurations that you create with the configuration builder.

❖ Backing up Configurations

You can save the configuration that you are working on to your computer using the **Save to disc...** option on the **File** menu. By default, *dEX* configuration files have a .dex file extension.

Likewise, you can open a saved configuration by selecting Open from disc...

* Activating a Configuration

Once your configuration is complete, you can save it to the logger and it will then start running. The process is as follows.

- 1. Select Save to logger on the File menu.
- 2. The configuration builder will first check whether there is an existing job on the logger which has the same name as that used by the configuration builder (which is **CONFIG**), and which has existing logged data. If so, a warning will be displayed, indicating that any logged data for the existing job is about to be deleted. If you want to keep the data from the existing job then click **Cancel**, other wise click **Continue** and it will be deleted.
- 3. The current logger configuration will then be reset so any currently running job will be stopped. If the logger is nearby you will hear the relays click as it performs the normal re-calibration that occurs whenever a soft reset is performed.
- 4. The new configuration will now be uploaded onto the DT80. This may take 30 seconds or more.
- 5. If all goes well the new configuration will start running immediately. If the *DT80* detects an error in the configuration then the error message generated by the *DT80* will be displayed in this case the logger will now have no current job.
- 6. Once the configuration has been activated successfully, you can click the **Logger Home** button and switch over the *dEX* web interface, which will allow you to monitor the data being collected by your new configuration.

Note If there are any channels which do not have a wiring or reference source selected then you will be prompted to complete the definition of these channels before activating the configuration.

Loading a Configuration

When the configuration builder is started, the logger's current configuration (all defined schedules and channels, plus all profile settings) will be retrieved and presented. If there is no dEX-generated configuration present on the logger (as will be the case when the logger is first switched on, for example) then a warning message will be displayed then a blank configuration will be created. Note however that the logger's current profile settings will still be loaded in this case.

You can also manually load the current configuration from the logger into dEX using the **Open from logger** option on the **File** menu.

Creating a New Configuration

The **New** option on the File menu will load a blank configuration into *dEX* (the logger's actual running configuration will not be affected until you select **Save to logger**).

All schedule and channel definitions will be removed, and all profile settings will be reset to factory default values. Note however that before this is done you will be asked whether you want to clear or retain the current modem and Ethernet settings.

For example, if you have set a manual Ethernet address for the logger then will probably want to ensure that the **Keep logger's current ethernet settings** checkbox is ticked – otherwise when the configuration is saved to the logger the *DT80*'s IP address will be reset to "automatic" and you will lose your connection to the logger (at least until you enter the new IP address into your browser).

Configuration Files

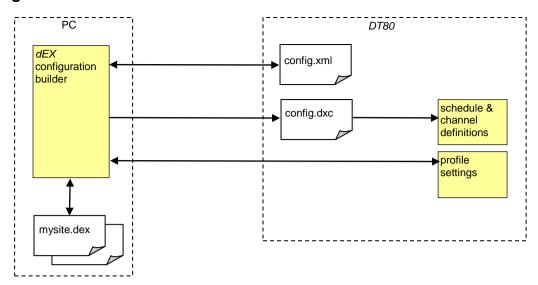


Figure 41: How dEX stores configuration information

The above diagram summarises how configuration details are stored. Notice that:

- *dEX* saves your configuration to the logger as (1) an XML file (config.xml); (2) the equivalent logger command language file (config.dxc), which the logger then interprets in the usual way in order to set up its schedules and channels; and (3) the set of profile settings.
- dEX retrieves the configuration from the logger by reading back the config.xml file and the profile settings. It does not
 read the config.dxc file that it generated, nor can it read the actual schedule and channel definitions (which may have
 been changed outside of dEX).
- You can store any number of configuration XML files (which also include profile settings) on your computer's file system (.dex files).

Logger Controls

The Logger menu allows some basic logger control functions to be performed.

The **Set Logger Date & Time** option allows you to set the logger's time to the current PC time, or to set it manually to a specific value.

Restart will perform the **RUNJOB"CONFIG"** command. This will reload the schedule and channel definitions that have been previously saved to the logger. Unlike the **Save to Logger** command, **Restart** will <u>not</u> change any profile settings, nor will it reset channel variables or digital outputs.

Stop and Resume will issue the H (halt) and G (go) commands respectively, which will halt and resume all schedules.

Finally, the Clear all data option will delete any logged data for the current configuration (DELD job=config).

Preventing Configuration Changes

Once the *DT80* has been fully configured, you may wish to remove the configuration builder option from the **Logger home** page, so that it is no longer accessible to everyday users. To do this, rename the folder **b:\www\jango**, which contains the configuration builder. You can use the command interface:

RENAME b:\www\jango b:\www\jango_hidden

(If entered using DeTransfer, use \\ rather than \.)

Alternatively, connect to the DT80's FTP server and use your FTP client to rename the folder.

dEX Web Interface

Using the Web Interface

The following screenshot shows the general web interface screen layout:

Figure 42: Welcome Screen

The DT80 web interface comprises the following main elements:

- The large **properties pane** on the right hand side is used to display various "screens" of information. Its contents will change depending on which screen you select.
- The menus on the left hand side are used to select which screen to display. There are five menus: **Status**, **Retrieve Data**, **Measurement**, **Command**, and **Help**. Clicking on a menu button causes its list of menu items (screens) to be revealed, and the most recently selected screen will be displayed in the properties pane.

In the above screenshot, the **Status** menu is selected. This menu has five screens: **Welcome**, **Schedules**, **Storage**, **Diagnostics** and **Program**. The **Welcome** screen is the one that is currently displayed. If you then clicked on **Schedules**, for example, then the **Schedules** screen would be displayed in the properties pane area.

Clicking on the four small triangles at the far left will hide (or restore) the menu, to allow more space for the properties pane.

Note By using the web interface configuration tool, it is possible to disable or restrict some of the menu options. The sample displays shown in *Figure 36* and throughout this section assume that all options are available (which is the factory default).

- The purple strip above the properties pane contains the name of the selected menu (Logger Status in this case) and
 may contain controls (buttons etc.) which relate to the currently displayed screen. In this case there is one button:
 Update, which will cause the displayed information to be updated. At the right hand edge of this area is the circular
 activity indicator. This symbol will be animated while the web interface is actively communicating with the logger.
- The banner area along the top of the screen contains four controls: Firstly, the **Logger home** button provides a link back to the Logger Home page (*Figure 21*). Secondly, the *dataTaker* logo is a link to the dataTaker website (www.datataker.com). Thirdly, there is a **Full Screen** link in the top right corner. This link will display the web interface so it covers the entire screen. All browser controls will be hidden, as will the Windows task bar and desktop. To exit this mode press Esc or click the **Exit Full Screen** link. Note that all keyboard input, other than the Esc key (and certain Windows keystrokes e.g. Alt-Tab), is disabled while in full screen mode. Finally, there is an **About** link, which displays the version number of the web interface.
- Along the bottom of the screen is the status bar. This displays the current time and date according to the PC's clock.
 Other status or error messages may also be displayed here.

If the browser window is resized then all elements of the *DT80* web interface will resize appropriately. If the browser window is too small, however, then scroll bars will appear.

Many of the controls and other screen elements in the *DT80* web interface include **tool tips**. If you move the cursor over the item and hold it there, a small yellow box will appear containing a brief description of the item.

Status Screens

The **Status** menu allows you to select one of five different screens, each showing useful information about the current status of the *DT80*.

Welcome Screen

The **Welcome** screen, as shown in *Figure 36*, is the first screen displayed when the web interface is started. It includes the following basic information about the connected logger:

- name of the currently loaded job, if any
- current date and time, according to the DT80's real-time clock. Press Update to update the display.
- the logger product type, including model number and series (e.g. DT80-2 for a DT80 Series 2)
- the logger serial number
- the version number of the logger's firmware

Schedules Screen

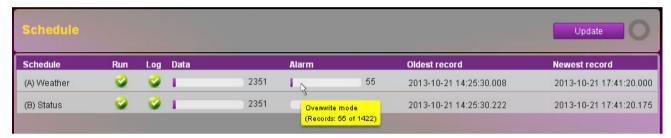


Figure 43: Schedules Screen

The **Schedules** screen shows the status of each of the schedules in the current job.

The schedules are presented in tabular form, one row per defined schedule. For each schedule the following information is displayed:

- schedule ID (e.g. A) and user-defined name, if any
- whether the schedule is running or halted (in the above example all six schedules are running)
- whether logging is enabled for the schedule (in this case logging is enabled for all schedules except schedule E)
- the number of logged data and alarm records. The bar graphs give an indication of the percentage of the allocated storefile space that contains data. For schedules operating in overwrite mode (which is the default), the bar graph is shown in blue. For schedules in non-overwrite mode (e.g. RA(DATA:5H:NOV)1S), the bargraph is shown in red if the storefile is greater than 80% full, otherwise green.
- the timestamp of the oldest logged record (data or alarm)
- the timestamp of the newest logged record (data or alarm)

Press **Update** to update the displayed details.

Click on a column heading to re-sort the table based on the data in that column. The small triangle shows which column is the current sort key.

Note also the yellow tool tip in the above screen shot, which pops up if you move the mouse cursor over the bar graphs. This shows the storefile mode (overwrite/non-overwrite), the number of logged records and the size in records of the store.

Storage Screen

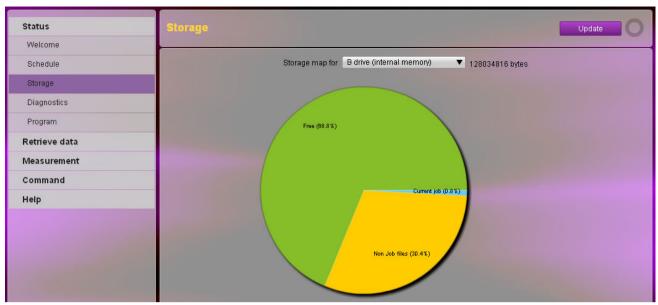


Figure 44: Storage Screen, showing details for the internal file system (B:)

The **Storage** screen provides an overview of the amount of space used and available on the *DT80*'s internal file system, or on a connected USB memory device.

Select the drive to display (B: drive - internal, or A: drive - USB device) using the control at the top of the screen.

The displayed pie chart contains up to four segments:

- Free (green) this space is unused
- Current job (orange) space used by current job, including program text storage, data and alarm files, and any saved archive files. Remember that the data and alarm storefiles are pre-allocated, fixed size files, so the same amount of space will be used regardless of the actual number of data points or alarms that have been logged (see *How Data and Alarms are Stored* (pg1)). If there is no current job loaded then this segment will not be present.
- Other job(s) (dark blue) space used by other jobs which have previously been defined but which are not currently active. If these jobs and their logged data are no longer required then this space can be recovered using the DELJOB command (see *Deleting Jobs* (P59)).
- **Non job files** (light blue) this includes all other files stored on the drive, such as the web interface, user manual, event log, and so on.

The actual space used (in bytes) for each segment can be displayed by holding the mouse cursor over the legend on the right hand side of the screen.

For the USB drive (A:) only two segments are shown: Free and Used.

Diagnostics Screen

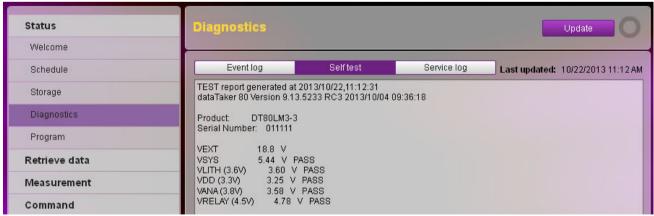


Figure 45: Diagnostics Screen, showing Self Test output

The Diagnostics screen provides functions which may be helpful when diagnosing a problem with the DT80. You can:

- display the event log, which records events such as resets and power failures (Event Logs (P274))
- execute a self test, which verifies correct hardware operation (TEST Command (P273))

• generate a full service report. This includes the above items, plus several other details regarding the state of the logger (SERVICEDATA Command (P275)). The report also contains details relating to the web client (i.e. your PC and browser).

To perform the desired function, press the appropriate button. If this is the first time you have selected the function then it will be performed immediately and after a short pause the data will appear. If you have previously selected the function then the previously collected data will be displayed; press **Update** if desired to repeat the operation.

Program Screen

The Program screen simply displays a listing of the program text for the current job, similar to the SHOWPROG command.

Data Retrieval

Unloading Data Using the Web Interface

The **Retrieve Data** screen allows you to transfer logged data and alarms from the *DT80* to your computer. There are two variants of this screen:

- The **Basic** screen will be shown by default. You can retrieve data and/or alarms for the current job: either all logged data, or a specified time range, or just the new data (that is, data logged since you last retrieved data)
- The **Advanced** screen (see *Figure 40*) is the same, except it also shows details relating to the number of logged data/alarm records for each schedule (similar to the **Schedules** screen (P150)). You can also select the schedules for which to retrieve data.

This process is essentially the same as **unloading** the data, using the **COPYD** command (see *Retrieving Logged Data* (P95)), in that the logged data is read out of the logger's store files and saved in CSV or DBD form.

CSV data is in form that can be loaded directly into a spreadsheet application such as Excel.

DBD format is the logger's native binary format, which is generally quicker to transfer. DBD files can be opened by the dataTaker *dump_dbd* utility and certain data analysis packages.

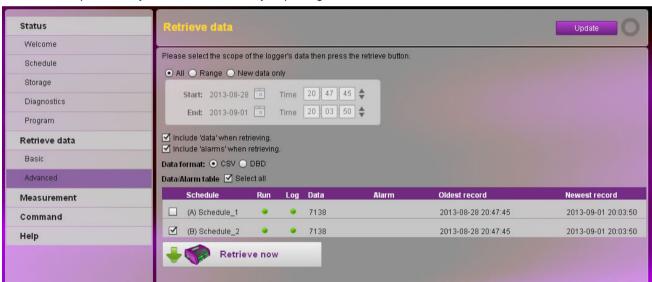


Figure 46: Retrieve Data Screen (Advanced View)

The general procedure for retrieving data is:

- Specify the data format and the extent of the data and/or alarms to be retrieved, using the various controls (described further below)
- 2. Press Retrieve Now
- A "Save As" dialog will be displayed where you can enter a filename. The selected data will be saved to this file in CSV or DBD format.
- 4. Locate the saved file and open it using a suitable application

Specifying the Data Range

Time Range

The range of data to be retrieved is specified using the control at the top of the screen. The options are as follows:

- All (which is the default) will retrieve all available data/alarms. The displayed start and end times indicate the approximate time range that will be retrieved. Press **Update** to update these values.
- Range allows you to specify an explicit date/time range. Clicking on the start or end date fields will display a calendar control, as shown in *Figure 41* below. Use the left and right arrow buttons to select the month, then click on the required day. The currently selected date is highlighted in blue, while today's date is shown in grey. Click outside the calendar control to dismiss it without changing the selected date.

When using the Range option it is helpful to select the **Advanced** screen so you can see the time range for each schedule's logged data/alarms.

• **New Data Only** will retrieve all data logged <u>since the last unload</u>. As with the **All** option, the displayed start and end times indicate the approximate time range that will be retrieved. Press **Update** to update these values.

Note For the New Data Only option, "unload" means a web interface data retrieval by any browser session. In other words, "since the last unload" does not necessarily mean "since <u>your</u> last unload". The New Data Only feature should therefore normally only be used where data is being collected by a single web user.

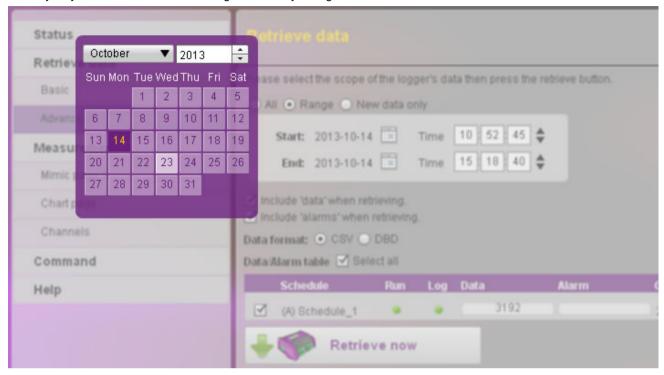


Figure 47: Date Selection Control

❖ Data or Alarms

The two checkboxes below the range control should be self-explanatory – they select whether data, alarms or both will be retrieved. The default is to retrieve both data and alarms.

❖ Data Format

Select DBD or CSV format. DBD will normally be faster to transfer, but CSV can be opened by more applications.

❖ Schedules

If the **Advanced** screen is selected then a table showing the status of each schedule is shown in the lower part of the screen. This has the same format as the **Schedules** status screen, with the addition of a **Get** column containing a checkbox for each schedule.

If a schedule's checkbox is ticked than data and/or alarms for that schedule will be retrieved; if it's not then it won't.

Retrieving Data

When you click on the **Retrieve Now** button, the web interface will first query the logger to obtain an estimate of the number of records that will be returned, given the selections you have made. If the *DT80* indicates that there is no data to retrieve than a message to that effect will be displayed and the unload will be cancelled.

Next, the web interface will start the actual data download. At this point the "Save As" dialog will be displayed. Note that a default filename will be automatically generated, in the following format:

serial_jobname_yyyymmddThhmmss.CSV (or .DBD)

where *serial* is the *DT80*'s serial number, *jobname* is the name of the current job and the rest is the date and time at which the data retrieval was performed. A different name or location may be specified if desired.

A progress dialog will now be displayed. The bar graph gives an approximate indication of the percentage completion.

Once the process is complete, "Done" will be displayed; you can now open the file using your preferred application. A spreadsheet application (e.g. *Excel*) provides many analysis and charting capabilities.

CSV Data Format

By default data and alarms are returned in standard Comma Separated Value (CSV) format.

The file consists of a number of rows. Each row is terminated by a CR-LF sequence.

Each row consists of a number of **fields** (columns), separated by commas. (Semi-colons (;) will be used if the *DT80* has been configured to use a comma as the decimal point character.)

Each row consists of the following fields, in order:

- timestamp (e.g. 2007/12/15 20:49:45.905)
- timezone. Currently, this field will always have the value "n", meaning "no timezone"
- data values for first schedule (zero or more fields, one for each loggable channel). Numeric data values are specified in "mixed" format (may be either standard or exponential format), to 8 significant digits and trailing zeroes after the decimal point are trimmed. String values are enclosed in quotes, with any control characters represented in ^c form (e.g. a CR character would appear as ^M).
- alarm number, alarm state (0-3) and alarm text (see *Alarm Records* (P89)) for first schedule (three fields; only present if schedule has one or more loggable alarm channels)
- data values for second schedule (if any)
- alarm number, alarm state and alarm text for second schedule (if any)
- (and so on, for each schedule)

The first row in the file is a **header row**, which contains a descriptive name for each field. For example, the name of a data value field has the form " *chanName* (*units*) ", e.g. "Reactor4 (degC)"

The first block of rows after the header row contain all data records for the first schedule. The next block of rows contain all alarm records for the first schedule. Then comes the data records for the second schedule, and so on.

In other words, the CSV data is generated in schedule order, <u>not</u> in time order. However, once it is loaded into a spreadsheet it is a trivial exercise to re-sort by the timestamp field.

DBD Data Format

Data may also be returned in the *DT80*'s native binary (DBD) format. For large files, it can take a significant amount of time for the *DT80* to convert the data to CSV format, so transferring DBD files can be significantly quicker.

DBD files may be opened by certain third party graphing applications, such as DPlot by Hydesoft Computing LLC.

Displaying Real-Time Measurements

The web interface provides two ways of viewing real-time measurements:

- all channels can be displayed in tabular form, one row for each defined channel
- selected channels can be displayed using a variety of graphical mimic displays

Channel List Screen

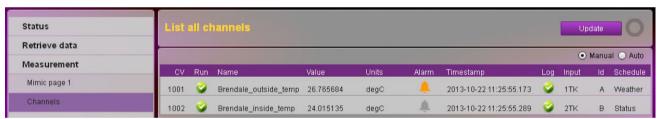


Figure 48: Channel List Screen

The **Channel List** screen lists all channels defined in the current job. For each channel, the following information is displayed:

- Run if green then the channel's schedule is running
- Name channel name
- Value channel value as at the last update (press Update to immediately update all values)
- Units
- Alarm If the channel is an alarm channel (i.e. the channel is the quantity being tested in an ALARM or IF command)
 then this column indicates the state of the alarm active (ringing bell) or inactive (quiet bell). If the channel is not an
 alarm channel then this column is blank.
- Timestamp the time at which the indicated value was recorded
- Log if green then logging has been enabled for the channel, and its enclosing schedule.
- Input the channel's default (standard) name
- Schedule the name of the schedule containing this channel

By default, working channels are <u>not</u> displayed in the channel list. (A working channel is one with the <u>w</u> channel option specified, which means that it is not displayed, returned or logged.) However, if you tick the **Show Hidden Channels** checkbox then all channels will be displayed.

As with most other screens, the displayed information can be immediately updated by pressing **Update**. It can also be set to automatically update, by selecting **Auto** in the upper right of the screen. You can then specify the number of seconds between updates.

Note that automatic updates will only continue while the Channel List screen is displayed. If you select a different screen then the web interface will stop requesting updates from the logger.

Mimics Screen

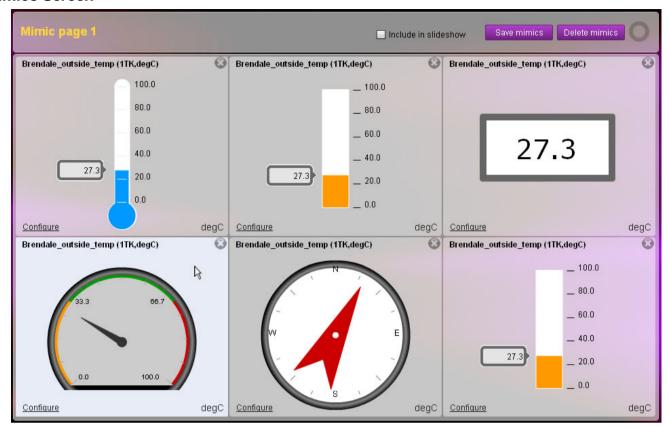


Figure 49: Typical Mimic screen

The **Mimics** screen can be used to present selected channel values in a way that resembles traditional control panel indicators.

Up to five separate mimic screens can be defined, using the web interface configuration tool (see *Customising the Web Interface* (P165)).

Each mimic screen provides space for between one and sixteen mimic displays, arranged in a grid layout, as shown in the screenshot. Initially, all display positions will be blank, with a single **Add mimic...** button in each display position. The general procedure for setting up a mimic screen is as follows:

- 1. First ensure that the required job is loaded and is working as required.
- 2. Create a mimic by clicking on the **Add mimic...** button in the desired display position. You will then fill in various details specifying the type of mimic (bar graph, meter, etc.), the channel, and various other options.
- 3. Repeat the above to define more mimics. If required, existing mimics can be changed using the **Configure** control. It is not necessary to define mimics for all six positions.
- 4. When you are happy that all mimics are working as required, press Save Mimics. This will save your mimic configuration to a file <u>on the logger</u>. The next time you connect to that logger (using any PC), your mimic setup will be automatically retrieved and displayed.

❖ Types of Mimics

Eight different types of mimics are available:

- **Dial Meter** a pointer which moves across a graduated scale
- Bar Graph a variable height vertical bar with a graduated scale
- Thermometer a bar graph in the shape of a bulb thermometer
- Compass a circular compass display for indicating a bearing in degrees
- Digital Panel a numeric display, similar to a digital panel meter
- LED simulates a single or bi-colour LED
- State Indicator indicates one of two states using two LEDs
- History List displays a numeric value, along with previous samples
- Trend Chart displays a trend chart for one or more channels
- Bar Chart displays a single channel bar chart

On each mimic page you can present 1-16 channels using any combination of these mimic types.

❖ Creating a Mimic

To create a mimic, choose one of the six display positions and click the **Add Mimic...** button. If you want to replace an existing mimic, then you will first need to delete the old one by clicking on the **X** button in the top right of the mimic's display position.

When you click on Add Mimic..., a dialog box will be displayed (Figure 44) where you can specify

- · the type of mimic
- the channel whose value you want to display

Once these have been set, press **OK** to create the mimic.

Figure 50: Mimic creation dialog

❖ Configuring the Mimic

Once a mimic has been created, it will be displayed in the selected position and will begin automatically updating at the default rate, or the rate you set on the mimic creation dialog.

You can now change various aspects of the mimic by clicking on the mimic's **Configure** link in the lower left corner. This will bring up a configuration dialog box. The contents of this dialog will vary according to the mimic type. A typical mimic configuration dialog (for the Dial Meter type) is shown in *Figure 45*.

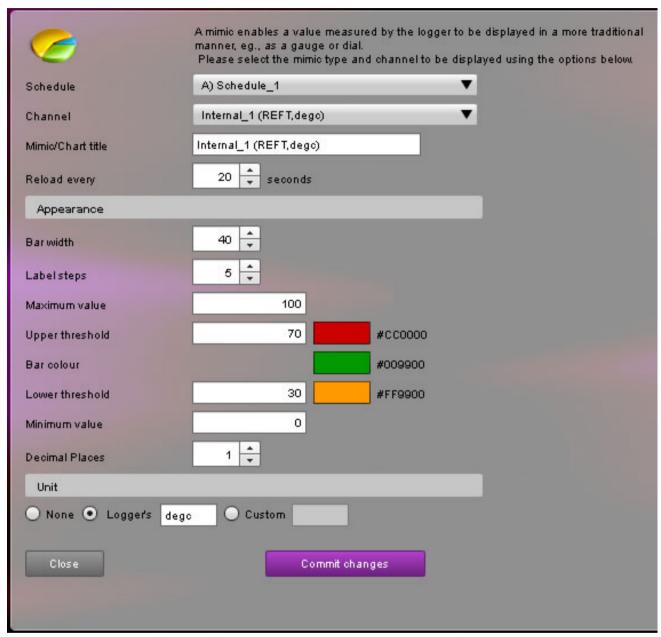


Figure 51: Configuration dialog for Dial Meter mimics

For a given mimic type, the configuration settings may include:

- Variable to display specifies the channel to display
- Custom variable label the name of the channel (as set on the logger) can be overridden here
- Update Rate specifies how often the mimic will request an updated channel value from the logger
- Units this text string will be displayed in the lower right corner. Typically this would be set to Logger's to display the
 channel's units string as specified in the logger program.
- Minimum, Maximum, Label Steps defines step size and extent of graduated scale for those mimic types that have one (Bar Graph, Thermometer and Dial Meter)
- **Upper threshold, Range colour, Lower Threshold** divides the range of the mimic into three bands; a separate scale or indicator colour can be specified for each band.
- Decimal Places number of digits after the decimal point in channel value when displayed numerically
- Show Measured Value for mimic types which do not display the numeric channel value as part of their main graphic, this option allows you to include a small numeric channel value display.

- Threshold for bi-state mimic types (State Indicator and LED), the mimic will be displayed in the "active" state if the channel value exceeds this threshold value
- **Colour** for some mimic types, the colour of the main graphic element can be adjusted. For bi-state mimics, both the "active" and "inactive" colours can be specified.
- Size for some mimic types, the size of the main graphic element can be adjusted (LED radius, bar graph width, panel meter font size, etc.)
- State Labels for State Indicator mimics, you can customise the text displayed next to each LED.

Once all required mimics have been created and configured, press **Save Mimics** (top right), which will save your mimic setup to a file on the logger.

Note that only one mimic configuration can be stored on the logger. When you press **Save Mimics**, any previously stored mimic configuration will be overwritten.

Saved mimics will be automatically reloaded whenever you connect to the logger using the web interface and display the Mimics screen.

Trend Chart Mimics

❖ About Charts

The trend chart mimic is the most sophisticated of the mimic types. It can retrieve historical data from the *DT80* and plot one or more channels on a "chart recorder" type display.

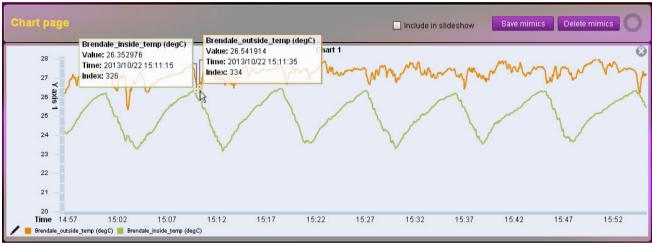


Figure 52: Typical chart mimic

Up to 5 different channels can be plotted on each chart mimic, and up to two Y axes can be defined.

The above screenshot shows a typical chart mimic shortly after the job was started. The chart has been configured to show the last 20 minutes worth of data, and the job has been running for about 12 minutes. The blue trace (temperature) uses the left hand axis, while the red trace (sine wave) uses the right hand axis.

The Y axis range can either be set manually (as is the case here) or automatically.

Moving the cursor over a trace will display details of an individual sample point, as shown in the screenshot, while moving the cursor over the green area on the left will display a legend showing the channel name for each trace colour.

Each trace stores and displays up to 1000 data points, which may be fewer than the actual number of data points logged over the displayed time interval. If this is the case then the trend chart will actually show a <u>sample</u> of the actual logged data. Be aware that this sampling of the data may cause narrow peaks in the data to be missed, and not displayed.

❖ Defining a Chart

Defining a chart is similar to defining any other mimic. Click the **Add a mimic...** button on any unused mimic space, which will bring up the mimic creation dialog (*Figure 44*). Select **Chart**, and the chart mimic creation dialog (*Figure 47*) will be displayed.

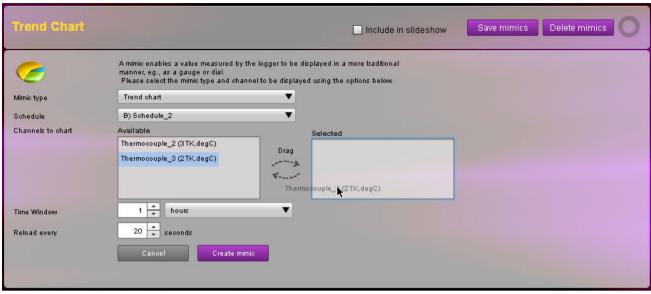


Figure 53: Chart mimic creation dialog

To define the chart:

- Select the schedule containing the channel(s) to chart. Note that all channels plotted on a single chart must be part of the same schedule.
- Select a channel from the **Available** list and press the > button to move it to the **Selected** list. Repeat for any further channels that you wish to show on the chart.
- Use the slider control to select the time window covered by the chart, e.g. selecting "2 hours" will plot data for the last two hours.
- Select the mimic reload rate, i.e. the rate at which new data will be requested from the logger. There is no point setting this any faster than the logger's sample rate for the schedule.
- Press Create mimic.

After creating the mimic, you can change any of these settings by clicking the chart mimic's **Configure** button to bring up the chart configuration dialog. You are also able to set the trace colour, as well as the Y-axis scaling and labels.

Don't forget to press **Save mimics** (top right of the screen) to save all mimics to the logger – otherwise they will be lost when you close or reload the browser window.

Bar Chart Mimics

Bar chart mimics are similar to trend charts in that they both plot a channel's value versus time. The differences are:

- Bar charts break the displayed time window into discrete intervals, one per displayed bar. For example, if the time window is one day then the sample interval is one hour.
- With bar charts the time window is chosen from a list of pre-defined values (for trend charts any window length can be specified).
- For some of the available bar chart time window selections, the window end time is "rounded up" (for a trend chart, the
 end time is always "now"). For example, if "This hour" is selected then the window end time will be the end of the
 current hour.
- Only a single channel can be plotted on each bar chart.

Figure 48 shows a typical bar chart.

Figure 54: Bar chart mimic

❖ Bar Chart Time Windows

Creating a bar chart mimic is very similar to creating a trend chart. As noted above, however, the time window is specified differently. The following time windows are available:

Time Window	Number of bars	Time per bar	Chart start time
This hour	12	5 min	start of current hour
Today	24	1 hour	00:00 today
This week	7	1 day	Sunday/Monday (selectable)
This month	28-31	1 day	1 st of this month
This year	12	1 month	January
Last hour	12	5 min	start of previous hour
Yesterday	24	1 hour	00:00 yesterday
Last week	7	1 day	last Sunday/Monday (selectable)
Last month	28-31	1 day	1 st of last month
Last year	12	1 month	last January
Last 60 minutes	12	5 min	60 minutes ago
Last 24 hours	24	1 hour	24 hours ago
Last 7 days	7	1 day	7 days ago
Last 30 days	30	1 day	30 days ago
Last 12 months	12	1 month	12 months ago

Bar charts work by taking the <u>first logged data point after the end of a bar's time interval</u>, and using that as the value for the bar. All other data points are discarded. Bar chart mimics do not perform any averaging on the data.

The DT80's statistical functions can be used to aggregate measurements. For example, the following DT80 program will sample a temperature every minute, then at the start of each hour calculate the average of the previous hour's readings.

RS1M

RA1H 1TK(AV, "Ave temp")

This average is then suitable for plotting using a bar chart mimic, with the time window set such that the time per bar is 1 hour.

Slideshow Mode

Slideshow mode will automatically cycle between selected mimic pages. This is useful in applications where the *dEX* mimics are used to provide a non-interactive data readout, for example on a public display screen.

To enable slideshow mode, tick the **Include in slideshow** box at the top of each mimic page that you wish to display automatically. Ticking this box will cause two further controls to appear, as shown in *Figure 49*.

Figure 55: Slideshow mode controls

For each mimic page, set the display duration. When all pages have been configured, press **Save mimics** to save the settings to the logger, then press **Play** to start the slideshow.

By default, when the slideshow starts the command menu on the left will disappear and full screen mode will be enabled. This behaviour can be altered using the web interface configuration tool (select **Customise dEX** on the Logger home page, see *Customising the Web Interface* (P165)).

Using the configuration tool you can also configure slideshow mode to start automatically when you browse to the DT80's web address.

Note For security reasons, the Flash player that runs the *dEX* application does not allow full screen mode to be selected automatically – it requires a user action such as clicking on a button. It is therefore not possible to have slideshow mode start automatically in full screen mode. (Note however that add-ons are available for some browsers that allow the browser – as opposed to the Flash player – to automatically enter full screen mode on startup.)

Remapping Mimics

If you make a change to a configuration that already has mimics defined then *dEX* will attempt to **re-map** the mimics to the new configuration, according to the following rules:

- If there is a channel in the new configuration that has the <u>same name</u> as the mimic's configured channel then the mimic will be automatically remapped to that channel.
- Otherwise, a window will pop up giving you the option to either (a) delete the mimic, or (b) manually remap it to one of the channels in the new configuration.

For example, suppose you have defined a configuration with two channels: "1CV" and "Temp", and have then defined three mimics: a panel meter showing 1CV, a thermometer showing Temp and a chart showing both.

If you now change the configuration so that "Temp" is renamed to "KilnTemp", then a dialog box similar to the following will be displayed:

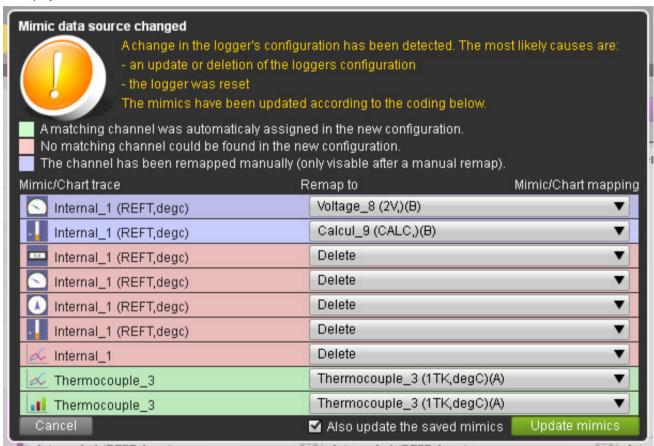


Figure 56: Mimic remapping dialog

This window lists all defined mimics and chart traces. If a channel with matching name was found in the new configuration (as is the case for the 1CV panel meter and chart trace) then the mimic is displayed in green and the mimic is automatically remapped to the matching channel.

If there is no channel with the same name in the new configuration then the mimic will be displayed in red.

For each mimic or trace, select whether you want to delete the mimic or remap it to one of the new configuration's channels ("1CV" or "KilnTemp"). If you choose to remap a mimic to a new source channel (as is the case for the thermometer mimic) then the mimic is displayed in purple.

Once this has been done for all mimics in the list, press Update mimics.

By default, the updated mimics will be automatically saved to the logger. If you don't want this to happen (e.g. the change you made to the configuration was a temporary test only) then clear the **(Also update the saved mimics)** checkbox.

Note If matching channels can be found for all defined mimics then the mimic remapping dialog will not be displayed.

Command Window

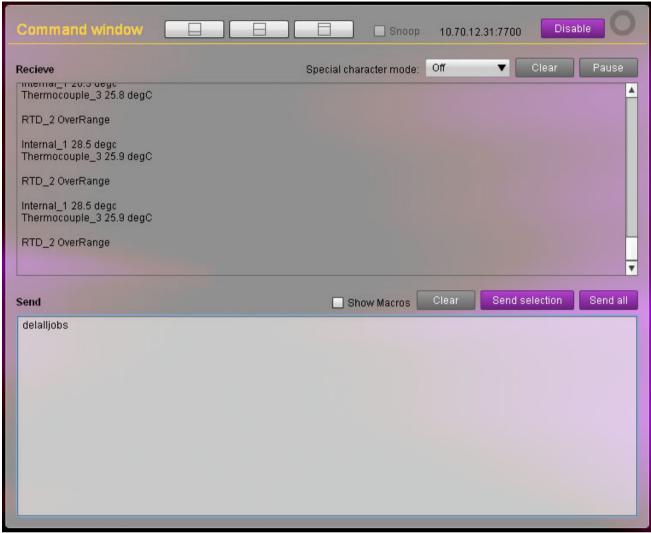


Figure 57: Command Window

The **Command Window** screen provides access to the *DT80*'s command interface. This allows you to send commands to the *DT80* and see its responses, much as you would using *DeTransfer*. In the above screenshot, the command window has been used to send the **DIR"B:"** command (seen in the lower **Send** pane) and the logger's response has been captured in the upper **Receive** pane.

Enabling the Command Window

When the Command Window is first selected, it will be **disabled**, and it will not be possible to type anything in the **Send** pane. To enable the command interface, you need to first select the mode: **Normal** mode (default) or **Snoop** mode (tick the checkbox), then press **Enable**.

In Normal mode, the web interface will automatically send the sequence /h/E/M/R when you press the **Enable** button. This makes the command interface easier to use by ensuring that fixed format mode is switched off (/h), and that command echo, messages and data return are switched on. When you subsequently press **Disable** or select a different screen, the web interface will send /e/m/r.

In Snoop mode, nothing is sent when you enable or disable the interface. This allows you to "snoop" a logger to see what it is outputting, without affecting its state.

The box to the right of the **Snoop Mode** checkbox indicates the IP address and TCP port number to which the command window is "connected". These are not editable.

The three purple buttons above the Receive pane allow you to change the relative sizes of the Send and Receive panes.

Note If you switch to a different web interface screen then the command window will be automatically disabled. If you then return to the Command Window screen, it will be automatically re-enabled in the same mode (Normal or Snoop). The contents of the Send and Receive panes will have been preserved. (They will, however, be cleared if you reload the web interface, e.g. by pressing the browser's Refresh/Reload button.)

Sending Commands

Once the command window has been enabled, you will be able to type standard *DT80* commands into the lower **Send** pane. Controls will be familiar to *DeTransfer* users:

- Entered text is not sent to the logger until you press Enter or click one of the "Send" buttons
- Press Enter to send to the logger all text on the line on which the cursor is positioned.
- Click Send All to send all text in the Send pane to the logger
- Click Send Selection to send all text in the Send pane that you have highlighted.
- Press Shift-Enter to insert a line break. Nothing will be sent to the logger. This is useful for entering a sequence of commands or a multi-line job which you will later send all in one hit.
- The Windows copy and paste mechanism may be used to paste text into the Send pane.
- Click Clear to erase all text from the Send pane.

Note to DeTransfer users: The web interface command window does <u>not</u> interpret any "backslash" sequences. This means that to send a "\" character to the logger you enter "\", <u>not</u> "\\".

Viewing Logger Output

Once the command window has been enabled, all output from the logger's command interface will be displayed in the top **Receive** pane.

The Receive pane has a 32 kbyte memory buffer for storing received text. As text is received, it is added to the buffer. Once the buffer becomes full, the oldest data is discarded.

The Receive pane normally displays the newest received data, but you can review data which has scrolled out of the display are by using the scroll bars. However, if data is being returned quickly then this will be awkward because the Receive pane will keep jumping back to display the newest data.

The **Pause** button is useful here – it temporarily stops screen display updates so you can scroll back through the receive buffer. Note that incoming data will still be captured while the screen is paused. When you un-pause the display (by clicking on the **Pause** button a second time) all captured text will be added to the receive buffer and displayed.

Other Features

❖ Special Characters

The **Special Character Mode** control specifies how incoming control and non-printable characters are handled. When this control is set to **Off**, all characters are written to the receive buffer "as is". When set to one of the other values, any incoming characters with ASCII codes in the range 0-31 or 127-255 will be replaced by a text string identifying the character. For example, if **Decimal** is selected then an incoming ESC character (ASCII 27) will be replaced with the string [27].

To send a special character, enter the special sequence _char(n), where n is the required ASCII code (1-255) in the Send window at the point you want the special character to be inserted. For example:

```
1$="abc_char(88)def"
```

will result in 1\$ being set to abcXdef (character "X" has ASCII code 88)

❖ Delays

It is sometimes useful to insert a delay between commands. This can be done using the special sequence $_wait(n)$, where n is the number of seconds to wait. This command must be specified on a line by itself. For example, if you enter the following in the Send pane:

```
HRESET
_wait(5)
DIR
```

and press Send All, then the web interface will send HRESET, pause for 5 seconds, then send DIR.

❖ Macros

If the mouse cursor is moved over the status line area at the bottom of the screen then a set of six **macro** buttons will appear, labelled, by default, **Macro 1** through **Macro 6**. These buttons allow you to save commonly used command sequences and then send them with a single click.

To define a macro button, hold down the Ctrl key and click one of the buttons. A window will pop up, allowing you to set:

- the label for the button
- the commands to send (char and wait sequences may be included)
- other options, such as whether you want to be prompted before the command is sent

Pressing **Save** will save the macro definitions to a file on the logger, from which they will be automatically retrieved when you next connect to that logger.

Help

These screens provide:

some general tips on using the web interface

- links to documentation files (user manual, release notes, etc.) stored on the logger.
- links to useful resources on the dataTaker web site (www.datataker.com)
- information on how to report a problem or get help

Customising the Web Interface

Overview

Several aspects of the enhanced web interface can be customised to suit site requirements:

- Selected menu items can be disabled to help prevent unauthorised or accidental changes to the logger configuration.
 For example, access to the Command window can be removed.
- Up to 20 mimic screens can be defined, each with up to 16 mimics.
- Help pages can be customised to provide site specific information, OEM details, etc.
- Users can be prevented from adding or editing mimics.

The Web Interface Configuration Tool

To run the Web Interface Configuration Tool, select **Customise dEX** on the **Logger home** page (*Figure 21*). This will display a pop-up window, similar to that shown below.

Figure 58: Web interface configuration tool

The configuration tool is laid out in a similar way to the web interface itself. There is a menu of options down the left hand side which allow you to switch between different categories of settings. The pane on the right displays settings related to the selected category.

The **Save settings** button at the lower right will save all settings to the logger. This only needs to be done once; it is not necessary to save the settings for each category separately. After pressing the Save button, you should see a confirmation message pop up after a few seconds.

The **X** symbol at the top right will close the configuration tool and return to the **Logger home** page. Any changes made since you last pressed **Save settings** will be discarded.

Finally, the **Restore defaults** button at bottom left will reset all settings to factory defaults, and save them to the logger. See also *Restoring Factory Settings* (P167).

Status menu

The settings in this category allow items in the web interface's Status menu to be selectively disabled.

For example, if you wish to prevent the current *DT80* program being viewed via the web interface then you should <u>uncheck</u> the **Include 'Diagnostics' menu** and **Include 'Program' menu** options (as well as the **Command** menu; see below)

Retrieve menu

These settings allow Retrieve menu items to be disabled.

Unchecking the two options ('basic retrieve' and 'advanced retrieve') in this category will prevent users downloading data from the *DT80* to their computer.

Measurement menu

The settings on the **Measurement menu** page allow you to:

- create or delete mimic pages.
- disable the List all channels menu item in the web interface (which displays channels and values in tabular form)

Figure 59A: Customising mimic pages

Figure 60B: Customising mimic pages

By default, the web interface provides two mimic pages. The first has space for up to 6 mimics arranged as 2 rows x 3 columns, as depicted in *Figure 43*. The second has two wide mimics, suitable for chart displays.

Up to 20 mimic pages can be defined, and each can have its own arrangement of mimics, from one single mimic up to a 4x4 grid of mimics.

The **Custom mimic page** area of this screen lists the names of the currently defined mimic pages – these names will appear in the web interface **Measurement** menu. In the example shown in *Figure 53*, the two default mimic pages are shown, called **Mimics** and **Charts**.

To add a mimic page, click the + button, or to edit an existing page click on the page's name, then click **Edit**. A dialog box will be displayed allowing you to set the page's name, description (which the web interface will display in the title area directly above the mimics), and layout (number of rows and columns).

To delete a page, click on its name and press –. To change the order in which they will be displayed, click on the page's name, then click **Up** or **Down**.

Command menu

This page simply allows you to disable the web interface's command window.

Help menu

This page is similar to the **Measurement menu** settings page, in that it allows you to:

- disable some or all of the standard help pages (that is, disable some or all of the items on the web interface's Help menu)
- create custom help pages, which will be accessible under the web interface's Help menu.

Custom help pages are text files which you will need to create using a text editor. As well as plain text, these files may also contain certain HTML tags, which allows for some basic formatting (bold, italic, bullet points etc.) as well as web links, as depicted in the somewhat contrived example below.

If you wish to create a help file with HTML formatting, the easiest way to get started is probably to download the file b:\www\flash\customHelp\customHelpExample.html (which generates the sample help page shown in

Figure 54) from the DT80 to your PC and use it as a starting point. This can be done by entering the following URL into a web browser:

ftp://ip-address/www/flash/customHelp

then right clicking on the file **customHelpExample.html** in the displayed file list and selecting **Save Link as...** or **Save Target as...**

Once you have created and saved a help file on your PC, you can add it using the **Help menu** page in the web interface configuration tool. As with the **Measurement menu** page, click + to add a help page, enter a name and description, then click on the **Source** field and select **Load help page from computer**. You can then navigate to the required file, and it will be automatically uploaded to the *DT80*.

If you need to edit an existing help page, first make the changes to the copy on your computer, then select the help page from the list and press **Edit**. As before, select **Load help page from computer** and navigate to the (updated) file, which will then be uploaded to the logger, thereby replacing the old version.

Note If you upload a new version of an existing help page, as described above, it is necessary to <u>clear the browser cache</u> before running the web interface. This will force the browser to load the new page rather than its older cached copy. (In Internet Explorer, clear the cache by selecting "Delete Browsing History..." then select "Temporary Internet Files".)

Branding

The **Branding** category allows you to customise certain visual elements on the web interface. Currently, this is limited to the colour used for the thin border around the interface, and in the thick band above the main properties pane (by default, purple)

Security

The **Security** settings allow you to:

- disable all changes to defined mimics. This means that the Add a mimic buttons, as well as existing mimics'
 Configure and Close (X) controls (see Figure 43) will no longer be present.
- disable full screen mode, which will remove the Full screen link at the top right of the screen.

Slide Show

The **Slide-show** settings control the mimic "slide show" feature (see *Slideshow Mode* (P161)), where the web interface will automatically cycle through all defined mimic page. This is useful for applications where the web interface is used as a non-interactive display. The options on this page allow you to:

- automatically start the mimic page "slide show" when the web interface is loaded
- · hide the navigation menu at the left of the screen while the slide show is in operation
- automatically switch to full screen mode when the user clicks Play to start the slide show.

Restoring Factory Settings

The configuration tool's **Restore defaults** button will restore the enhanced web interface to the default look and functionality. However it will not delete any images or custom help pages that you may have uploaded to the *DT80*. If required, these can be manually deleted from the **B:\WWW\flash\images** and **B:\WWW\flash\customHelp** folders using the **DEL** command (see *File Commands* (P113)).

Preventing Configuration Changes

Once the web interface has been fully configured, you may wish to remove the configuration tool option from the **Logger home** page, so that it is no longer accessible to everyday users. To do this, rename the folder **b:\www\needa**, which contains the configuration tool. You can use the command interface:

RENAME b:\www\needa_hidden

(If entered using DeTransfer, use \\ rather than \.)

Alternatively, connect to the DT80's FTP server and use your FTP client to rename the folder.

Classic Web Interface

The *DT80* classic web interface is standards compliant which helps to make the interface accessible from a wide variety of web browsers. It has also been designed to be usable even on small-screen devices such as PDAs and mobile phones.

For advanced users, the web interface can also be customised by developing new web pages and loading them onto the *DT80*'s internal file system.

Browser Requirements

The web interface uses a minimum of browser functions to provide its interface. The browser must however support XHTML 1.0, CSS 1 and JavaScript to fully support the DT80's web interface.

The following browsers have been used and found to be compatible

- Microsoft Internet Explorer Version 6 or later
- Mozilla Firefox
- Google Chrome
- Pocket Internet Explorer (on Windows Mobile 5 and Windows Mobile 2003)
- Opera 8.x or later, Opera Mobile and Opera Mini
- Apple Safari
- Mobile Explorer
- Palm Web Browser 2.x (Palm Garnet OS)
- Sony PlayStation Portable Web browser

Navigating the Web Interface

The built-in web interface consists of the five pages – **Home**, **Details**, **Status**, **Admin** and **Help**. The design of the web interface follows a tab based metaphor where each tab represents a HTML page.

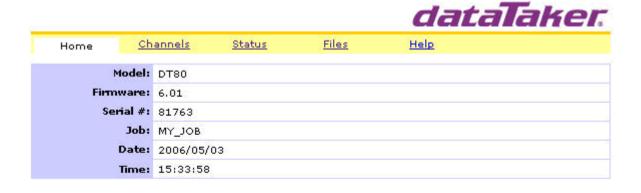


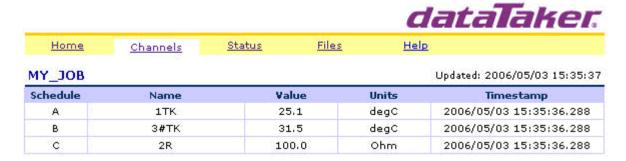
Figure 61: Navigation tabs

To navigate the web interface, simply click on the desired tab heading. The Home page is displayed by default when the web interface is first loaded.

Home Page

The **Home** page displays the data logger's model, firmware version, serial number, the current job name and the current date and time.

Copyright @ 2006 Datataker Pty Ltd


Figure 62: Home page

The page does not provide any functionality other than the display of data logger general information.

Channels Page

The **Channels** page displays a table listing all channel entries defined for the current job. This table shows the most recent measurement for each channel, along with the time that the measurement was taken.

Note that any channels defined as working channels (W channel option) will not be included.

Copyright @ 2006 Datataker Pty Ltd

Figure 63: Channels Page

The Channels page is updated every 30 seconds. The time at which the table was last updated is displayed on the top-right corner of the channel listings table.

Status Page

The **Status** page displays status information for each defined schedule in the current job. The following information is displayed for each schedule:

- Schedule Name
- Schedule Trigger
- Schedule Status whether it is active or halted.
- Schedule Logging State enabled or disabled
- The number of data records / alarms logged
- The capacity of the schedule's store file
- The timestamp for the first and last data / alarm records stored

Figure 64: Status Page

All schedules configured for the current job will be displayed when this page is loaded.

The schedule navigation links at the top of the page ($\underline{A} - \underline{X}$) allow you to jump directly to a particular schedule.

Finally, the Top link displayed below each schedule's data provides a quick way to scroll back to the top of the page.

Files Page

The **Files** page provides the ability to view files stored on the *DT80*'s file system. Direct links are provided for the system event and error logs (see *Event Logs* (P274)), and the remainder of the file system can be browsed using FTP.

<u>Channels</u>	Status	Files	<u>Help</u>
system			
L			
(A))			
les			
	system (A:)	system (A:)	system (A:)

Copyright @ 2006 Datataker Pty Ltd

Figure 65: Files Page

To view a log file, simply click on the desired log file link. The log file will then be displayed. Click on the <u>Back</u> link to return to the Files page.

<u>Back</u>	
Event I	Log
EVENT	,2006/04/06,11:53:58,0.226440,"B:\EVENTS\EVENT.LOG created
EVENT	,2006/04/06,11:53:58,0.309692,"FORMAT 5.08.0002"
EVENT	,2006/04/06,11:56:51,0.253295,"On Insert 5.08.0002"
EVENT	,2006/04/06,13:07:32,0.266479,"Reset 5.08.0002 POWERUP/BUT
EVENT	,2006/04/06,13:08:48,0.885253,"On Insert 5.08.0002"
EVENT	,2006/04/06,12:13:15,0.041381,"Reset 5.08.0002 POWERUP/BUT
EVENT	,2006/04/06,12:14:40,0.175781,"Reset 6.01.2080 POWERUP/BUT
EVENT	,2006/04/06,12:14:58,0.020385,"On Insert 6.01.2080"
EVENT	,2006/04/06,12:15:27,0.568847,"Reset 6.01.2080 POWERUP/BUT
EVENT	,2006/04/06,12:18:21,0.525756,"Reset 5.08.0002 POWERUP/BUT
EVENT	,2006/04/06,12:23:20,0.783935,"On Insert 5.08.0002"

Figure 66: Event Log Page

To access files stored on the *DT80*'s internal file system, or in a connected USB memory device, click on the desired FTP link. This will then display the directory listing of the drive. Clicking on a file link will then initiate an FTP download of the selected file.

Using these links is equivalent to typing an ftp:// URL into the browser as described in *Using the DT80 FTP Server* (P255). Note however that the web interface links provide read-only (anonymous) access only.

Click on the web browser's Back button to navigate back to the Files page.

Help Page

The Help page provides troubleshooting and help information, and a link to the Technical Support web page on the dataTaker website.

There is also a link to the *DT80* User's Manual (PDF format), which is normally pre-loaded onto the *DT80*'s internal file system in the **B:\doc** subdirectory. If the link does not work, verify that the directory and file are present. If required, the manual can be loaded back onto the logger by repeating the firmware upgrade process.

Customising the Classic Interface

This section describes some of the technical features of the *DT80* web interface. These allow advanced users to replace the built-in web interface with a customised web user interface.

Web Application Programming Interface (API)

The *DT80* provides an application programming interface (API) so that you can build custom web pages that can view and display data from the logger. The API consists of a set of **server-side include** (SSI) directives. SSI directives are placed in HTML pages, and evaluated on the logger when the HTML page is requested. HTML pages that contain SSI directives are known as **SHTML** pages, and typically have a .**shtml** file extension.

When an SHTML page is requested, it is scanned by the web server (logger) for these directives. Once found, the logger interprets the directive and performs the required action. The output is then sent as part of the response back to the web browser.

Server-Side Include (SSI) Directives

An **SSI directive** consists of a special sequence of characters which is placed within an HTML page. The format is as follows:

```
<!--#directive attribute="value" attribute="value" ... -->
```

where:

- <!--# and --> are the opening and closing identifiers that must be specified when applying an SSI directive.
- directive is the name of the directive to be executed.
- attribute is the name of an **attribute**, and *value* is the value it is set to. Each SSI directive has a set of valid attributes that can be specified to control the operation of the directive. One or more attribute-value pairs can be specified.

For example

```
<!--#echo var = "1CV" -->
```

inserts the SSI directive named echo, which contains one attribute var whose value is set to 1CV.

DT80 SSI Directives

The *DT80* web server supports five SSI directives, which are summarised in the table below. Each directive requires the indicated attribute to be set. In addition, one or more optional attributes may be included.

Directive	Required Attribute	Function
echo	var	Inserts the current value of the indicated variable
channeltable	schedule	Inserts an HTML table containing, for each channel, its schedule, name, most recent value, units and timestamp – similar to the Channels page
measure	channel	Samples the indicated channel (certain channel types only) and inserts the measured value
reading	channel	Inserts the most recent value of the indicated channel, plus timestamp
include	file or	Inserts the contents of the indicated text file, specified as a path relative to the document root (DOC_ROOT profile setting
	virtual	Inserts the contents of the indicated text file, specified as an absolute path

Optional Attributes

One optional attribute is supported, which may be applied to any of the above directives in addition to their standard attribute:

Directive	Attribute	Function
any	cond	Evaluate the directive if and only if the indicated condition is true

The following sections discuss each directive in more detail.

#echo Directive

This directive inserts a specific piece of information into the HTML page.

SSI Directive	Description
#echo var = "D"	Inserts the current date.
	e.g. 2006/05/02.
#echo var = "T"	Inserts the current time.
	e.g. 11:45:23.
#echo var = "dtmodel"	Inserts the model number of the logger.
	e.g. DT80.

Inserts the value of channel variable nCV. The (FFd) part is optional, and specifies the number of decimal places to display (default is one decimal place) e.g. 23.4.		
and specifies the number of decimal places to display (default is no decimal places) e.g. 23200 #echo var = "JobName"	#echo var = "nCV(FFd)"	and specifies the number of decimal places to display (default is one decimal place)
<pre><!--#echo var = "JobName"--></pre>	#echo var = "nSV(FFd)"	and specifies the number of decimal places to display (default is no decimal places)
e.g. SchWebA. #echo var = "SchTrigger(s)" Inserts the trigger string for schedule s.	#echo var = "JobName"	Inserts the name of the current running job (or no current job if none).
e.g. 1S. #echo var = "SchStatus(s)" Inserts the run status (active/halted) for schedule s.	#echo var = "SchName(s)"	
e.g. active. #echo var = "SchLogState(s)" Inserts the logging state (enabled/disabled) for schedule s. e.g. disabled. #echo var = Inserts the number of the logged data records for schedule s. e.g. 2001. <!#echo var = Inserts the number of the logged alarms for schedule s. e.g. 2301. <!#echo var = Inserts the timestamp of the earliest logged data record for schedule s. e.g. 2301. <!#echo var = Inserts the timestamp of the earliest logged data record for schedule s. e.g. 2006/05/02 14:15:12. <!#echo var = Inserts the timestamp of the earliest logged alarm for schedule s. e.g. 2006/05/02 15:15:12. <!#echo var = "SchDataEndTime(s)" Inserts the timestamp of the latest data record for schedule s. e.g. 2006/05/02 11:15:12. <!#echo var = "SchAlarmEndTime(s)" Inserts the timestamp of the latest alarm for schedule s. e.g. 2006/05/02 11:15:12.</td <td><!--#echo var = "SchTrigger(s)"--></td> <td></td>	#echo var = "SchTrigger(s)"	
e.g. disabled. #echo var = Inserts the number of the logged data records for schedule s. "SchDataStoreSize(s)" e.g. 2001. #echo var = Inserts the number of the logged alarms for schedule s. "SchAlarmStoreSize(s)" e.g. 2301. #echo var = Inserts the timestamp of the earliest logged data record for schedule s. "SchDataStartTime(s)" e.g. 2006/05/02 14:15:12. #echo var = Inserts the timestamp of the earliest logged alarm for schedule s. "SchAlarmStartTime(s)" e.g. 2006/05/02 15:15:12. #echo var = "SchDataEndTime(s)" Inserts the timestamp of the latest data record for schedule s. e.g. 2006/05/02 11:15:12. #echo var = "SchAlarmEndTime(s)" Inserts the timestamp of the latest alarm for schedule s. e.g. 2006/05/02 11:15:12.	#echo var = "SchStatus(s)"	•
<pre>"SchDataStoreSize(s)"></pre>	#echo var = "SchLogState(s)"	
<pre>"SchAlarmStoreSize(s)"></pre>		55
<pre>"SchDataStartTime(s)"></pre>	· · · · · · · · · · · · · · · · · · ·	55
<pre>"SchAlarmStartTime(s)"></pre>		
> e.g. 2006/05/02 11:15:12. #echo var = "SchAlarmEndTime(s)" Inserts the timestamp of the latest alarm for schedule s.</td <td></td> <td></td>		
·	>	e.g. 2006/05/02 11:15:12.
		·

#channeltable Directive

This directive inserts a table of channel values.

```
SSI Directive

--#channeltable schedule = "" --> Inserts an HTML table containing a header row, plus a row for each defined channel in the current job, excluding working channels and immediate channels.

Each row contains the following columns:

• schedule identifier (A – K, X)

• channel name

• most recent value of the channel

• units string

• time at which most recent measurement was taken

--#channeltable schedule = "s" --> As above, but only channels belonging to schedule s are included.
```

Sample HTML output generated by the #channeltable directive is as follows:

```
Value
 Units
 Timestamp
</thead>
A
 1V
 1.234
 mV
 2006/04/07 12:12:11
>
 A
 Geyser Temp
 122.8
 degC
 2006/04/07 12:12:11
C
 Gravy Press
 69.9
 MPa
 2006/04/05 12:42:01
```

Note that the CSS (Cascading Style Sheet) class ids in the table and colgroup tags have been used to style the table. To change the style (colours, spacing, etc.), create another CSS file, reusing the same class ids. By default, the table will be displayed without any styles applied.

#measure Directive

This directive is used to perform a input channel measurement. This is executed in the Immediate schedule and the data gathered is not logged.

SSI Directive		Description
#measure channe</th <th>1 = "chan-def"></th> <th>Evaluates the specified DT80 channel definition, e.g. 2R (4W), as an immediate channel, waits for it to complete, then inserts the measured value e.g.: 44.0</th>	1 = "chan-def">	Evaluates the specified DT80 channel definition, e.g. 2R (4W), as an immediate channel, waits for it to complete, then inserts the measured value e.g.: 44.0

#reading Directive

This directive is used to return the most recent reading for the specified channel. The channel is assumed to have been already defined in a schedule in the current job.

```
SSI Directive

Description

--#reading channel = "chan-name" --> Inserts the most recent reading for the specified existing DT80 channel, and the time at which the reading was taken.

e.g. 2009/03/16 20:41:39.298 19.66 degC
```

#include Directive

This directive is used to insert the contents of another file into a HTML page.

SSI Directive	Description
#include file = "rel-file"	Inserts the contents of the file <i>rel-file</i> (specified as a relative path, e.g. footer.htm) into the current HTML page.
#include virtual = "abs-file"	Inserts the contents of the file abs-file (specified as an absolute path, e.g. b:\events\event.log) into the current HTML page.

The **#include** directive may be nested, i.e. a file that has been included may itself then include another file, up to a maximum of three levels.

cond Attribute

This attribute may be included by any SSI directive, in addition to its normal attribute. It specifies a **condition** – if the condition is met then the SSI directive is processed, otherwise it is <u>ignored</u>. This provides a way to conditionally include web page elements based on the status of the *DT80*.

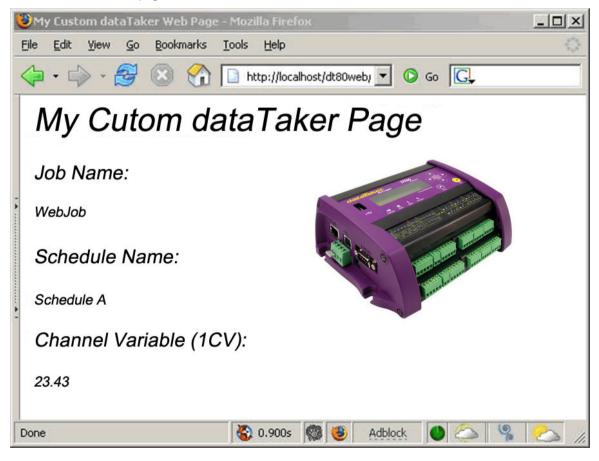
condition value	Description
<pre>cond = SchDefined(s)</pre>	Process directive if the specified schedule has been defined
<pre>cond = DataStored(s)</pre>	Process directive if any data have been logged for the specified schedule
<pre>cond = AlarmsStored(s)</pre>	Process directive if any alarms have been logged for the specified schedule

For example:

<!--#include file = "schedA.shm" cond = "SchDefined(A)" --> will only include the indicated file if schedule A is defined in the current job.

Building A Custom Web Page

This section provides a brief overview of the process of setting up a custom web page for the *DT80*. It is assumed that the reader has a good working knowledge of HTML and the *DT80*.


All custom pages will need to be loaded into a directory of your choice on the DT80's internal file system (B:).

Creating the SHTML Page

An SHTML page can be created with any HTML or text editor. Let's create a page that is titled "My Custom dataTaker Web Page" that will contain an image and display the following logger data:-

- The current job name
- The name of schedule A for the current job
- The value from channel variable 1

This is what the SHTML page will look like when viewed in a web browser:-

The SHTML mark-up for this page is as follows:

```
<html>
<head>
<title>My Custom dataTaker Web Page</title>
</head>
<body>
<h1>My Custom dataTaker Web Page</h1>
<img src="custom1.jpg" align="right"/>
<h3>Job Name:</h3>
<!--#echo var = "JobName" -->
<h4>Schedule Name:</h4>
<!--#echo var = "SchName(A)" -->
<h4>Channel Variable (1CV):</h4>
<!--#echo var = "1CV" -->
</body>
</html>
```

Notice the SSI directives (red).

Note The SHTML page filename must be saved with the following extensions:- .shtml, .shm or .sht. The SHTML page will not be rendered correctly if these extensions are not used.

Custom Home Page

It is recommended that a central (Home) page is used when building a custom web interface. The Home page can be an HTML or SHTML page. Set the Home page filename to **index.htm** or **index.shm**.

The *DT80* web server will automatically looks for a file with one of these names if the user types just the IP address into their browser (i.e. no filename specified).

Storing the Custom Web Pages

To test the custom web pages they need to be loaded onto the DT80's internal file system.

Connect to the logger's FTP server, specifying the configured username and password – files cannot be written to the file system using the default anonymous username. Then upload the files to a directory on the internal drive, e.g. **B:\www\custom**.

Customising the Built-in Web Interface

As an alternative to creating the web interface from scratch, you can also use the built-in web pages as a starting point and customise them as required.

Start by using an FTP client to copy all files from b:\www\html to b:\www\custom, then customise as required.

Using the Custom Web Pages

If you loaded the custom web interface into the **b:\www\custom** directory then you can either:

- access it by typing http://ip-addr/custom into the web browser, or defining a bookmark for this URL
- replace the interface selector page (b:\ww\index.html) with an alternative page which contains a link to your custom interface, or which contains an automatic redirection, e.g.:

In this way a user which just enters the logger's IP address is automatically directed to the custom interface, but can still access the standard classic interface, for example, by typing http://ip-addr/html.

Automatic Page Refresh

If required, a custom web page can be made to automatically refresh by including the following line within the page header:

In this example the page will refresh every 30 seconds.

Part J – Modbus Interface

About Modbus

Modbus is a simple communications protocol which is widely used in **SCADA** (supervisory control and data acquisition) systems. Modbus provides an efficient and standardised way to transport digital states and data values between a remote terminal unit (**RTU**) or programmable logic controller (**PLC**) and a supervisory computer.

Servers and Clients

In a Modbus-based SCADA system, each RTU/PLC acts as a Modbus **server**, or **slave**. These servers/slaves listen for and reply to requests from a Modbus **client**, or **master** system. A Modbus client is typically a computer that provides a mimic display, user interface and various data logging and alarm functions.

Modbus can operate using a broad range of communications media. These fall into two main categories:

- a serial connection, typically RS232, RS422 or RS485
- a TCP/IP network, which can use a variety of physical link types e.g. Ethernet, wireless, fibre-optic, serial (PPP)

The *DT80* is capable of operating as a <u>Modbus server</u>; that is, it can act like an RTU or PLC device. This allows the *DT80* to be easily integrated into any Modbus-based SCADA system. No special drivers are required for the client system.

A Modbus client system can directly read or write any DT80 channel variable (CV) or digital I/O channel.

The *DT80* can also operate as a <u>Modbus client</u>, where it can read data from Modbus sensors in the same way that it reads data from SDI-12 or serial sensors. See *Modbus Channel* (*p*364) for more details.

The remainder of this section describes the operation of the DT80 as a Modbus server.

In general terms, the procedure for setting up the DT80 in a Modbus environment is:

- 1. Establish a physical connection (TCP/IP or serial) between the Modbus client system and the DT80.
- Load a job onto the DT80 that scans the required channels at the required rates. The job should also load the measured values into channel variables.
- 3. Configure the client system to poll the Modbus addresses corresponding to the DT80 CVs and digital I/Os of interest.

Note Even if there is no job loaded, the *DT80*'s Modbus server is still active and the client can query or set any CV or digital channel.

Connecting to a Modbus Network

The DT80 supports both TCP/IP and serial Modbus networks.

TCP/IP Connection

Up to three Modbus client systems can simultaneously connect to the DT80 using TCP/IP.

The first step in setting up Modbus over TCP/IP is to establish a working TCP/IP connection between the client system and the *DT80*. This involves assigning an IP address to the *DT80*, along with a couple of other settings, depending on whether Ethernet or PPP is used. See *Ethernet Communications* (P236) and PPP Communications (P245) for more details.

By default, the *DT80*'s TCP/IP Modbus server is always <u>enabled</u>. It will listen for connection requests from client systems which are directed to TCP port 502 (which is the standard port number for Modbus). If required, this port number may be changed using the following *DT80* command:

PROFILE MODBUS_SERVER TCPIP_PORT=port

where port is the desired port number (1-65535).

To disable the DT80's TCP/IP Modbus server, set the port number to zero, i.e.

PROFILE MODBUS_SERVER TCPIP_PORT=0

Serial Connection

A serial Modbus network has <u>one</u> client (master) system connected to one or more server (slave) devices. Serial networks using the RS485 or RS422 standards support multi-drop, i.e. multiple slaves connected to one master. RS232 or USB can also be used for point-to-point connections (single master and single slave).

Slave devices on a serial Modbus network are identified by an 8-bit **slave address** (1-247). Every slave device on a particular serial network must have a unique address. (Slave addresses are not required on a TCP/IP Modbus network, because the slaves are identified by their IP address.)

The DT80 can be connected to a serial Modbus network using either the serial sensor port, the host RS232 port, or the USB port.

❖ Serial Sensor Port

The serial sensor port can be used to connect to a Modbus client via a multi-drop (RS422/485) or point-to-point (RS232/422/485) link.

In order to use Modbus on the serial sensor port it is necessary to set the port function, as follows:

PROFILE SERSEN PORT FUNCTION=MODBUS

You may also need to configure the baud rate or other serial parameters to suit the system to which you are connecting. Modbus systems commonly use **19200 baud**, **8 data bits**, **1 stop bit**, **even parity**, **no flow control**.

For more details on setting up the port and the possible wiring configurations, see Serial Sensor Port (P199).

Note Do <u>not</u> use software flow control (SWFC) on a Modbus serial connection. This is because flow control characters (XON/XOFF) may legitimately appear in Modbus data, and if they do then they will be stripped out. This will cause data errors.

❖ Host RS232 Port

The host RS232 port can be used for a point-to-point serial Modbus connection.

As with the serial sensor port, the port function must be set:

```
PROFILE HOST_PORT FUNCTION=MODBUS
```

along with the serial parameters to match the connected system.

For more details on setting up the port and the possible wiring configurations, see Host RS-232 Port (P197).

❖ USB Port

A USB connection can also be used where the client system is within a few metres of the DT80.

USB is convenient because you don't have to set serial parameters. The port function does need to be set, however: PROFILE USB PORT FUNCTION=MODBUS

For more details, see USB Port (P188).

❖ Slave Address

To enable Modbus operation on the serial sensor port, it is also necessary to set the *DT80*'s slave address. This is done using the following profile setting:

```
PROFILE MODBUS SERVER SERSEN ADDRESS=addr
```

where *addr* is the desired address (1-247). Setting the address to zero (which is the default) will disable Modbus on the serial sensor port.

In the same way, Modbus can be enabled on the host RS232 and USB port using:

```
PROFILE MODBUS SERVER HOST ADDRESS=addr
```

PROFILE MODBUS SERVER USB ADDRESS=addr

Again, the default setting is zero, which means "disabled".

Modbus Registers

The Modbus Data Model

The Modbus protocol defines a simple data model. It specifies that any Modbus slave device contains the following resources:

- an array of single bit **coils** (digital outputs). When setting up a Modbus client application, a particular coil is normally referenced using a 5-digit number in the range 00001-09999, or a 6-digit number 0:00001-0:65536 (depending on the Modbus client implementation). In this manual the 6-digit notation will be used.
- an array of single bit discrete inputs (digital inputs), numbered 10001-19999, or 1:00001-1:65536
- an array of 16-bit input registers, numbered 30001-39999, or 3:00001-3:65536
- an array of 16-bit output registers (a.k.a holding registers), numbered 40001-49999, or 4:00001-4:65536

As can be seen, the first digit of the register number indicates the $\underline{\text{type}}$ of register -0, 1, 3 or 4 for coil, discrete input, input register or output register respectively. This usage is, however, just a convention. This digit is $\underline{\text{not}}$ part of the actual address transmitted in the Modbus message.

A further potential source of confusion is the fact that the actual transmitted address is zero-based, so register number x:00003 is actually transmitted as address 0002.

Note In some Modbus client applications, register numbers are entered using these raw protocol addresses, while in others you specify register numbers including the initial "register type" digit, as described above. The documentation for the particular package should make clear which convention it uses.

The protocol then defines a set of messages which allow the client to:

- read the current value of one or more of the slave's coils, discrete inputs, input registers or output registers
- write to one or more of the slave's coils or output registers.

A given type of Modbus slave device will support some quantity of each type of resource – for example a hypothetical device might support 16 coils, 16 discrete inputs, 4 input registers and no output registers.

Furthermore, it is common for the different register arrays to <u>overlap</u>. In the example device mentioned above, the 16 coils and discrete inputs may actually refer to the same physical hardware – in this case 16 bi-directional I/O pins. So for this slave device, if a client wrote a "1" to coil 0:00007, it would then read the same value back if it did a read from discrete input 1:00007.

Accessing DT80 Channels via Modbus

The *DT80* maps blocks of Modbus registers onto certain *DT80* **channels** (channel variables and digital channels), as specified in the following tables. The Modbus client can therefore directly access any of these *DT80* channels by transmitting a request to read or write the associated Modbus register(s).

The first table shows the action taken by the *DT80* in response to requests by the client system to <u>read</u> particular Modbus registers:

Register number as specified in Modbus client application	Type of register to read	Action taken by <i>DT80</i>
0:00001-0:01000 1:00001-1:01000	coil 1-1000 discrete 1-1000	returns current state of channel variable 11000CV (0 if CV value is 0.0, otherwise 1)
3:00001-3:01000 4:00001-4:01000	input reg 1-1000 output reg 1-1000	returns current value of channel variable 11000CV
0:04001-0:04085 1:04001-1:04085	coil 4001-4085 discrete 4001-4085	returns current state of system variable 185SV (0 if SV value is 0.0, otherwise 1)
3:04001-3:04085 4:04001-4:04085	input reg 4001-4085 output reg 4001-4085	returns current value of system variable 185SV
0:08001-0:08009	coil 8001-8009	returns current state of digital output 18DSO or 1RELAY
1:08001-1:08008	discrete 8001-8008	returns current state of digital input 18DS
3:08001-3:08008	input reg 8001-8008	returns current state of digital input 18DS as a numeric value (0 or 1)
4:08001-4:08009	output reg 8001-8009	returns current state of digital output 18DSO or 1RELAY as a numeric value (0 or 1)

The next table shows the action taken by the DT80 in response to a write request:

Register number as specified in Modbus		
client application	Type of register to write	Action taken by DT80
0:00001-0:01000	coil 1-1000	sets channel variable 11000CV to 0.0 or 1.0
4:00001-4:01000	output reg 1-1000	sets channel variable 11000CV to the specified value
0:04001-0:04085	coil 4001-4085	sets system variable 185SV to 0.0 or 1.0 (writable SVs only)
4:04001-4:04085	output reg 4001-4085	sets system variable 185SV to the specified value (writable SVs only)
0:08001-0:08009	coil 8001-8009	sets digital output 18DSO or 1RELAY to the specified value
4:08001-4:08009	output reg 8001-8009	sets digital output 18DSO or 1RELAY to the specified value (0 if the
		specified value is 0, otherwise 1)

If the Modbus client attempts to access any register outside the ranges specified above then the *DT80* will return a Modbus error response and ignore the request.

Note that for the DT81/82, Modbus registers x8001-x8004 correspond to channels 1..4DS and 1..4DSO. Accessing registers x:08005-x:08008 will not cause an error, but it will not do anything either, because these channels are not present on the DT81/82. Register x:08009 corresponds to the 1RELAY channel, as with the DT80.

Data Types

Modbus input and output registers are <u>16 bits</u> wide. The Modbus standard does not, however, define how these bits are to interpreted, other than stating that the most significant byte of a register value is transmitted first ("big endian" format).

By default, the *DT80* interprets a Modbus register as a <u>signed 16-bit integer</u> in the range -32768 to 32767. If a CV or SV's value is outside this range then the associated Modbus register will "saturate", i.e. the value 32767 will be returned if the CV/SV value is greater than 32767, and the value -32768 if the value is less than -32768. Also, the CV/SV value will be rounded to the nearest integer.

There are, however, a number of options for dealing with data values that cannot be represented by a 16-bit integer value:

- the register can be treated as an <u>unsigned</u> 16-bit integer (0-65535)
- the value can be <u>scaled</u>, typically by a power of ten, to give the required precision or range. For example a scaling factor of 100 would permit values in the range -327.68 to 327.67 to be returned.
- multiple registers can be combined to return a single larger value, e.g. a pair of registers could return a 32-bit quantity.

Clearly, both the slave device and the client system must agree on how a given Modbus register is to be interpreted. It is no good if the device encodes the value 40000 as an unsigned 16-bit number (9C40 hexadecimal) but then the client interprets it as a <u>signed</u> number and displays it as -25536.

The only solution is to explicitly configure the required data types on both the slave and the client. For the *DT80*, this is done using the **SETMODBUS** command.

The SETMODBUS Command

By default, all CV values are transferred to and from the *DT80* as signed 16-bit integers, with no scaling factor. The **SETMODBUS** command is used to specify alternative data types and scaling factors.

The format of the command is as follows:

SETMODBUS channels format scaling

where:

- channels specifies a single channel variable, or a range (e.g. 1CV or 20..29CV)
- scaling is an optional floating point scaling factor by which the channel value will be <u>multiplied</u> before being returned.
 Conversely, when the client writes a value, it will be divided by the scaling factor before being written to the CV.
- format is an optional code that specifies the data type, as follows:

Format code	Data type	Comments
MBI	signed 16-bit integer	Default setting. Returns -32768 or 32767 if the scaled return value is outside the valid range.
MBU	unsigned 16-bit integer	Returns 0 or 65535 if the scaled return value is outside the valid range.
MBLS (or MBL)	signed 32-bit integer, standard word order	Upper 16 bits of <i>n</i> CV are returned in Modbus register <i>n</i> . Lower 16 bits are returned in register <i>n</i> +1. Returns -2,147,483,648 or 2,147,483,647 if the scaled return value is outside the valid range.
MBLR	signed 32-bit integer, reversed word order	Lower 16 bits of <i>n</i> CV are returned in Modbus register <i>n</i> . Upper 16 bits are returned in register <i>n</i> +1. Returns -2,147,483,648 or 2,147,483,647 if the scaled return value is outside the valid range.
MBFS	32-bit floating point, standard word order	Returned as a single precision IEEE-754 floating point number. Upper 16 bits of <i>n</i> CV are returned in Modbus register <i>n</i> . Lower 16 bits are returned in register <i>n</i> +1.
MBFR (or MBF)	32-bit floating point, reversed word order	Returned as a single precision IEEE-754 floating point number. Lower 16 bits of <i>n</i> CV are returned in Modbus register <i>n</i> . Upper 16 bits are returned in register <i>n</i> +1.

If format and scaling are not specified, the current settings for the indicated range of CVs are displayed.

Any number of these **SETMODBUS** commands can be issued (typically at the start of the *DT80* job) to configure the required channels.

Note The **SETMODBUS** command only supports channel variables. However some <u>system</u> variables may have values outside the range -32768 to 32767, or may have a fractional part. Such SVs can be assigned to a CV, for which an appropriate data type and/or scaling factor can then be set, e.g.:

```
SETMODBUS 1CV MBLS 3SV(=1CV)
```

Example

This example illustrates some of the technicalities relating to Modbus transfers.

Consider the following job:

```
BEGIN"PERCY"

SETMODBUS 7CV MBF

SETMODBUS 9..10CV MBU 100

SETMODBUS 11CV MBL

7CV=23.91 8CV=42 9CV=490.22 10CV=921.0 11CV=75535.9

END
```

If a Modbus client then requests input registers 3:00007-3:00012 it will receive the following raw data:

Register	Value (hex / decimal)	Comments
3:00007	47AE	The 32-bit value 41BF47AE is the IEEE754 representation of 23.91
3:00008	41BF	
3:00009	BF7E / 49022	490.22 multiplied by scaling factor (100)
3:00010	FFFF / 65535	overflow: 921.0 x 100 = 92100 is too big for an unsigned 16-bit integer
3:00011	0001 / 1	The 32-bit value 00012710 equals 75536 decimal
3:00012	2710 / 10000	_

To make sense of this, the client software must support the 32-bit data formats used by the *DT80*, and it must be told the data type of each register (or register pair).

Note Be aware that for 32-bit data types, the word order (i.e. whether the upper or lower 16 bits comes first) is <u>not</u> proscribed by the Modbus standard, so naturally both orderings are widely used. Most client software can be configured to support either ordering.

Note that in this example 7CV and 11CV are spread across two registers apiece (3:00007-8 and 3:00011-12 respectively), which makes channel variables 8CV and 12CV effectively <u>inaccessible</u> via Modbus. They can still be used in the program (e.g. setting 8CV=42 in the above program is perfectly OK and won't interfere with 7CV); it's just that they cannot (easily) be accessed by a Modbus client.

Note also that some Modbus clients require that all 32-bit register pairs start on an <u>odd</u>-numbered register. That is, you can return a 32-bit value using registers 30001-30002, but not using registers 30002-30003.

Putting It All Together

In this example, a greenhouse is monitored by a DT80. Three thermocouples on analog inputs **1-3** monitor the temperature at various points. The DT80 is required to log the temperatures every 15s and switch on an extractor fan (by setting digital output **1D** low) if any of the temperatures exceed a programmable setpoint. A sensor attached to the fan produces a voltage

proportional to fan speed (1.25mV/rpm) and this is fed into analog input **4**. Digital output **2D** is connected to a watering system valve.

The DT80 is connected to an Ethernet network. In a central office an operator runs a Modbus-capable SCADA package. She wants to be able to:

- check current temperatures
- · set the current extractor fan setpoint
- check the status of the extractor fan (fan RPM and state of control output)
- · switch the watering system on or off
- check how many data and alarm records have been logged

The following sections discuss how this might be achieved.

❖ DT80 Configuration

It is assumed that the *DT80*'s Ethernet connection has already been set up. This can be verified by entering its IP address into *DeTransfer* or a web browser and checking that the *DT80*'s command or web interface is accessible. If you cannot connect to these services then you probably won't be able to connect to the Modbus server either. See *Ethernet Communications* (P236) for more information.

Once TCP/IP connectivity has been established, a suitable DT80 job can be entered:

```
BEGIN"GERANIUM"
SETMODBUS 1..4CV MBI 10 ' temperatures & setpoint
SETMODBUS 5..7CV MBL 1 ' logged data, alarm recs (32 bit)
                       ' fan RPM
SETMODBUS 9CV MBI 1
4CV(W)=30.0 ' default setpoint
' update every 15 sec
RA(DATA: 30D, ALARMS: 500KB)15S
 1TK(NR,=1CV)
 2TK(NR,=2CV)
 3TK(NR,=3CV)
 ' set 10CV=1 if at least one temp over limit
 ' set 11CV=1 if all temps under limit
 ' allow +/- 1 degC hysteresis
 10CV(W) = (1CV > 4CV + 1)OR(2CV > 4CV + 1)OR(3CV > 4CV + 1)
 11CV(W)=(1CV<4CV-1)AND(2CV<4CV-1)AND(3CV<4CV-1)
 ALARM1(10CV>.5)"Temp>?4 Fan ON^M"{1DSO=0}
 ALARM2(11CV>.5)"Fan OFF^M"{1DSO=1}
 32SV(W,=5CV) ' num logged data recs for sched A
 33SV(W,=7CV) ' num logged alarm recs for sched A
 4V(W,0.8,=9CV) ' fan speed 1.25mV/rpm
LOGONA
END
```

This job sets up the following CVs for access by the Modbus client:

- 1CV, 2CV and 3CV contain the three measured temperatures. A scaling factor of 10.0 is applied so that it can be returned with one decimal place (range -3276.8 to +3276.7)
- 4CV is designed to be accessed as an <u>output</u> register, i.e. the Modbus client writes to it. This channel variable is used as the temperature setpoint, so it is scaled in the same way as the other temperature CVs.
- 5CV and 7CV return the number of logged data and alarm records for the main A schedule. In this example the store
 file size is relatively large (30 days data @ 15s scans), so the number of logged records may exceed the capacity of a
 single 16-bit register. They are therefore defined as 32-bit long integers (MBL). (Channel variables 6CV and 8CV
 have been skipped because their associated Modbus registers are used for returning the 32-bit 5CV and 7CV
 values.)
- 9CV returns the fan speed in RPM. A standard 16-bit integer is OK here. (The SETMODBUS command for this CV could have been omitted because the values it is setting are the default values.)

Notice that all Modbus-accessible CVs have been grouped into one contiguous block. This is not essential, but it will improve the efficiency of the Modbus link because the client can request all relevant CVs in one command.

The digital channels of interest are 1DSO (fan control) and 2DSO (watering system). Since the Modbus client can access these channels directly, there is no need to include them in the *DT80* job.

One final point is that because all relevant data are returned by Modbus, there is no point having the *DT80* return real time data via its standard command interface – it would just clutter the screen if the operator ever needed to connect to the *DT80* using DeTransfer. All channels are therefore set to "working" (W) or "no return" (NR) channels.

* Modbus Client Configuration

It is now necessary to configure the SCADA software package to suit the *DT80* channel usage described above. This is highly application dependent but in very general terms the steps involved will typically include:

- configuring communications details
- designing a mimic screen incorporating the required measurement and control fields
- associating each element of the mimic with the correct Modbus register address

So in this case the first step might be to select the software package's "generic PLC" device driver and then create a "DT80" device instance. As a minimum, the *DT80*'s IP address would need to be entered here. If the driver or application provides a "test" facility, you may at this point be able to try manually reading and writing specific Modbus registers.

The mimic screen for this application might consist of:

- three thermometer displays showing the measured temperatures
- an entry field where the operator can set the desired setpoint
- two numeric indicators showing number of logged data and alarm records
- a fan icon with on/off and RPM indicators
- a button to turn the watering system on or off.

The final step would typically then be to edit the properties of each control and indicator to specify their behaviour. This would generally mean specifying:

- which slave device to use. This may involve selecting the DT80's "device instance" from a list of connected Modbus slave devices.
- the Modbus register number
- the data type (signed or unsigned or floating point, 16 or 32 bits, byte/word ordering)
- the scaling factor. This is often presented as a **span**, similar to a *DT80* span (*P61*). That is, you specify the "device range" (min/max returned value) and the corresponding "display range" (min/max value to display) which then creates a linear scaling curve.
- the scan rate (how often to read/write the value from/to the *DT80*)
- other details such as units.

So the setup for this application might be something like:

Mimic Element	Modbus Reg	Data Type	Device Range	Display Range	Units	Comments
"temp1"	3:00001	signed 16-bit	-3276 to 3276	-327.6 to 327.6	degC	1CV (input reg)
"temp2"	3:00002	signed 16-bit	-3276 to 3276	-327.6 to 327.6	degC	2CV (input reg)
"temp3"	3:00003	signed 16-bit	-3276 to 3276	-327.6 to 327.6	degC	3CV (input reg)
"setpt"	4:00004	signed 16-bit	-3276 to 3276	-327.6 to 327.6	degC	4CV (output reg)
"num_data"	3:00005	signed 32-bit, MSW first	-1 to 1000000	-1 to 1000000	recs	5CV (input reg)
"num_alm"	3:00007	signed 32-bit, MSW first	-1 to 1000000	-1 to 1000000	recs	7CV (input reg)
"fan_rpm"	3:00009	signed 16-bit	0 to 32767	0 to 32767	rpm	9CV (input reg)
"fan_state"	0:08001	n/a	n/a	n/a	on/off	1DSO (coil)
"water"	0:08002	n/a	n/a	n/a	on/off	2DSO (coil)

Notice how input register numbers are prefixed by "3", output registers by "4" and coils (output bits) by "0".

Note Different Modbus client packages may specify Modbus register numbers in different ways. For example, register 3:0001 may be specified as "30001", "300001", "input register 0001", or "input register, address 0000". In all cases the message transmitted to the *DT80* is identical; the difference is just in how you enter it into the software.

Troubleshooting

Setting P56=4 will enable the output of diagnostic messages which allow you to see received and transmitted Modbus messages as they occur. For example:

This shows a message received from a Modbus client at IP address 192.168.1.60 (port 1168) which has total length of 12 bytes. The data is shown in hexadecimal form. The first part is the TCP/IP-specific header, which comprises: a transaction identifier (0000, used to match up requests and replies), a protocol identifier (0000 indicates Modbus), the number of following bytes (0006) and the slave address (01 – not applicable for TCP/IP). The actual Modbus frame follows: 04 for "read input registers" function code, starting address 0000 and length 0008. This is therefore a request to read the values of 1CV to 8CV.

The DT80 then replies with the same function code (04), the byte count (10), and 8 x 16-bit data values (all zero in this case).

This exchange is then repeated; notice that the client has incremented the transaction identifier, which is now 0001.

A serial Modbus message is then received on the host port, addressed to slave ID 01. Again, this is a request to read 1CV to 8CV. Note that serial Modbus also includes a checksum on the end (flcc).

Assuming that the *DT80* has been configured for address 1, using **PROFILE MODBUS_SERVER HOST_ADDRESS=1**

then it will respond to the message as shown.

Part K – Communications

Overview

The *DT80* is very flexible and provides many communications options. To understand how these fit together and what combinations are possible, it is helpful to think of communications in terms of the following hierarchy:

- Clients are software programs (e.g. a web browser, or the job running on the logger) that <u>initiate</u> communications to or from the DT80.
- These clients use services that are provided by the logger (e.g. web server, command interface).
- The services are in turn implemented using particular communications protocols (e.g. FTP, Modbus).
- These protocols cause data to be physically transmitted using one of the DT80's physical communications ports (e.g. Ethernet port, USB port)
- The data travels via a **physical connection** to one of these ports (e.g. USB cable, Ethernet LAN connection)
- Finally, at the other end of the physical connection is the physical **device** with which the *DT80* is communicating (e.g. PC, serial sensor)

This is illustrated in *Figure 61* (P185) for standard models, and *Figure 62* (P186) for integrated modem models. These diagrams are described further below. Later sections will explain common usage scenarios in more detail.

Services

The DT80 provides ten basic services through which it can communicate with a host computer or other device:

- a **command interface**, to which a host computer sends ASCII commands and from which it receives ASCII data and other responses. All of the various commands and responses described in this manual are sent to the *DT80* via its command interface. See *Using the Network Command Interface* (P254).
- a **web interface** (*dEX*). This allows the *DT80* to be monitored and configured remotely using a standard web browser, such as Microsoft Internet Explorer. See *Web Interface* (PError! Bookmark not defined.).
- an **FTP server**. The File Transfer Protocol is a standard TCP/IP based protocol, which allows files to be efficiently transferred between the *DT80*'s file system and that of a host computer. These transfers are initiated by the host (client) computer. See *Using the DT80 FTP Server* (P255).
- an **FTP client**. This allows transfer of data between the *DT80*'s file system and that of a host computer, initiated by the current job on the *DT80*. See *Retrieving Logged Data* (P95).
- a Modbus server. This allows the DT80 to be monitored and controlled by a Modbus client system (typically a SCADA package). See Modbus Interface (P176).
- a **Modbus client**. This allows Modbus sensors to be polled by the current job. See *Modbus Channel* (P364).
- an **SDI-12 data recorder** function. This allows SDI-12 sensors to be polled under the control of the current job on the *DT80*. See *SDI-12 Channel* (P346).
- a **generic serial** facility, where data strings are transferred to and from a PC or serial sensor device under the control of the current job on the *DT80*. See *Generic Serial Channel* (P351).
- an email client. This allows alarm messages and/or logged data to be transferred to an email server, and from there
 to a user's email inbox.
- an SMS client (DT8xM models only), which allows alarm messages to be sent via SMS to a mobile handset.

Protocols

A **communications protocol** is a set of rules governing what is transmitted over a communications link. The *DT80* implements certain communications protocols, which are used to provide the services listed above.

There are two classes of protocols:

- serial protocols, which operate on the *DT80*'s serial ports (USB, host, serial sensor)
- TCP/IP network protocols, which require a TCP/IP connection between the host computer and the *DT80*. (The process of establishing a TCP/IP connection will be discussed below.)

Serial Protocols

The DT80's serial ports (USB, host, serial sensor) all support the following serial protocols:

- the serial command interface protocol. This consists simply of DT80 commands and responses transmitted directly
 over a point-to-point serial connection.
- the **serial Modbus** protocol. The *DT80* only implements the slave (server) side of this protocol.

- the generic serial protocol.
- **PPP** (point to point protocol), which allows a TCP/IP connection to be established over a serial link. This then provides similar capabilities to the Ethernet port, i.e. all TCP/IP-based protocols can then operate using this link.

On DT8xM models, the *DT80* uses PPP to connect to the mobile network. On standard models, the *DT80* implements a PPP server on the serial ports. A PPP client (e.g. a PC) can establish a PPP connection to the DT80, but the *DT80* cannot establish a PPP connection with a PPP server (e.g. an Internet service provider).

Note that each serial port can only support one of these protocols at a time.

The SDI-12 protocol is only supported on the SDI-12 capable I/O terminals (5D-8D, or 4D on DT81/82).

The GSM SMS (short message service) protocol is only supported on the integrated modem (if present).

TCP/IP Protocols

TCP/IP based protocols are used to communicate between devices that have an **IP address** set (IP = Internet Protocol). An IP address can be assigned to the *DT80*'s Ethernet port, and to any serial port on which a PPP connection has been established.

The *DT80* supports the following TCP/IP protocols:

- the network command interface protocol. This consists simply of DT80 commands and responses transmitted via TCP port 7700.
- the **network Modbus** protocol (TCP port 502), which a SCADA system uses to access the *DT80*'s Modbus server, and the *DT80* uses to access other Modbus devices.
- the Hypertext Transfer Protocol (HTTP) (TCP port 80), used for accessing the DT80's web server.
- the File Transfer Protocol (FTP) (TCP port 21). This allows files to be transferred between the *DT80* and another computer.
- the **Simple Mail Transport Protocol (SMTP)** (TCP port 25). This allows email messages to be sent to an email server for delivery to a user's email inbox.

Multiple protocols can be active on the one physical port at the same time. See also Network Communications (P208).

Physical Ports

The DT80 has the following physical communications ports:

- Ethernet port supports TCP/IP protocols
- USB port supports serial protocols (and TCP/IP protocols if PPP is used) (not DT82)
- host RS232 port supports serial protocols (and TCP/IP protocols if PPP is used) (not DT8xM)
- serial sensor port (RS232/422/485) supports serial protocols (and TCP/IP protocols if PPP is used) (not DT81/82E)
- 4 SDI-12 ports (5D-8D) (1 port for DT81/82E: 4D, none for DT82I) supports SDI-12 protocol only
- GSM/GPRS/3G wireless modem port supports SMS and TCP/IP protocols.

About the Communications Diagram

Figure 61 (P185) and Figure 62 (P186) show the various communications options available on the DT80. The diagram may appear slightly intimidating; the following notes may help in deciphering what it is trying to indicate.

- The outer dashed line represents the boundary of the *DT80* itself. The physical comms ports (blue boxes) therefore appear on the boundary between "inside" and "outside".
- The green ellipses represent clients things which <u>initiate</u> communications actions. Clients are generally software applications. As can be seen, most of these are external to the *DT80* (i.e. running on some external computer system), the exception being the *DT80*'s current job.
- The pink boxes at the bottom represent physical devices connected to the *DT80*, and the lines connecting these to the *DT80*'s communications ports (blue) represent physical communications links.
- All other boxes are not physical things, but rather they represent aspects of the DT80's functionality. Broadly speaking, the lines connecting these boxes indicate a "uses" relationship. For example, a "SCADA system" client <u>uses</u> the DT80's "Modbus server" service, which may then <u>use</u> the "serial Modbus" protocol, which may then <u>use</u> the USB port.
- Where multiple lines converge on a single point (e.g. on either side of the physical port boxes), this indicates "choose one". For example, the USB port can use either the PPP protocol, or the serial Modbus protocol, or the serial command protocol, or the generic serial protocol. It cannot use more than one protocol at the same time. Similarly, the Ethernet port can physically connect either directly to a PC (using a "crossover" cable), or to a local or wide area network (LAN/WAN) by connecting to a network switch or hub.
- Where multiple lines join to a box but not at a single point, this implies that simultaneous operation is possible. For example, the serial command protocol can operate on <u>both</u> the USB and host RS232 ports at the same time if you wish. Likewise, any or all of the TCP/IP based protocols can be used over the Ethernet port at the same time.

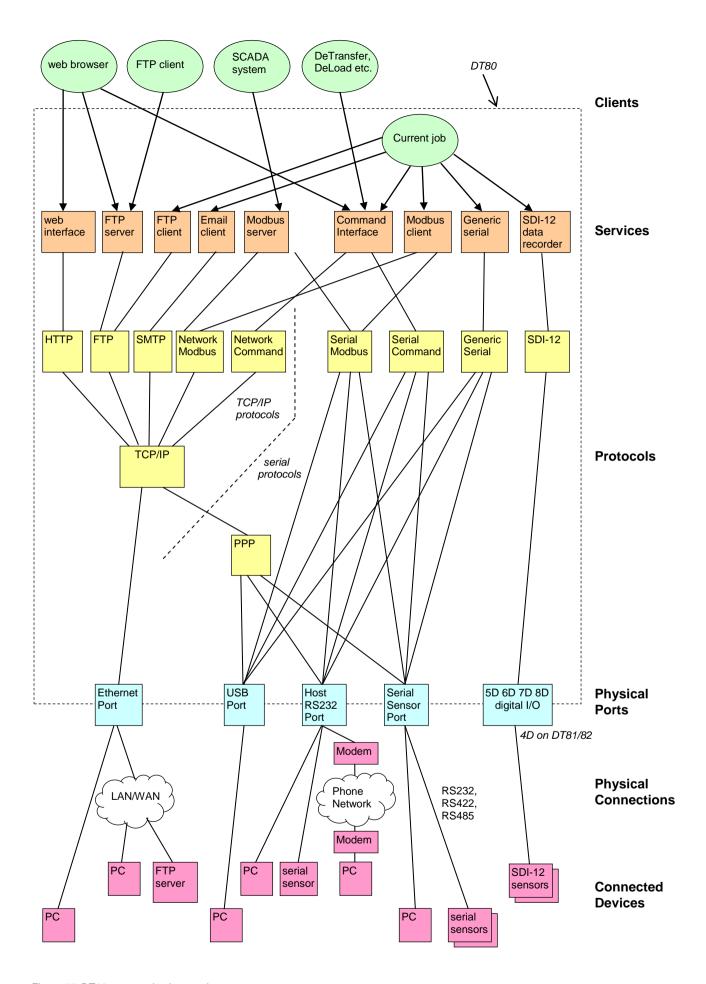


Figure 67: DT80 communications options

Figure 68: DT80 communications options (integrated modem models)

The Command Interface

Connecting to the Command Interface

As shown in *Figure 61* (P185), the command interface can operate over a serial link ("serial command" protocol), and/or over a TCP/IP network ("network command" protocol). In other words, you can send commands from a computer to the *DT80* via:

- a direct connection to the USB port (P188)
- a direct RS232 connection to the host RS232 or serial sensor port, using a crossover ("null modem") cable (P202
- a fixed or dial-up modem, which is connected to the RS232 port (P202).
- a TCP/IP network, which is connected to the Ethernet port (P208).
- a point-to-point TCP/IP connection, using PPP. This may use the USB, host RS232 (with or without modem) or serial sensor port.

Arbitration

The *DT80*'s command interface may be set up to operate over more than one type of communications link at the same time.. In this situation, the *DT80* automatically switches between each link as required, responding back through the link from which the most recent communication was received.

You can therefore switch to a new comms interface at any time, simply by sending a *DT80* command (or just a carriage return character) via that interface.

Broadcasting Data

Up to three different computers can be simultaneously "connected" to the DT80 command interface using TCP/IP.

Although there can only be one <u>active</u> command interface connection at any one time, it is possible for the *DT80* to "broadcast" data to a number of computers simultaneously.

All output text generated by the DT80 (command echoes, messages, returned/unloaded data etc.) is sent to:

- the active command interface connection (which may be RS232, USB or TCP/IP), and
- all currently open TCP/IP connections (if any)

In this way a number of computers can be connected to the *DT80* via a TCP/IP network and passively "listen" to the stream of returned data generated by the *DT80*.

Command Interface Operation

Characters received via the command interface are **buffered** until a carriage return (CR) character is received. This buffer can hold 1023 characters, so this is the maximum line length that can be sent to the *DT80*.

Once a CR is received, the DT80 will:

- 1. wait until any currently executing schedule completes
- echo the received command line (after converting it to uppercase). Command echo can be disabled using the /e switch command.
- process the command.
- 4. output the DT80> **prompt**, to indicate it is ready for the next command.

Note that it is not necessary to wait until a command completes before sending the next command, as the *DT80* provides additional buffering for subsequent command lines. Each type of comms channel provides some form of automatic **flow control** to ensure that these buffers do not overflow when a large number of command lines are sent at once.

Detecting DT80 Presence

Host software can detect the presence of a *DT80* by sending a DEL character (ASCII 127). If this character is received at any time, the *DT80* will respond with << followed by CR LF. The DEL character is always recognised and responded to, even if a password has been applied (see below).

Password Protection

To reduce the possibility of unauthorised access to the *DT80*'s command interface, you can configure a **password**, so that communication is only possible after the password is entered.

Setting and Removing the Command Interface Password

Set a password by sending

PASSWORD="password"

to the DT80. password can be any text string of up to 10 case-sensitive characters.

Note The password is cleared if the DT80 performs a hardware or HRESET reset.

Accessing Password-Protected Command Interface

To establish communication at any time, simply send the password followed by a carriage return. If the password is correct, the *DT80* responds with Accepted and opens the comms port.

The port stays open until you send the **SIGNOFF** command, or while there is comms activity. If there is no communication for a period of time defined by P14 (default is 600 seconds), the port will time out and close.

Is the Command Interface Protected?

Send the command

PASSWORD

to determine if a command interface password has been set. The DT80 responds with 1 if a password has been set, otherwise 0.

USB Port

(Not applicable to DT82I/82E/82EM)

Configuring the USB Port

USB is much simpler to configure than RS232 because the baud rate, framing and flow control settings are all fixed by the USB standard. The *DT80*'s USB interface always operates at the standard USB "full speed" rate (12Mbps).

Note that the USB port supports direct connections only. USB modems are not supported.

The only setting that can be specified is the port function. This is set using the **PROFILE** command (see *Profile Settings* (P262)), e.g.

PROFILE USB PORT FUNCTION=MODBUS.

The possible settings for the USB port **FUNCTION** parameter are:

- COMMAND (default) the port accepts DT80 commands sent directly over the serial interface. The port will
 automatically switch to PPP mode if an incoming PPP connection is detected. When the PPP connection is closed the
 port will go back to accepting direct commands.
- PPP the port accepts PPP connections only.
- SERIAL data transmission and reception is controlled by the current job, using the 3SERIAL channel.
- MODBUS the port receives and processes incoming serial Modbus requests.
- MODBUS_MASTER the port is used for polling a Modbus sensor device, as specified in the current job using the 3MODBUS channel.
- **DISABLE** the port is disabled. This setting reduces power consumption.

The remainder of this section will assume that the USB port function has been set to COMMAND.

About DtUsb

In order to use the *DT80*'s USB port, it is first necessary to install the dataTaker *DtUsb* driver software on your computer.

Once *DtUsb* is installed, it provides two separate "interfaces" to allow application programs to communicate with the *DT80*.over USB:

- a TCP/IP interface, which allows full access to all of the DT80's TCP/IP services, including the dEX web interface
- a secondary "virtual COM port" interface, where the USB port appears as a standard serial COM port. This allows
 applications such as DeTransfer to establish a serial connection to the logger over USB in the same way that they
 would using RS232 (although note that DeTransfer can also perform most of its functions over a TCP/IP interface)

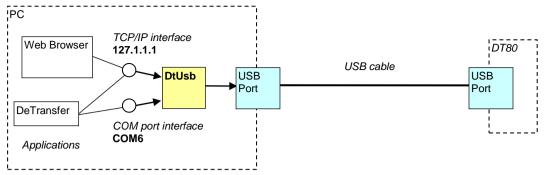


Figure 69: Using DtUsb to communicate with the DT80 over USB

Note that only one of these interfaces can be active at any one time.

By default, the TCP/IP interface will be active, so when the logger USB cable is plugged in, the logger will then become visible at IP address 127.1.1.1 (this address may vary).

If, however, you shut down the TCP/IP part of *DtUsb* then the logger's virtual COM port (shown as COM6 in the diagram) will become available. See *USB Direct Serial Mode* (P194).

In most cases, it is simpler and more flexible to perform all communications via the TCP/IP interface.

Note As indicated by the arrows in the diagram above, the purpose of *DtUsb* is to allow client programs running on the PC (such as the web browser) to connect to the *DT80*. *DtUsb* does <u>not</u> support connections in the opposite direction, i.e. where the *DT80* connects to a server (e.g. an FTP server) on the PC. An alternative is to set up a serial PPP connection using the USB port (see *PPP Communications* (P245)), which will allow the *DT80* to connect to an FTP server on the local PC.

Installing DtUsb

DtUsb is supplied on the dataTaker Resource CD shipped with your logger. It may also be downloaded from the dataTaker web site. www.datataker.com.

Note It is recommended that you install DtUsb before connecting the DT80's USB cable to the computer.

System Requirements

DtUsb requires Windows XP or later. It also requires Microsoft .NET Version 2.0 or later. If you have Windows Vista or later then .NET should already be installed; it may also have been installed by another application on your computer. The *DtUsb* installation program will check whether .NET is present during installation.

You will need administrator rights for your computer in order to install *DtUsb*. Once it is installed, a normal user account can be used.

Installation Procedure

The following procedure will install *DtUsb* on to your computer. Do not connect the *DT80*'s USB cable to the computer until instructed to do so.

Note Depending on your Windows version, you may receive various prompts during the *DtUsb* installation processes requesting your permission to run software published by Thermo Fisher Scientific. Answer **Yes** or **Continue** to these.

- 1. Ensure that you are logged in to your computer as an administrator.
- 2. Insert the dataTaker Resource CD. The CD menu program (see below) should start automatically; if it doesn't then use Windows Explorer to locate **DtAutoRun.exe** on the CD and double click it.

If you are installing from an installation package downloaded from the dataTaker website then save the downloaded package and double click to run it. Skip to Step 5.

3. Select DT80 range...

4. Select Install USB driver

5. *DtUsb* actually consists of two parts: *DtUsb Driver* (the low level "plug and play" USB driver) and *DtUsb* (which provides the TCP/IP interface). Both of these will now be installed, starting with *DtUsb Driver*.

Click Next

6. After the drivers have been copied to your computer a confirmation screen similar to the following will be displayed. Check that two green ticks are displayed.

Click Finish

7. The *DtUsb* installer will now start. If you are installing from the CD and do not have .NET 2.0 or later on your computer it will now be installed (after you accept the Microsoft license agreement), then the *DtUsb* installer will continue. (If you are using a downloaded *DtUsb* package then the installer will terminate if .NET is not present and you will need to obtain it from the Microsoft website.)

Accept the DtUsb license agreement and click Install

Once *DtUsb* has been installed a confirmation screen will be displayed.
 Click **Finish**

9. Now connect the *DT80* to the computer using the USB cable. This will trigger the Windows "plug and play" process to complete driver installation.

You may notice a flurry of activity in the system tray area. The actual sequence of events depends on your operating system.

• For **Windows XP**, the drivers that you pre-installed in Step 5 will be automatically installed with a minimum of fuss. A couple of "New hardware found" balloon messages will appear, then finally it should say "Your new hardware is ready to use"

- For **Windows Vista**, you will be asked whether you want to locate and install driver software, or do nothing. Specify that you do want to locate and install drivers. It will then search for the drivers on Windows Update. Assuming you have a working internet connection, it should find the drivers there and install them. If not then the Windows Update search will time out and it will install the drivers that you pre-installed in Step 5. Eventually Windows should report that "Your new hardware is ready to use".
- For **Windows 7**, the initial prompt will be skipped and it will go straight to Windows Update. As with Vista, if this is successful then it will install the drivers it finds there, otherwise it will eventually time out and use the pre-installed drivers.
- Windows 8

Note that *DtUsb Driver* actually consists of two separate Windows drivers – a USB driver and a virtual COM port driver. You may therefore see the above "plug and play" process occur twice, once for each driver.

10. Once the two parts of *DtUsb Driver* have been installed, *DtUsb* should notice that a logger has been connected. A new icon should appear in the system tray.

- 11. DtUsb will now automatically launch your default web browser and display the dEX home page.
- 12. If desired, you may now log off as administrator and log in as a normal user. *DtUsb* will be loaded automatically when any user logs in to the computer.

Using DtUsb

DtUsb is a background process, which is started automatically when any user logs in to the computer. It will, however, do nothing until a *DT80* is connected via USB.

When a DT80 is connected, DtUsb will:

- establish a PPP connection to the logger over the USB link (PPP is a protocol that allows TCP/IP traffic to be passed over a point-to-point serial link)
- provide a local IP address, typically 127.1.1.1, which effectively becomes the DT80's IP address.
- display the purple icon in the task bar, which will remain visible whilst the logger is connected
- optionally, automatically launch your default web browser and display the dEX home page

Applications such as a web browser, FTP client, *DeTransfer* or a Modbus client can then connect to the logger's services using the 127.1.1.1 address, and *DtUsb* will forward their requests on to the logger.

Note *DtUsb* assumes that all logger services are operating using their default port numbers. If you experience problems accessing a particular service, check the following *DT80* profile settings

```
PROFILE COMMAND_SERVER PORT=7700
PROFILE HTTP_SERVER PORT=80
PROFILE MODBUS SERVER TCPIP PORT=502
```

Remember also that the USB port function must be set to **COMMAND** (which is the default) in order for *DtUsb* to work, i.e. **PROFILE USB_PORT FUNCTION=COMMAND**

DtUsb GUI

For the most part, *DtUsb* is intended to be invisible – its main purpose is simply to provide a TCP/IP connection over USB so that *dEX* and other logger services can be accessed.

However, *DtUsb* does include a simple graphical user interface (GUI). To access this, double click on the purple icon while a logger is connected. Alternatively, you can find a link to *DtUsb* on the Windows Start menu, in the **dataTaker** folder.

The *DtUsb* GUI comprises three screens, selected by clicking on the tabs along the top. Each screen contains the same three buttons along the bottom:

- **Quit** will terminate *DtUsb*, which will mean that the logger's TCP/IP services will no longer be available. This should normally only be used if you wish to use the direct "COM port" interface to the logger, rather than the TCP/IP interface.
- Hide will close the GUI, but DtUsb will keep running. Closing the window with the red X button will do the same thing.
- Apply will apply any changes you have made on the Configuration tab.

Loggers Screen

Figure 70: Main DtUsb screen

The **Loggers** tab shows a list of all connected loggers, along with their IP addresses and the port numbers to use to access their services.

For the HTTP (web) and FTP services, links are provided which will open a web browser window. The HTTP link will display the *dEX* home page, while the FTP link will display the web browser's inbuilt FTP client, allowing you to browse the logger's file system.

To access the command server (e.g. in *DeTransfer*) you would create a connection using the indicated IP address and port number (127.1.1.1 port 7700 in this case). To access the *DT80* Modbus server you would enter a similar thing into your Modbus client application.

Note that the port numbers may not necessarily be the "normal" ones shown in the example. For example, if there is a web or FTP server running on your PC then *DtUsb* will automatically assign different port numbers in order to avoid conflicts – for example, port 81 instead of port 80 for the web interface.

* Configuration Screen

Figure 71: DtUsb Configuration Screen

This screen allows you to select

- whether the dEX home page is automatically launched each time a logger is plugged in
- the base IP address that *DtUsb* presents to other applications. This would only need to change if there was some sort of conflict with other software on your computer.

USB Direct Serial Mode

If you wish to use *DeTransfer* to control the *DT80* via a USB connection then it is necessary to shut down *DtUsb*. Double click on the purple *DtUsb* icon in the system tray (or choose *DtUsb* in the Start menu) to bring up the *DtUsb* GUI then select **Quit** (and then confirm by selecting **Yes**).

You should now be able to run *DeTransfer* and create a serial connection by selecting the COM port that has been assigned to the USB interface. If you don't know the COM port number, you can check by using the Windows device manager (right click on **My Computer**, select **Manage**, then **Device Manager**, then open the **Ports (COM & LPT)** item in the tree and look for an entry called **dataTaker USB Serial Port**. See *Figure 66*.

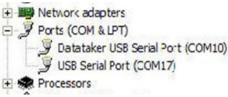


Figure 72: Determining USB COM port number in Device Manager

Note DtUsb must still be <u>installed</u> (but not running) in order to use the USB port in direct serial mode. If it is not installed then the DT80 will not be recognised and a COM port will not be assigned to it.

Sleep Mode

If the *DT80* enters low power sleep mode then its USB interface will be reset. To the host computer, it will look like the USB cable has been unplugged, so the configured COM port will disappear.

When the *DT80* wakes, the PC will detect that a USB device has been connected, and re-create the COM port. The application that was <u>using</u> the COM port will, however, most likely <u>not</u> automatically re-connect. For example, *DeTransfer* and *DeLogger* will require you to manually re-establish a connection.

For this reason it is recommended that the logger <u>not</u> be allowed to go to sleep while the USB cable is connected. By default, low power sleep mode is automatically disabled if a USB cable is connected.

RS-232 Communications

(Not applicable to DT8xM)

Direct RS-232 Connection

For applications where the *DT80* is to be directly connected to a nearby computer, **USB** is normally the preferred communications medium. However, you may wish to use a direct **RS232** connection if:

- your computer has no available USB ports
- you have a DT82 model, which does not have a USB port
- you need the *DT80* to go into low power sleep mode between scans, and you want to continue to receive real-time data returns; or you want to be able to wake the *DT80* by sending a character (See *Sleep Mode* (P297))
- the required cable length is longer than about 5 metres.

Normally the *DT80's* host RS232 port (P197) is used when making a direct RS232 connection to a host computer. However the **serial sensor port** (P199) can also be used.

To set up a direct RS232 connection you will need a "cross-over", or "null-modem" cable. Suitable cables may be ordered for this purpose (*dataTaker* product code IBM-6 for host port connection, or CAB-015 for serial sensor port). See *Cables* (P397) for wiring information.

It is also possible to use a simpler 3-wire cable (RXD, TXD and GND) although this will mean that hardware flow control is not possible.

If your computer has no RS232 ports (as is the case for many laptop models) a USB to serial adapter may be used.

Cable Length

Although the RS-232 standard specifies a cable of not more than 4 metres (15 feet), longer cables can be used. It's possible to use RS-232 cable runs of 100 metres or more, but to achieve reasonably error-free communication these generally need to have heavier wires and a slower baud rate may be necessary.

RS-232 Flow Control

Flow control (or **handshaking**) is the means by which communicating devices (such as the *DT80* and a host computer) control each other's transmission of characters to avoid data loss. The receiver uses flow control to disable transmissions by the sender if the receiver's input buffer is at risk of overflowing and thereby losing data.

The DT80 supports all methods of flow control:

- Software flow control (also known as XON/XOFF flow control)
- Hardware flow control (also known as RTS/CTS flow control)
- No flow control

Software Flow Control

In this mode, the receiver controls the flow of characters by transmitting

- the XOFF character (ASCII 19) to stop the sender from sending further characters
- the XON character (ASCII 17) to allow the sender to resume sending characters.

If the DT80 receives an XOFF character, it will stop transmission within two character periods. If no XON is received within 60 seconds (see P26 (P259)) the DT80 will resume transmitting anyway.

Hardware Flow Control

With hardware flow control, the transmission of characters is managed by the **RTS** (Request To Send) and **CTS** (Clear To Send) signals. For a DTE device such as a computer or the *DT80*:

- the RTS signal is an output; the device activates this signal while it is able to receive data
- the CTS signal is an input; the device will only transmit if this signal is active.

So if a computer and the *DT80* are set up to communicate using hardware flow control, then the RTS and CTS lines must be "crossed over". Thus when one end deactivates its RTS signal then the other will see its CTS signal deactivate, causing it to stop transmitting.

The *DT80* communications cable (product code IBM-6) has the RTS/CTS lines connected in this crossover manner – see *Host Port null modem cable* (p397).

Note that for a DCE device (e.g. a modem), the RTS and CTS functions are swapped (as are the TXD and RXD pins). This allows a "straight through" cable to be used when connecting a *DT80* to a modem.

Hardware flow control is inherently more reliable than software flow control, because the flow control state (send/don't send) is continuously indicated by the hardware signals. Software flow control can get into difficulties if line noise causes an XON or XOFF character to be lost, for example.

Hardware flow control is therefore the preferred method. It is not, however, the default because it can <u>only</u> be used if the cable is wired appropriately <u>and</u> the host computer is configured to use hardware flow control. (In this sense software flow control is a little more "forgiving").

If the RS232 cable is accidentally disconnected, the *DT80* will no longer see **CTS** active, so it will stop transmitting. If, however, this condition persists for more than 60 seconds (see *P26* (P259)), the *DT80* will conclude that the host computer is no longer connected and will stop trying to transmit, until **CTS** again becomes active.

No Flow Control

The *DT80* can also be set to use no flow control, in which case there is no control of the sender by the receiver. Use this setting with care, and only where there is no risk of the receiver being over-run by excess data from the sender, otherwise data loss will occur.

Sleep Mode

If the *DT80* is in low power sleep mode, it can be woken by sending a character to the RS232 port (either host port or serial sensor port). Note, however, that the character that was sent will be discarded, if other characters are sent immediately afterwards they may be discarded, too.

It is recommended that the *DT80* be woken by sending a CR character, then waiting at least 500ms before sending any commands. (Note that the "Wakeup Required" option in DeTransfer can be used to automatically prefix all commands by the abovementioned wakeup sequence.)

Note that only the RS232 ports can be used to wake the *DT80* in this way, because when the *DT80* goes to sleep any Ethernet or USB connections are terminated.

This also means that the RS232 port can be used to monitor real time data returns where the *DT80* is configured to go to sleep between scheduled scans – something which is not possible with the USB or Ethernet port.

Host RS-232 Port

(Not applicable to DT82EM/80LM/85LM)

The *DT80* has a 9-pin male connector for RS-232 serial communication to a computer or modem. The port is configured as a DTE (Data Terminal Equipment) device, and the pinout is the same as that used on a PC. See *RS-232* (P397) for more details

Configuring the Host RS-232 Port

There are three parameters that need to be set for any RS232 port, and the DT80's port is no exception:

- baud rate (data transfer rate in bits per second) *DT80* default is **57600**.
- serial framing format (number of data bits, parity type, number of stop bits) *DT80* default is "**N,8,1**" no parity, 8 data bits, 1 stop bit.
- flow control (mechanism for one computer to tell the other to stop sending) *DT80* default is **software** flow control (special characters are used to signal "stop" and "go").

It is essential that both ends of an RS232 link be configured identically - same baud rate, framing and flow control.

A fourth parameter that needs to be set for the *DT80* host port is the **port function**, which specifies the protocol used by the port – command, PPP, Modbus or generic serial.

PROFILE Settings

To view the current host port settings use the following command:

```
PROFILE HOST_PORT
[HOST_PORT]

BPS = 57600

DATA_BITS = 8

STOP_BITS = 1

PARITY = NONE

*FLOW = HARDWARE

FUNCTION = COMMAND
```

which lists the current baud rate, framing format, flow control and port function. An asterisk indicates a non-default setting. See *Profile Settings* (P262) for more details.

If required, these settings can be changed using individual PROFILE commands, i.e.:

```
PROFILE HOST_PORT key=value
```

The following keys are defined:

Key	Value	Default
BPS	baud rate. Use 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, or	57600
	115200.	
DATA_BITS	can be 7 or 8	8
STOP_BITS	can be 1 or 2	1
PARITY	can be N (none), O (odd) or E (even)	N
FLOW	NONE (no flow control)	SOFTWARE
	SOFTWARE (XON/XOFF)	
	HARDWARE (RTS/CTS)	
FUNCTION	port function (see below)	COMMAND

For example, the following commands would configure the host port for serial connection to a Modbus client (e.g. a SCADA system), using the "standard" Modbus settings (19200 baud, 8 data bits, 1 stop bit, even parity, no flow control):

```
PROFILE HOST_PORT BPS=19200
PROFILE HOST_PORT PARITY=EVEN
PROFILE HOST_PORT FLOW=NONE
PROFILE HOST_PORT FUNCTION=MODBUS
```

Note that these settings, as with all profile settings, will temporarily revert to default settings in the event of a "triple push" reset, see Safe Mode (P272).

Note Do <u>not</u> use software flow control (SWFC) if the port is using a binary (non-ASCII) protocol, such as Modbus or PPP or some serial sensor protocols. This is because flow control characters (XON/XOFF) may legitimately appear in binary data, and if they do then they will be stripped out. This will cause data errors.

Port Function

The possible settings for the host port **FUNCTION** parameter are:

- COMMAND (default) the port accepts DT80 commands sent directly over the serial interface. The port will
 automatically switch to PPP mode if an incoming PPP connection is detected. When the PPP connection is closed the
 port will go back to accepting direct commands.
- PPP the port accepts PPP connections only.
- SERIAL the port is controlled by the current job, using the 2SERIAL channel.
- MODBUS the port receives and processes incoming serial Modbus requests.
- MODBUS_MASTER the port is used for polling a Modbus sensor device, as specified in the current job using the 2MODBUS channel.
- **DISABLE** the port is disabled. This setting reduces power consumption.

Temporary Settings

The Host RS232 communications parameters can also be temporarily set by the command

PH=baud, parity, databits, stopbits, flow-control

where:

Parameter	Settings	Default
baud	is the required baud rate. Use 300, 600, 1200, 2400, 4800, 9600, 19200, 38400,	57600
	57600 or 115200.	
parity	can be N (none), O (odd) or E (even)	N
databits	can be 7 or 8	8
stopbits	can be 1 or 2	1
flow-control	NOFC (no flow control)	SWFC
	SWFC (software flow control, i.e. XON/XOFF)	
	HWFC (hardware flow control, i.e. RTS/CTS)	

These parameters may be specified in any order and all are optional. Note that the port function cannot be set using this command.

For example, the command

```
PH=115200, HWFC
```

sets the RS232 port to 115200 baud, no parity, 8 data bits, 1 stop bit, and hardware flow control.

These settings will be reset to the PROFILE values by a hard reset (e.g. HRESET).

You can also check the DT80's current RS232 parameters using the PH command, e.g.:

```
PH RS232,57600,N,8,1,SWFC
```

Finally, the command

PH=

will return the all host port settings to the values specified in the PROFILE.

Serial Sensor Port

(Not applicable to DT81/82E)

The *DT80* serial sensor port is normally used to control serial sensor devices. It is, however, a general purpose serial port which is largely equivalent in functionality to the host RS232 port.

The DT80 serial sensor port:

- can be configured for either the RS-232, RS-422 or RS-485 comms standard. RS-232 supports a single point-to-point connection; the other standards support multiple devices in a multi-drop configuration (for certain protocols).
- has a differential transmitter and receiver that provide for the different serial standards
- has RTS/CTS handshake lines (RS232 only)
- supports baud rates of 300 to 57600 baud
- supports the serial command, serial Modbus, PPP and generic serial protocols
- does not provide any modem control functions

Connecting to the Serial Sensor Port

The *DT80* serial sensor port terminals have different functions depending upon the configured serial standard (RS232, RS422 or RS485).

Terminal	RS232	RS422	RS485	Wake
Tx Z	Transmit Data	Transmit Data- (A)	Data- (A)	
Rx A	Receive Data	Receive Data+ (B)		$\overline{\checkmark}$
RTS Y	Handshake output	Transmit Data+ (B)	Data+ (B)	
CTS B	Handshake input	Receive Data- (A)		V
D GND	Signal Ground	Ground	Ground	

Figure 73: The DT80's Serial Channel terminals (DTE)

Note that:

- The RTS and CTS handshake/control signals are available for RS232 only
- The DGND terminal is the signal return (common) for RS232. RS422/485 use differential signalling the ground is not used as a reference, but it should still be connected to avoid excessive common mode voltages.
- Activity on either of the indicated terminals (i.e. Rx/A and CTS/B) will wake the logger from sleep mode, although the
 data in the particular message that woke the logger will be lost. Note also that if the Wake feature is required and
 RS485 is being used then it will be necessary to link the Data terminals (Tx/Z and RTS/Y) to the wake-enabled
 terminals (Rx/A and CTS/B).

RS232 Connection

The serial sensor port is wired as a DTE device so the data lines must be "crossed over" when connecting to another DTE device. That is, the *DT80*'s **Tx** output connects to the sensor's **RxD** input, and vice versa.

The handshaking signals, if used, must also be crossed over, i.e. RTS connects to CTS and vice versa.

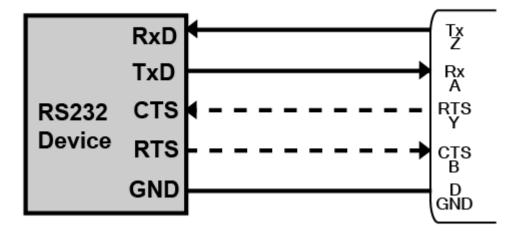


Figure 74: Serial sensor port RS232 connection. RTS/CTS connections are optional.

A cable suitable for connecting the *DT80* serial sensor port to a PC serial port may be ordered (*dataTaker* part number CAB-015). See also *Serial Sensor Port null modem cable* (P398).

RS422 Connection

RS422 allows for **multi-drop** connection, where one or more sensors are connected in parallel. The *DT80* is typically the "master" device in the network and is therefore wired so that its transmissions will be received by all slave devices. The slaves' transmit lines are all tied together, which means that only one slave is permitted to transmit at any one time. It is up to the communications protocol to ensure that this is the case – typically each slave will be assigned a unique address and will only respond if it receives a request from the master that is addressed to it.

RS422 uses **full duplex** differential signalling: two wires for transmit (**Y** and **Z**) and two wires for receive (**A** and **B**). Be sure to observe the correct signal polarity, as shown in the diagram. Some devices label their terminals as **A** or **B**, some as **+** or **-**.

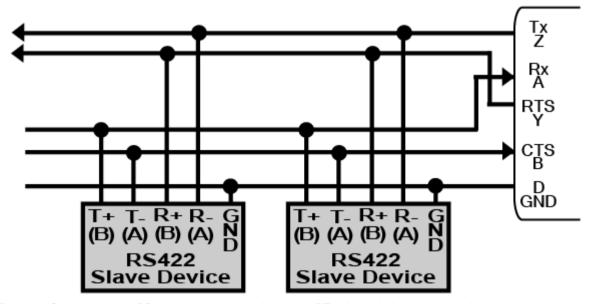


Figure 75: Serial sensor port RS422 connection, assuming that the DT80 is the designated master device.

RS485 Connection

RS485 uses **half duplex** differential signalling: there is just one pair of wires, which is used for both transmit and receive. Be sure to observe the correct signal polarity, as shown in the diagram. Some devices label their terminals as **A** or **B**, some as **+** or **-**.

Notice that with RS485, all devices including the *DT80* are wired symmetrically: there is no distinction between "master" and "slave", at least from a wiring perspective.

An RS485 network should normally be cabled as a single linear "backbone", with relatively short "stub" connections to each device. For long cable runs or high baud rates a 100Ω termination resistor at each end of the main cable is recommended.

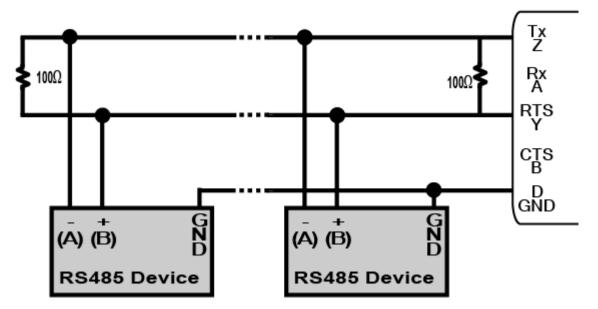


Figure 76: Serial sensor port RS485 connection

Configuring the Serial Sensor Port

The following parameters need to be set for the serial sensor port:

- port mode (RS232, RS422 or RS485) default is RS232.
- baud rate (data transfer rate in bits per second) default is **1200**.
- serial framing format (number of data bits, parity type, number of stop bits) default is "N,8,1", i.e. no parity, 8 data bits, 1 stop bit.
- flow control (mechanism for one computer to tell the other to stop sending) default is **no flow control**.
- port function (protocol to be used: command, PPP, Modbus or generic serial) default is generic serial.

PROFILE Settings

To view the current serial sensor port settings use the following command:

```
PROFILE SERSEN_PORT
[SERSEN_PORT]
*BPS = 9600
DATA_BITS = 8
STOP_BITS = 1
PARITY = NONE
FLOW = NONE
MODE = RS232
FUNCTION = SERIAL
```

which lists the current baud rate, framing format, flow control, port mode and port function. An asterisk indicates a non-default setting. See *Profile Settings* (P262) for more details.

If required, these settings can be changed using individual **PROFILE** commands, i.e.:

```
PROFILE SERSEN_PORT key=value
```

The following keys are defined:

Key	Value	Default
BPS	baud rate. Use 300, 600, 1200, 2400, 4800, 9600, 19200, 38400 or 57600.	1200
DATA_BITS	can be 7 or 8	8
STOP_BITS	can be 1 or 2	1
PARITY	can be N (none), O (odd) or E (even)	N
FLOW	NONE (no flow control) SOFTWARE (XON/XOFF) HARDWARE (RTS/CTS)	NONE
MODE	signal standard: RS232, RS422 or RS485	RS232
FUNCTION	port function (see below)	SERIAL

If required, these settings can be changed using individual **PROFILE** commands. See *Profile Settings* (P262)) for details on the possible values for these settings.

For example, the following commands would configure the serial sensor port for the control of serial sensor devices on an RS485 network, running at 38400 baud

```
PROFILE SERSEN_PORT BPS=38400
PROFILE SERSEN PORT MODE=RS485
```

Note Do <u>not</u> use software flow control (SWFC) if the port is using a binary (non-ASCII) protocol, such as Modbus or PPP or some serial sensor protocols. This is because flow control characters (XON/XOFF) may legitimately appear in binary data, and if they do then they will be stripped out. This will cause data errors.

Port Function

The possible settings for the serial sensor port **FUNCTION** parameter are:

- SERIAL (default) the port is controlled by the current job, using the 1SERIAL channel.
- COMMAND the port accepts DT80 commands sent directly over the serial interface. The port will automatically switch
 to PPP mode if an incoming PPP connection is detected. When the PPP connection is closed the port will go back to
 accepting direct commands.
- PPP the port accepts PPP connections only.
- MODBUS the port receives and processes incoming serial Modbus requests.
- MODBUS_MASTER the port is used for polling Modbus sensor devices, as specified in the current job using the 1MODBUS channel.
- DISABLE the port is disabled. This setting reduces power consumption.

Temporary Settings

The serial sensor port communications parameters can also be temporarily set by the command

PS=mode, baud, parity, databits, stopbits, flow-control

where:

Parameter	Settings	Default
mode	specifies the signal standard: RS232, RS422 or RS485	RS232
baud	is the baud rate. Use 50, 75, 110, 150, 300, 600, 1200, 2400, 4800, 9600,	1200
	19200, 38400 or 57600.	
parity	can be N (none), O (odd) or E (even)	N
databits	can be 7 or 8	8
stopbits	can be 1 or 2	1
flow-control	NOFC (no flow control)	NOFC
	SWFC (software flow control – RS232/RS422 only)	
	HWFC (hardware flow control – RS232 only)	

These parameters may be specified in any order and all are optional. Note that the port function cannot be set using this command.

For example, the command

PS=RS485,9600

sets the port to RS485 mode, 9600 baud.

These settings will be reset to their defaults by a hard reset (e.g. HRESET).

You can also check the DT80's current serial sensor port parameters using the PS command, e.g.:

PS RS232,1200,N,8,1,NOFC

Finally, the command

PS=

will return the all serial sensor port settings to the values specified in the PROFILE.

External Modem

(Not applicable to DT8xM models)

Modem (Remote) RS-232 Connection

Another common way of communicating with the *DT80* is to connect its Host RS-232 port to a wired or wireless modem, which communicates with another modem connected to the host computer at the other end of the comms link. This way, the *DT80* can be across town or across the world from the host computer, and the link can use PSTN (landline), radio, GSM (cellular) or satellite communication. This is known as a **modem connection** to a **remote** *DT80*.

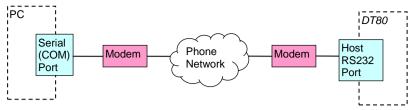


Figure 77: Modem connection

The "phone network" cloud in the diagram could be:

- · a dedicated wired or wireless link, e.g. a leased line or a dedicated radio link
- the public switched telephone network (PSTN)
- a cellular or satellite mobile network.

The *DT80* supervises the modem using standard Hayes-compatible "AT" commands. Certain command strings are configurable, to allow the widest possible range of modems to be supported.

The *DT80* can also control the modem's power supply. If this facility is used, the *DT80* can automatically reset the modem if it determines that this is necessary. See *Powering the DT80's Modem* (P205).

Automatic Modem Detection

By default, the *DT80* uses the state of its Host RS-232 port's **DSR** terminal to determine whether a modem is connected to the port. (**DSR** = "Data Set [i.e. modem] Ready")

If the DSR terminal is <u>not</u> held active by the connected device, the *DT80* assumes that it's connected <u>directly</u> to the host computer and operates accordingly.

If the *DT80*'s **DSR** terminal <u>is</u> held active by the connected device, the *DT80* assumes that it's connected to a <u>modem</u> and operates accordingly, initialising the modem, monitoring other Host RS-232 lines to determine when a modem connection to the host computer has been established, and so on.

If required, you can override the automatic modem detection feature by setting the following profile:

PROFILE HOST_MODEM DETECTION=ALWAYS (assume modem is always present, regardless of DSR state), or PROFILE HOST_MODEM DETECTION=NEVER (assume modem is <u>not</u> present)

The default setting for this profile is PROFILE HOST_MODEM DETECTION=DSR.

DT80-to-Modem Cable

The cable used to connect the *DT80* host port to the modem should normally be a straight-through comms cable, as shown in *Host Port modem cable* (P397). The *DT80* uses the following RS232 control signals:

- DSR (Data Set Ready), for modem detection, as described above
- **DTR** (Data Terminal Ready), to tell the modem that a data terminal (i.e. the *DT80*) is connected to it, and also to hang up a call
- RTS (Request To Send) and CTS (Clear To Send), to allow hardware flow control (see RS-232 Flow Control (P199))
- **DCD** (Data Carrier Detect), to allow the *DT80* to detect when the modem is on-line (see *Modem Communications Operation* (P206)).
- RI (Ring Indicator), to allow the DT80 to wake up when an incoming call is detected.

Modem Initialisation

Configuring Your Modem

Modems are highly configurable devices with many different parameters that can be adjusted. To make this long list of parameters easier to manage, modems normally support a number of different configuration **profiles**. Each profile consists of a complete set of parameter values. As a minimum, there would be a fixed **factory settings** profile, and a user-configurable **default** profile. The default profile's settings are automatically loaded when the modem is reset or powered up.

Although the *DT80* includes support for automatically sending initialisation commands to the modem, it is recommended that you fully <u>pre-configure the modem</u>, and write the configuration to the modem's default profile, before connecting it to the *DT80*. This ensures that whenever the modem resets due to power loss or other reason it will start with the correct configuration.

Sending Modem Commands

Refer to your modem's user's manual for information on how to go about pre-configuring the modem. This is usually done by connecting the modem to a PC serial port and running a terminal program such as *Hyperterminal* or *DeTransfer* so that you can then send "AT" commands to configure the modem.

You can also use the **SSDIRECT** command (see *Serial Sensor Direct Mode* (P360)) to configure a modem that is already connected to the host port of the *DT80*. To use this feature, connect to the *DT80* using the USB or Ethernet port, then send the command

SSDIRECT 2

to enable Serial Sensor Direct Mode. You can now interact with a modem attached to the host RS232 port. for example, you can sent AT commands and see its responses (assuming the modem is in command mode). When you're done, enter **ENDSSDIRECT**.

* Recommended Option Settings

The following is a list of items that should be set in the modem's default profile. You should check your modem user's manual to determine the exact command to use for each setting.

It is recommended that you start by resetting the modem to its factory defaults so that you have a known starting point. This is particularly important if someone else has used the modem before and you are uncertain of the settings used. For most modems the AT&F command will load the factory default profile. After this command has been issued, you can then set all other settings as detailed below and as required for your specific application.

- **DSR always on**: The **DSR** (data set ready) signal from the modem must be active while the modem is turned on, as this is how the logger determines that a modem is connected. Most modems do this by default, if not then you must set the modem do this (typically by using the command **AT&SO**). If the modem cannot be configured to operate in this way then the logger must be tricked by connecting **DSR** to **DTR** at the logger side, but this should be done as a last resort as it is not as robust a method. It is important for the logger to know that a modem is connected so that it can avoid sending normal data output to the modem when the modem is in command mode.
- DCD follows carrier state: The DCD (data carrier detect) signal must be set to follow the carrier state, as this is how the logger determines when a connection has been established with another modem. Most modems do this by default, if not then you must set the modem to do this (typically using the command AT&C1).
- Hardware flow control: We recommend that you always use hardware flow control on the modem and the logger. For most modems this is the default. It is typically set using the AT&K3 command.
- Force reliable (error correcting protocol) mode: You should ensure that the modem connection always uses an error correcting protocol such as LAPM or MNP. This is required to ensure the flow control information is passed between the logger and PC based application as well as to eliminate line errors that may corrupt the data transmission. If an error correcting protocol is not used then line errors and flow control problems can cause data loss. Many modems will fall back to a non error correcting mode if an error correcting protocol cannot be agreed with the other modem. This should be <u>avoided</u> as it can cause data loss. Many PSTN modems can be set to force reliable mode using the AT\N2 command. That is, they will not connect at all if an error correcting protocol is unavailable.
- **Auto answer**: The *DT80* does not issue any commands to the modem to answer a call. Therefore, if dial-in functionality is required, the modem must be set to auto-answer incoming calls. For most modems the command **ATS0=4** will set the modem to auto-answer incoming calls after 4 rings. This setting may be omitted if you do not need dial-in functionality, in which case the modem will ignore incoming calls.
- **Don't echo commands**: Most modems will echo incomming commands. This is not desirable when used with a *DT80* as the echo may be treated as a command by the logger which will only confuse it. For most modems the command **ATE0** will turn off echo of modem commands.
- **Quiet mode**: Most modems will issue messages whenever a command is sent to the modem or a connection is made or dropped. This is not desirable when used with a *DT80* as the message may be treated as a command by the logger which will only confuse it. For most modems the command **ATQ1** will disable the output of such messages.
- **DTR hangup**: Whenever the logger wants to hang up a connection it will set the **DTR** (data terminal ready) signal to inactive. The modem should be set such that it will drop the connection whenever it sees **DTR** inactive. This behaviour can be set for most modems with the command **AT&D2**.
- Fixed local baud rate. Most modems will set their local baud rate automatically ("autobaud") to match that of the connected device, once it sees an AT command from the device. Some modems, such as some GSM/CDMA modems, will only autobaud up to a particular maximum rate (such as 19200). To use rates above this you must set the baud rate to a fixed value using a command to the modem. The way to control this varies considerably across modems. For example on some modems the command AT#BDR can be used to fix the local baud rate.
 - To ensure reliable communications with the modem under all conditions it is in fact recommended that you always fix the modem's baud rate. This should be set to match the baud rate of the *DT80*'s host serial port (by default 57600). If the modem's baud rate cannot be set then you need to ensure that the logger's modem initialisation string (P205) contains at least one AT command so that the modem can autobaud when it is sent.
- Application specific settings. You may need to set other settings in the modem that are particular to your application.

After entering the required configuration settings, it is necessary to tell the modem to store them into its default profile. This is normally done using the AT&W command.

To verify that the settings have been set correctly, power cycle the modem and then send the AT&V command to output the current settings and check that the initialisation commands above have been set for the active profile.

❖ Example

The following initialisation commands are suitable for PSTN modems that use a Rockwell chipset. They may be suitable for other types as well. Please check the modem's users manual to confirm that it supports all the AT commands specified here before using these commands.

```
AT&F
ATE0Q1&D2S0=4&C1&S0\N2%C2&K3#BDR=24
AT&W
```

Note If *DeTransfer* is used to send these commands to the modem then the \ character must be entered as \\. Also note that because these incantations include a command to fix the baud rate to 57600, the terminal program must be set to 57600 baud, otherwise the subsequent command (AT&W) would not be recognised.

The above AT commands decode as follows:

Command	Description
&F	set all parameters to factory defaults
E0	no echo
Q1	quiet mode (no messages)
&D2	hang up if DTR inactive
S0=4	auto-answer after 4 rings
&C1	DCD follows carrier
&S0	DSR always on
\N2	don't connect unless error correction is active
%C2	enable V42bis data compression
&K3	enable hardware flow control (RTS/CTS)
#BDR=24	set baud rate to 57600 (24 x 2400) – disable autobaud
&W	write settings to default profile

Modem Initialisation String

The *DT80* automatically attempts to initialise the device attached to its Host RS-232 port when it first detects the **DSR** signal as active and in certain other circumstances. This is done by sending the initialisation string specified by the **INIT** profile key (HOST MODEM section, see *Profile* (P262))

The modem should already have been pre-configured (see *Configuring Your Modem (P203)*), so the recommended initialisation string is simply **AT**, which is the default.

Sending AT will ensure that the modem can autobaud, if it has been configured to do so.

Powering the DT80's Modem

If required, the *DT80* can control power to the modem, so that it can be powered down under program control when not in use.

This can be done using either:

- the RELAY output see DO5 Latching Relay Output (P339); use 1RELAY=1 to switch on modem power, 1RELAY=0 to turn off, or
- one of the digital outputs **1D-4D** driving an external relay see *DO1 Driving a Relay* (P337); use **1DS0=0** to switch modem power on, **1DS0=1** to turn off, or
- the 12V power output (DT80/81 Series 2 and DT85 only), provided that the modem draws no more than 150mA.

Automatic Modem Power-Down Reset

The *DT80* provides an additional feature where the modem can be automatically reset (by removing and re-applying power) if it appears to be unresponsive – that is, it has been off-line (i.e. not connected to the remote modem) for a long period of time (12 hours, by default – set this using the MAX_CD_IDLE profile key).

To enable this feature, send one of the following **PROFILE** commands:

- If the modem is powered from one of the *DT80*'s digital output channels *n* (where *n* = 1 to 4), send the command **PROFILE HOST MODEM EXT POWER SWITCH**=*n***DSO**
- If the modem is powered via the DT80's relay channel, send the command PROFILE HOST_MODEM EXT_POWER_SWITCH=1RELAY
- If the modem is powered via the DT85's 12V power output, send the command PROFILE HOST MODEM EXT POWER SWITCH=PWR12V
- If the modem is not powered by either of the above, send the command PROFILE HOST_MODEM EXT_POWER_SWITCH=NONE to disable the feature.

From then on, the *DT80* will automatically cycle the modem power if it detects it to be unresponsive. It will then send the configured modem initialisation string.

Modem Communications Operation

Dialling In

The *DT80* does not communicate via the RS232 host port unless it determines that a call has been established between itself and a host. When a modem is attached (**DSR** active), the *DT80* monitors the **DCD** signal to determine when it can transmit data and status information, and receive commands.

- When DCD is active the DT80 accepts commands, and returns data and status information exactly as it would for a
 direct connection.
- When **DCD** is inactive the *DT80* ignores any received characters and does not transmit data or status information.

This behaviour ensures that any rubbish characters received outside of a call are ignored, and that the *DT80* does not send characters to the modern that the modern may interpret as commands to switch into a different operating state.

Dialling Out

The DT80 can also initiate an outgoing modern call, which would typically be done in response to an alarm.

❖ SETDIALOUTNUMBER Command

Send the command

```
SETDIALOUTNUMBER" digits"
```

to the *DT80* to specify the telephone number to be dialled by the **DIAL** command to establish a connection to the host computer.

* DIAL Command

The **DIAL** command causes the *DT80* to instruct its modem to dial out to the telephone number specified by **SETDIALOUTNUMBER**. If a call cannot be placed for any reason, the command is ignored. This is often used as an alarm action command to cause the *DT80* to dial out when an alarm condition arises.

* HANGUP Command

The **HANGUP** command causes the *DT80* to instruct its modem to hang up (disconnect) the current dial-out or dial-in connection. If there is currently no connection, **HANGUP** is ignored. This can be used in an alarm action command to cause the *DT80* to hang up a call in progress when an alarm condition arises.

❖ Example — Modem Control Commands

The use of the DT80's modern control commands is demonstrated in the following program:

```
BEGIN"FLUFFY"
SETDIALOUTNUMBER"12345678"
RA10M
'Read boiler temp
1TK(=1CV,W)
IF(1CV>120){DIAL}
```

Every 10 minutes, the program checks the boiler temperature and then, if it exceeds 120°C, instructs the modem to initiate a dial-out to phone number 12345678.

Modem Status

The system variable 25SV (P37) gives an indication of the current state of the modem. It can be used with alarms to determine the current state of the modem connection and to behave accordingly.

Modem Diagnostics

If you experience problems with setting up a modem, it can be helpful to switch on diagnostic messages by setting **P56=16**. These messages are output to the active communications port and indicate events (e.g. DCD signal going active) and *DT80* actions (e.g. initialisation commands sent to the modem) as they occur.

Set P56=0 to disable the diagnostic messages.

Setting Up a Remote Connection

The following is a brief summary of the steps involved in setting up a remote modem connection between the *DT80* and a host computer.

- 1. Pre-configure the modem as described in *Configuring Your Modem* (P203) and save the settings to the modem's default profile.
- 2. Connect a local PC to the DT80 using a USB or direct RS232 connection and run DeTransfer/DeLogger.

3. Set the required profile settings to configure the host port and modem. For example:

PROFILE HOST_PORT FLOW_CONTROL=HARDWARE
PROFILE HOST_MODEM EXT_POWER_SWITCH=3DSO

will set hardware flow control (recommended), and configure modem power control using digital output 3D.

- 4. Connect power to the modem (in the above example the power would be supplied via a relay driven by 3D).
- 5. Connect a suitable comms cable between the serial port on the *DT80*'s modem and the *DT80*'s Host RS-232 port. This cable is normally supplied with the modem, see also *DT80-to-Modem* Cable (P203).
- 6. At the remote end of the link, connect a suitable comms cable between the serial port on the host computer and the local modern.
- 7. On the host computer, configure the modem using the Windows control panel. It is recommended that hardware flow control and an error-correcting protocol (e.g. V42) are used.
- 8. On the host computer, launch suitable terminal software, e.g. *DeLogger* or *DeTransfer*. Set up a connection to use the modem.
- 9. Attempt to connect to the *DT80* from the host computer.

Part L – Network Communications

TCP/IP Concepts

About TCP/IP

TCP/IP (Transmission Control Protocol / Internet Protocol) is a standardised set of rules, or **protocols**, that allow computers to talk to each other. TCP/IP is the glue that holds the Internet together.

Most of the TCP/IP based protocols revolve around the concept of a **server** providing services to a **client**. Servers and clients are software modules loaded onto a computer or device. For example, the web browser client on your PC uses TCP/IP to make requests to a web server, which then returns the requested information.

A single computer or device can support multiple different clients and servers, all operating simultaneously. Likewise, a single TCP/IP connection allows any number of clients to talk to any number of servers simultaneously.

About This Section

Hardware Interfaces

The DT80 supports TCP/IP using any of the following communications interfaces:

- Ethernet, which is typically used to connect to a home or office LAN (local area network), or a single PC, or an Internet
 gateway device such as an ADSL modem
- a **serial interface** (USB, host RS232 or serial sensor), using PPP (point to point protocol), which is typically used to connect to a single PC (e.g. using DtUsb), or to a dial-up Internet service using an external dial-up modem.
- the integrated wireless modem (if present), which can connect to the Internet via a mobile telephone network.

The mechanics of setting up the <u>serial interfaces</u> (profile settings, installing *DtUsb*, and so on) were discussed earlier. Refer to *USB Port* (P188), *Host RS-232 Port* (P197) and *Serial Sensor Port* (P199).

This section will discuss:

- setting up the integrated modem
- setting up the Ethernet interface
- setting up a PPP connection over one of the RS232 serial interfaces

Services

As shown in the communications diagrams (Figure 61 and Figure 62), the DT80 supports the following TCP/IP based services:

- an external web browser can access the DT80's web server (Web Interface (PError! Bookmark not defined.))
- an external FTP client can access the DT80's FTP server (Using the DT80 FTP Server (P255))
- an external Modbus client (e.g. SCADA system) can access the DT80's Modbus server (Modbus Interface (P176))
- an external client (e.g. the dEX command window, or DeTransfer) can access the DT80's command server (Using the Network Command Interface (P254))
- the DT80 can act as an FTP client in order to push logged data to an FTP server (FTP Server (P103))
- the DT80 can act as an email client in order to transfer logged data or alarm messages to an email account (Email
 (P103))
- the DT80 can act as a Modbus client in order to read data from Modbus sensors (Modbus Channel (P364))

This section will discuss the use of the *DT80*'s FTP server and command server. The other services are documented elsewhere, as indicated above.

TCP/IP Parameters

In order to operate correctly on a TCP/IP network, the DT80 must know the following:

- its own unique IP address
- for Ethernet connections, the subnet mask applicable to the network to which it is connected
- (optional) the gateway IP address applicable to the network to which it is connected

(optional) the DNS server address applicable to the network to which it is connected.

IP Address

Every device that is connected to a TCP/IP network must have its own unique identifier, called its **IP address**, and the *DT80* is no exception. No two devices in the same network can have the same IP address.

An IP address is single 32-bit integer, but it is normally written as four numbers (each in the range 0-255), separated by periods, e.g. **192.168.2.101**.

IP addresses are actually associated with network interfaces, rather than devices. The *DT80* has multiple network interfaces, and may therefore have multiple IP addresses – one for its Ethernet interface, one for the integrated modem, and one for any serial port set up to use PPP.

* Public and Private Addresses

Traditionally, all IP addresses were "public", which meant that if you knew a particular computer's IP address then you could connect to it from any computer on any IP network anywhere in the world. This did, however, present some problems. Firstly, it meant that every computer needed a <u>globally unique</u> IP address, and with the explosive growth of the Internet, IP addresses are simply running out. Secondly, computers with externally visible IP addresses are potentially vulnerable to malicious programs on the Internet which attempt to exploit application or operating system "loopholes" in order to gain control of a computer for nefarious purposes.

Nowadays, the usual practice is to set up <u>private</u> networks, where all computers on the network have a <u>private</u> IP address. In order for these computers to access web servers and such like on the Internet, all external traffic is passed via a **NAT router**, so called because it performs **Network Address Translation**, i.e. it converts private IP addresses into "real" IP addresses and vice versa. The end result is that the computers on the private network can "see out", but external systems cannot "see in" – the router effectively acts as a "firewall" between the secure private network and the Internet.

This is fine for "client" computers such as the one you use for accessing the web or email. For "server" devices (e.g. the *DT80*, which has internal web and FTP servers), NAT can present a problem if you want to be able to access the *DT80*'s servers via the Internet. This will be discussed further in *Accessing the DT80 via the Internet* (P242).

Private IP addresses normally begin with 10.x.x.x, or 192.168.x.x, or 172.16.x.x through 172.31.x.x, or 169.254.x.x. These addresses only need to be unique within the <u>local</u> network. Addresses outside these ranges can normally be assumed to be **public IP addresses**. Public IP addresses need to be assigned by an Internet Service Provider (ISP).

❖ Assigning an IP Address (Ethernet)

There are two methods of assigning an IP address to the DT80's Ethernet port:

- it can be manually specified in the DT80's profile. This is termed a static IP address.
- the DT80 can automatically obtain a dynamic IP address from a DHCP server on the local network. Most networks
 include a Dynamic Host Configuration Protocol (DHCP) server, which is responsible for providing IP addresses to
 computers connected to the network. If a DHCP server is not available then the DT80 can assign itself an Auto-IP
 address.

Note that a DHCP server will typically also automatically set the *DT80*'s subnet mask, gateway and DNS server parameters, which are described further below.

❖ Assigning an IP Address (PPP)

If the *DT80*'s network connection is made via a point-to-point link to another computer, as opposed to a shared Ethernet network, then IP addresses are assigned a little differently.

For a *DtUsb* connection to the *DT80*'s USB port, the *DtUsb* software will automatically assign IP addresses to itself and the *DT80*. These are private addresses, visible only to *DtUsb* and the *DT80*.

For a serial PPP connection to the DT80's USB, host RS232 or serial sensor port, the DT80 will normally assign an IP address to itself (1.0.0.n) and to the other computer (1.0.1.n), where n is 1 for the serial sensor port, 2 for the host RS232 port or 3 for the USB port.

For a connection using the integrated modem, the *DT80* will be assigned an IP address by the mobile carrier's server once the modem has registered on the mobile network. Depending on the carrier, this IP address may be a public address or a private address. If your carrier provides a private address then the *DT80*'s servers will not be able to be accessed via the Internet).

Subnet Mask

The DT80's Ethernet IP address actually consists of two parts:

- The **network number**, which identifies the network to which the *DT80* and its neighbours are connected.
- The **node number**, which uniquely identifies this *DT80*. No two devices on the network may have the same node number. Also known as a **host number**.

The **subnet mask** is a property of the network to which the *DT80* is connected and specifies which part of the IP address is the network number and which is the node number.

For example, the subnet mask **255.255.255.0** specifies that the first three parts of the IP address are the network number, and the last is the node number within the network. So in this case the IP address **192.168.2.101** would represent node **101** on the "**192.168.2**" network.

As with the IP address, the subnet mask can be set manually using a profile setting, or it can be assigned automatically by a DHCP server.

Note The subnet mask is not applicable to point-to-point connections; it is only relevant for Ethernet.

Gateway

The *DT80* can communicate directly with any of the nodes connected to its local Ethernet network, or to the computer at the other end of a point-to-point link. In some cases this is all the connectivity that is required.

If, however, the *DT80* needs to be accessed from farther afield then it needs to know how to communicate with computers on <u>different</u> networks. This is done by assigning one of the computers on the *DT80*'s local network to be a **gateway**. The IP address of the gateway is then entered into the *DT80*.

Now, any time the *DT80* wants to talk to a computer on a "foreign" network it will simply passes the data to the designated gateway and let it sort it out. The gateway may then pass the data on to other gateways, until eventually the data finds its way to its destination. See also *Connection to a LAN* (P236).

As hinted above, if you only want to connect your *DT80* to one computer, or to a few computers which are all on the same local network, then it is not necessary to specify a gateway.

As with the IP address, the gateway IP address can be set manually using a profile setting, or it can be assigned automatically by a DHCP server.

For a point-to-point serial or *DtUsb* connection, the gateway is not relevant because in these cases the network beyond the computer at the other end of the link is not visible to the *DT80*.

For a mobile network connection using the integrated modem, the gateway will be set up automatically during the connection process.

DNS Server

Most networks include a **Domain Name System (DNS)** server. This is responsible for translating names such as **ftp.datataker.com** into numeric IP addresses. If the *DT80* is configured with a valid DNS server address then the current job will be able to access FTP servers by name rather than having to use a raw IP address.

As with the IP address, the DNS server IP address can be set manually using a profile setting, or it can be assigned automatically by a DHCP server. Often two DNS server addresses are specified – a primary one and a backup.

For a point-to-point serial or *DtUsb* connection, the DNS server is not relevant because in these cases the network beyond the computer at the other end of the link is not visible to the *DT80*.

For a mobile network connection using the integrated modem, the DNS servers will be set up automatically during the connection process.

Integrated Modem

(Only applicable to DT8xM models)

The DT80 'M' models (DT80LM/82EM/85LM/85GLM) include an integrated wireless (cellular) modem. This allows you to:

- connect the logger to the internet wherever there is mobile coverage
- configure and monitor the logger over the internet using dEX (if permitted by your mobile plan).
- · wirelessly unload data to an FTP server or your email inbox
- send SMS alarm messages to a mobile handset
- send email alarm messages to your computer or smartphone

The DT82EM3, DT80LM3 and DT85LM3 variants support 2G and 3G networks (GSM/GPRS/EDGE/WCDMA), while the corresponding DT8xM2 models support 2G networks only (GSM/GPRS/EDGE).

Mobile Plans

As with any mobile device, in order to use the integrated modem you will need a **SIM card** (subscriber identity module), supplied by a mobile carrier. The SIM needs to be associated with an "appropriate" mobile plan.

There are currently hundreds of different mobile plans on offer by carriers around the world. It is important to select one that is compatible with the *DT80* features that you intend to use.

In certain regions, your *DT80* may be supplied with a SIM from a recommended mobile carrier along with an offer to sign up for a plan which will allow you to take full advantage of the *DT80*'s features. Using this recommended plan also means that the logger can automatically set all required settings, without requiring any manual configuration.

In the event that a recommended carrier/plan is not available, this subsection will discuss the features that you need to look for in a mobile plan, and the information that you need to obtain from the carrier.

The Basics

❖ Mobile Networks

Mobile networks have evolved significantly over the past few decades. Networks are often characterised by "generations" – 2nd generation (2G), 3rd generation (3G), plus intermediate enhanced versions of each (sometimes referred to as 2.5G and 3.5G). The *DT80* supports all of the network types listed below:

- GSM (Global System for Mobile Communication) provides basic voice and SMS facilities (2G)
- GPRS (General Packet Radio System) and EDGE (Enhanced Data rates for GSM Evolution) build on GSM to provide basic mobile internet access (2.5G)
- UMTS (Universal Mobile Telecommunications System) refers to a family of 3G networks, of which WCDMA (Wideband Code Division Multiple Access) is the most common. Mobile Internet access is a core feature of these networks. Not available on DT8xM2 models.
- HSDPA/HSUPA (High Speed Downlink/Uplink Packet Access) builds on WCDMA to provide higher speeds, and may therefore be referred to as 3.5G. Not available on DT8xM2 models.

In general, the earlier networks offer slower speeds and fewer features, but may have wider coverage. Note also that although 2G and 3G are physically separate networks, a 3G capable device will invariably also support 2G operation, and will automatically revert to a 2G connection if a 3G network is not available. The *DT80* is no exception here.

❖ Plan Type

Mobile plans are available for connection to 2G only, or 2G+3G networks. Normally a 2G+3G plan would be recommended, although a 2G only plan may be adequate if you wish to use the integrated modem for SMS only, or if you know that the modem will be located in an area with no 3G coverage.

Home Networks and Roaming

The SIM card contains a list of one or more **home networks**, which are generally the networks operated by the carrier that issued the SIM. The carrier may also have a **roaming** agreement with another carrier, which means that the second carrier will allow the *DT80* to connect to its network if the home network is not available. Usage will still be billed through the home carrier.

Roaming can occur within a country, or internationally ("global roaming"). Within a country, a small carrier will typically have a roaming agreement with a larger carrier, so that they can provide wider coverage.

Note Data charges while roaming can be significantly higher than they would be on the home network. You should always ensure that home network coverage is available at the *DT80*'s installation location.

The *DT80* will always try to connect to a home network, if available. If, however, you are outside the coverage area of your home network, or the network's signal strength is inadequate, then it may roam to an alternative network.

❖ SMS

If you want the *DT80* to be able to send SMS alarm messages then the plan must allow SMS. The plan may include some number of included SMS (e.g. 100 per month) after which there may be additional charges. You should carefully consider how many SMS messages the *DT80* is likely to generate each month.

PIN Locking and Activation

A new SIM card may need to be **activated**. This typically involves contacting the mobile carrier; instructions should be provided with the SIM for doing this.

The SIM card supplied by the mobile carrier may also have a PIN (personal identity number) set; if so then you need to ensure you know what it is! The *DT80* will prompt for the SIM PIN the first time you insert it.

Internet Access

In order to perform any TCP/IP based communications (FTP, email, web, command interface, Modbus, etc.) the mobile plan must support **data connections**. Each plan will generally provide some amount of included data traffic, e.g. 1GB per month, after which there may be additional charges, which can be substantial. It is therefore <u>important</u> to carefully consider the amount of data traffic that will be generated each month.

❖ Data Usage

The amount of data transferred each month will depend on the number of channels sampled, and the frequency.

Assuming that all data logged by the *DT80* is transferred to a single FTP server, then the volume of data transferred will be approximately equivalent to the volume of data logged. As discussed in *How Much Data Can I Store?* (P92), each time a schedule executes it will store 10 bytes + 10 bytes per channel (that has logging enabled). So the approximate data volume per month is given by:

data volume per month per schedule = samples per month $x (10 + (10 \times number of logged channels))$

```
For example, the job
RA10S 1..5TK
RB1M REFT 2CV(W)=2CV+1
LOGON
```

would generate 360x24x30 x (10 + 10x5) + 60x24x30 x (10 + 10x1) = 17MB/month, or 20MB/month allowing for some communications overhead. (Note that the 2CV channel doesn't count because it is a working channel and is not logged.)

If you wish to configure/control the DT80 remotely using dEX then this will use significantly more data – up to 500MB/month.

It is recommended that you start with a plan with a generous data allowance (say 1GB/month) then monitor your usage and reduce the plan if required, once you have a good idea of your actual data usage.

Note A mobile plan's data allowance normally only applies when you are using the home network. While roaming, all data usage may be charged at the "casual" rate, which will usually be much more expensive. It is important to choose a carrier that has good <u>home network</u> coverage in the area in which the *DT80* will be located.

Settings

In order to connect to a mobile data network the correct **Access Point Name (APN)** is required. This is a special name (e.g. **telstra.extranet**) which is specified by the mobile carrier and identifies the particular service or network to connect to.

By default, the *DT80* will attempt to automatically set the APN. This is done by reading the ID of the issuing mobile carrier from the SIM and then looking up the APN from a fixed database.

This process is not foolproof, however. Your mobile plan may provide access via a different APN to the one in the database, or the carrier may have changed it. For example, carriers sometimes provide different APNs for prepaid and postpaid accounts.

In most cases, the APN is all you need, as the network can identify you from the SIM's internal ID number. However, some carriers may also provide you with an account name and password. This is more common in cases where the SIM is supplied by a third part integrator/reseller rather than directly from a mobile carrier.

If automatic configuration does not work for your SIM then the logger will need to be manually configured with the correct APN (and the account name/password if required), as discussed in *Configuring the Integrated Modem* (P213).

Support for DT80 Network Features

❖ Basic DT80 Client Services

Any mobile plan which supports TCP/IP data connections will allow the *DT80* to access the Internet. This means that the *DT80* will be able to:

- · unload data to an FTP server
- read data from Modbus sensors via the Internet
- update its system time from an NTP server
- "ping" other computers, for diagnostic purposes

Email

To send an email, an Internet-connected computer needs to send the message to an **SMTP server** (Simple Mail transport Protocol). This server, and its brethren around the world, will then take care of delivering the message to the specified email address.

Thus in order for the logger to be able to send data or alarm messages via email, it will need to know the name of a suitable SMTP server.

Many mobile plans provide access to an SMTP server, so that you can send email from your mobile phone. If this is the case then you need to determine from the mobile carrier the name of their SMTP server, and then specify it in the *DT80* profile. In some cases you may also be given an email username and password, which will also need to be specified.

As with APNs, the *DT80* contains a database of SMTP server names provided by various mobile carriers, which it will match against the SIM's issuing carrier. Once again, it is not guaranteed that a valid server will be found.

If you require the *DT80* to send email but your mobile plan does not provide access to an SMTP server then you will need to set up an email account with a third-party provider. This provider will supply you with the SMTP server name, a username and a password, which you will need to enter into the *DT80*'s profile.

Note The DT80 only supports third-party email servers that:

- support LOGIN authentication
- do not require SSL (Secure Sockets Layer) encryption

Note that the second condition rules out the ${\bf gmail.com}$ service.

* DT80 Servers

Mobile data plans are typically set up to allow mobile client devices to access servers on the Internet. Doing the reverse, i.e. accessing servers on the mobile device from the Internet, can sometimes be problematic.

The DT80 provides the following servers:

- command server (TCP port 7700)
- web server (port 80)
- FTP server (port 21)
- Modbus server (port 502)

If you wish to access any of these remotely using the integrated modem then you will need to ensure that your mobile plan has the following characteristics:

- It must provide a <u>public</u> IP address. It need not be a <u>static</u> address, but it must be public. Some mobile carriers allocate a private address, then use Network Address translation (NAT) to allow you to access external servers. This is OK for accessing a server from the mobile device, but will make any servers on the device invisible to the rest of the Internet.
- It must not block the ports that you wish to use, as listed above. Some mobile carriers block some or all incoming ports, which again prevents access to mobile servers from the Internet. For example, if you wish to access the *DT80* using *dEX* then the incoming web server connections (port 80) must not be blocked by the carrier.

Security

If your mobile plan provides a public IP address then you should be aware that the logger will be visible and accessible by anyone on the Internet, while the modem is connected. This may make it vulnerable to disruption by malicious software that exists in the wilds of the Internet. See *Security* (P257) for more details on Internet security.

Getting Started

In order to use the integrated modem, it is necessary to connect the supplied external antenna, and insert your SIM card.

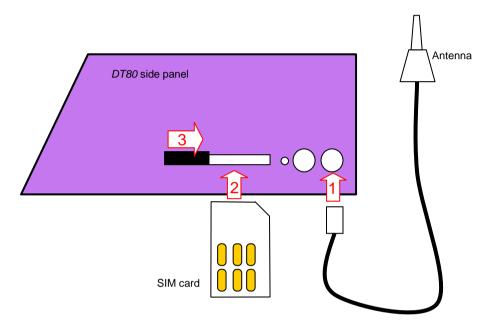


Figure 78: Connecting the antenna and SIM card

To connect the antenna, carefully screw the connector into the <u>rightmost</u> socket on the *DT80* right hand side panel. (Note that DT8xM3 models include a second connector, for a receive-only "diversity" antenna. You can optionally connect a second antenna here to improve the receive sensitivity when connected to a 3G network.)

Note Radio emissions from the antenna can interfere with and reduce the accuracy of analog measurements taken by the *DT80*. To prevent this, the antenna should be positioned at least 500mm away from the *DT80* and any analog sensor wiring.

Note Before loading the SIM card, ensure that the card has been activated, using the instructions provided with the SIM.

To load the SIM card:

- 1. Locate the SIM card slot on the right hand side panel
- 2. Slide the plastic locking tab to the left, if required, to expose the full width of the slot
- 3. Position the SIM card so the edge with the diagonally cut corner is facing inward and the gold contacts are facing up. Slide the SIM into the slot until it clicks into place
- 4. Slide the locking tab to the right to lock the SIM in place. The SIM will not be recognised unless this is done.

To remove the SIM card:

- 1. Slide the locking tab to the left
- 2. Press the SIM in slightly (you may need a fingernail or small screwdriver), until it pops out.

Warning Be sure that you are aware of the risks and restrictions for operating a radio transmitting device such as the *DT80* modem. See *Safety Information* (P418) for more details.

Configuring the Integrated Modem

Automatic Configuration

By default, the DT80 will attempt to automatically configure the following settings:

- Access point name (APN), and account name/password if required
- Email (SMTP) server name, and account name/password if required

The *DT80* auto-configuration feature works by looking up pre-defined settings based on the mobile carrier that issued the SIM. Be aware that automatic configuration might not be possible if:

- the DT80 does not recognise the mobile carrier that issued the SIM card. In this case fixed default settings will be
 used. Internet access will <u>not</u> be available, because no valid APN will have been set; you will need to configure this
 manually, as discussed below.
- the carrier is recognised, but the SIM is not set up to use the "standard" plan from that carrier. Internet access <u>may</u> be available but some features might not be available. For example, the actual SIM plan might not include access to an SMTP server, in which case the SMTP server will need to be reconfigured to use a third party email provider.

Manual Configuration

In order to manually configure the integrated modem, it will be necessary to connect to the *DT80* using an alternative communications medium, e.g. Ethernet or USB. You can then either:

- directly enter the profile commands described here, or
- use the *dEX* Configuration Builder to generate a configuration that contains the required commands, then save it to the logger.

In *dEX*, most of the required modem configuration is done on the **Modem** page. To reach this page, click on the logger model name at the top left, then select **Modem** from the list of categories. See *Figure 73*.

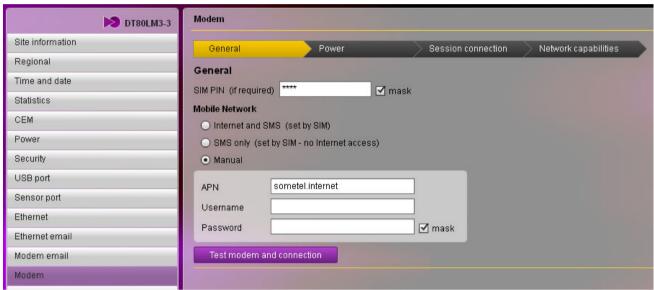


Figure 79: Modem configuration page

❖ PIN

If your SIM has a PIN set then you will need to tell the DT80 what it is. Enter it into the **SIM PIN** field on the modem configuration page in dEX, or send the following profile command to the logger directly:

PROFILE MODEM PIN=pin

If this profile is not set correctly when you first attempt to use the modem, then the *DT80* will prompt for entry of the PIN on the LCD display. Use the Up and Down arrow keys to set each digit's value, and use the Left and Right arrows to move between digits. Press **OK/Edit** when done. Alternatively, use the **PROFILE** command as above to set the PIN.

If the SIM does not have a PIN set then you can ignore this setting and the DT80 will not prompt for PIN.

If the PIN was entered correctly then the DT80 will remember it, so it normally only needs to be entered once.

Note If an incorrect PIN is entered three times then the SIM will be locked. If this occurs then the *DT80* will prompt for entry of a **PIN Unlock Key (PUK)**. This 8-digit number must be obtained from your mobile carrier and should be entered using the keypad in the same way as the PIN. It is not possible to enter the PUK code in *dEX*.

SMS Only Mode

If you only intend to use the integrated modem to send SMS messages (no Internet access) then the following profile should be set:

PROFILE MODEM SMS_ONLY=YES

In dEX, select the SMS only option on the modem configuration page.

No further configuration is then required.

❖ APN

In order for the *DT80* to connect to the Internet using the integrated modem, it is necessary to enter the Access Point Name, as specified by your mobile carrier. The APN is a text string that looks vaguely like an Internet address e.g. **vfinternet.au** or **telstra.internet**. In some cases an account name and password may also be required – if not then those two settings can be left blank. The relevant profile settings are:

PROFILE MODEM APN=APN

```
PROFILE MODEM APN_ACCOUNT=account name
PROFILE MODEM APN PASSWORD=password
```

In dEX, select the **Manual** option on the modem configuration page and enter the APN (and username/password if required).

❖ Email

If you require the *DT80* to send email messages then a suitable email server must be specified. If email is not required then the settings described in this section can be ignored.

If your mobile carrier provides access to an SMTP (email) server then it is normally simplest to use it. There is generally only one setting to configure, the name of the server, which is typically something like **mail.mycarrier.com**. Set the server using the following profile:

```
PROFILE MODEM_SESSION SMTP_SERVER=server name
```

It is possible that your carrier may also require an email username and password (which may or may not be the same as the account password mentioned above), which is specified as follows:

```
PROFILE MODEM_SESSION SMTP_ACCOUNT=email account name
PROFILE MODEM SESSION SMTP PASSWORD=password
```

If your mobile carrier does not provide access to an SMTP server then it will be necessary to sign up for an account with a third party email provider. Once your account has been created you will need to enter the server name, account name and password, as above.

Note When selecting a third-party email provider, be sure that it meets the requirements specified in *Support for DT80* Network Features (P212) above.

You can also specify the sender name and email address that the DT80 will use when sending email. For example:

```
PROFILE MODEM_SESSION SENDER_NAME="Peter Rabbit"
```

PROFILE MODEM_SESSION RETURN_ADDRESS=peter@firtree.net

If SENDER_NAME is not set then the DT80 model and serial number is used, e.g. "DT82EM-3 096605".

Note If a third-party email provider is used, it is normally a requirement that the RETURN_ADDRESS profile be set to the email address associated with your account.

In dEX, email settings are configured using the modem email configuration page:

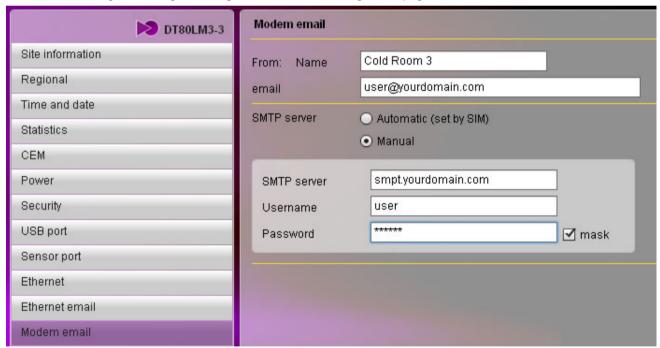


Figure 80: Email configuration page

In the above screen shot, the logger has been set up to use the (fictitious) third party email provider **hailmail.com**. The server name, as specified by the provider, is **smtp.hailmail.com**. The account name (**megatech**) and password have also been entered.

Email sent by this logger will appear to come from "Pump Room 3", with email address of megatech@hailmail.com. For third party email providers, it is normally a requirement that the "from" email address is set to the email address associated with the account.

Dynamic DNS

As discussed in *DT80 Servers* (P212), if you wish to remotely connect to the *DT80*'s servers – for example the web server, in order to run *dEX* – then it is necessary that a) the IP address allocated to the *DT80* by the mobile network is a <u>public</u> address, and b) the required TCP ports (e.g. port 80 for the web server) are not blocked by the mobile carrier.

Assuming these requirements are satisfied, there is now a third requirement – you need to know what the *DT80*'s IP address is, so you can type it into your web browser (or FTP client, or *DeTransfer*). If the logger is on the desk next to you then you can read the IP address from the modem status screen on the LCD. This is, however, somewhat inconvenient if the logger is remote, which is where Dynamic DNS comes in.

The **Dynamic Domain Name System** (DDNS) is an Internet service provided by various companies where a fixed domain name (e.g. "mylogger.dyndns.org") can be mapped onto the logger's current dynamic IP address.

This service works as follows:

- You create an account with a DDNS service provider, e.g. **dyndns.com** or **no-ip.com**. Both free and paid subscription types are normally available.
- You create a domain name (e.g. site42.megatech.no-ip.org) for the logger, and attach it to your DDNS account. With
 a free account, you can typically create up to 5 domain names for the account, which would allow you to access 5
 different loggers.
- You enable DDNS on the *DT80* by entering the details of your account and your chosen domain name into the appropriate profile settings, as detailed below.
- Next time the *DT80* connects to the mobile network, it will automatically contact the DDNS server and advise it of the IP address that it has just been given by the network.
- You enter the logger's domain name into your web browser, which does a normal Domain Name System (DNS) query
 to determine the IP address. This query is routed to the DDNS server, which will return the last IP address it received
 from the DT80. Assuming that the DT80 is currently connected to the network, you will now be able to communicate
 with it.

❖ Configuring DDNS

Note Remember that DDNS will only work if your mobile carrier provides a public IP address.

To set up DDNS on the *DT80*, the following profile settings need to be set. First, the <u>protocol</u> needs to be enabled: PROFILE MODEM_SESSION DDNS_ENABLE=YES

Second, the details of the <u>DDNS provider</u> need to be checked and updated if necessary. The *DT80* has been tested with two DDNS providers – **dyndns.com** and **no-ip.com**. The *DT80*'s default settings are

```
PROFILE MODEM_SESSION DDNS_SERVER_URI=members.dyndns.org/nic/update PROFILE MODEM_SESSION DDNS_SERVER_PORT=80
```

which are correct for the dyndns.com service.

If you choose to use the **no-ip.com** service instead, then the required settings are:

```
PROFILE MODEM_SESSION DDNS_SERVER_URI=dynupdate.no-ip.com/nic/update PROFILE MODEM SESSION DDNS SERVER PORT=80
```

If you wish to use some other provider then you will need to optain the appropriate address update URI and port number from the provider.

Third, the details of your <u>DDNS account</u> need to be entered – that is, your username and password:

```
PROFILE MODEM_SESSION DDNS_ACCOUNT=username
PROFILE MODEM_SESSION DDNS_PASSWORD=password
```

The DT80 will use these to log in to your DDNS account each time it needs to update its IP address.

Finally, the <u>logger's domain name</u>, that you have already associated with the DDNS account, needs to be entered: **PROFILE MODEM SESSION DDNS HOST NAME**=domain-name

For example, a typical set of DDNS settings would be as follows:

```
PROFILE MODEM_SESSION
```

```
[MODEM_SESSION]
...
 *DDNS_ENABLE = YES
  DDNS_SERVER_URI = members.dyndns.org/nic/update
  DDNS_SERVER_PORT = 80
 *DDNS_ACCOUNT = megatech
 *DDNS_PASSWORD = JackFlash
 *DDNS_HOST_NAME = turbine12.dyndns.org
 *DDNS_REGISTERED_IP = 123.209.58.192
```

Note that the <code>DDNS_REGISTERED_IP</code> setting does <u>not</u> need to be set; it will be updated automatically following a successful DDNS update.

dEX Settings

In the dEX Configuration Builder, all DDNS settings are entered on the Modern DDNS page, as shown in Figure 75.

Modem DDNS				
your mobile carrier/ISP does need services, on the modern interface.	Dynamic Domain Name Service (DDNS) allows you to access your logger over the Internet using a domain name, even if your mobile carrier/ISP does not provide a static IP address. The logger supports the Dyndns.org and No.IP DDNS services, on the modem interface only. To use DDNS, first register your desired domain name on www.dyndns.org or www.no-ip.com then enter the details provided by DynDNS/no.ip in the fields below.			
⚠ Important! If you are using DDNS to connect to the logger then changing these settings might affect your ability to connect to the logger. If changes are made, this interface must be reloaded from the logger's updated domain name.				
Enable DDNS 🗹				
Host				
Logger's domain name	turbine12.dyndns.org			
DDNS server settings				
Server domain name	members.dyndns.org/nic/update			
Server port	80 🕶			
Username for account	megatech			
Password for account	***** ✓ mask			
contact your SIM service provid	SIM service provider may not allow connections to Dyndns.org DDNS service. To check ler. DDNS usually takes up to 5 minutes (but sometimes longer) to propagate through the established a connection. Until this propogation is complete your logger will be unreachable			

Figure 81: DDNS configuration page

Verifying Modem Operation

If the settings described above are set correctly then it should now be possible for the *DT80* to establish an Internet connection. There are a few different ways of testing this.

Modem Status Screen

The simplest method of verifying basic Internet connectivity is to use the modem status screen on the *DT80*'s display. This does not require an Ethernet/USB connection so it is a convenient method if automatic configuration was used.

The procedure is as follows:

- Ensure that your SIM card has been activated and inserted into the DT80, and that the antenna is connected, as described in Getting Started (P213).
- 2. Use the arrow keys to scroll down to the modem status screen. It should show Modem is off.
- 3. Press the Func key to bring up the function menu, then select Start comms, and press OK/Edit.
- 4. Verify that the small red light next to the antenna connectors is now on.

The modem status screen will show a series of status messages, beginning with:

```
Starting modem..
```

Then, if the SIM has a PIN set it will display a prompt:

```
Enter SIM PIN:
```

Use the Up and Down arrow keys to set each digit, and use Left and Right to move between digits. When done, press **OK/Edit**. Assuming the PIN was entered correctly you will then see:

```
Registering on mobile network
```

If all goes well then something similar to the following will be displayed:

```
Telstra 3 203.112.100.109
```

In this example, the display indicates that the logger has connected to a 3G network (indicated by the "3"), operated by Telstra, with good signal strength (), and the DT80's IP address is 203.112.100.109.

If the final screen is not displayed, refer to Troubleshooting and Advanced Configuration (P220).

To close the connection, press Func to bring up the function menu, then select Stop comms.

Command Interface

If you configured the integrated modem by sending **PROFILE** commands (using *DeTransfer* or the *dEX* web interface command window), then it is convenient to test the modem using the command interface.

Start a communications session as follows:

```
SESSION START
SESSION: Starting
```

At this point the small red light next to the antenna connectors should be on.

If the PIN has not been set correctly then SESSION: SIM PIN required will now be displayed. At this point you can either enter the PIN using the **PROFILE HOST_MODEM PIN=**nnnn command, or enter it using the keypad and display. If the PIN has already been set correctly, or the SIM has no PIN set, then the modem will proceed to connect to the network.

If all goes well then a message similar to the following should be displayed within 60 seconds or so:

```
SESSION: Ready (Telstra, 3G, -81dBm, 123.209.132.251)
```

This shows the same information as on the modem status screen: carrier, network type, signal level (the higher, or less negative, the better. A signal level of -60dBm is very good, while -90dBm is poor.) and IP address.

If an error message is displayed, refer to Troubleshooting and Advanced Configuration (P220).

You may now use the command interface to test certain other network features.

To verify the network connection to a server on the Internet, use the **PING** command (see *Ping* (P225)):

```
PING google.com
66.102.11.104 responded in 816 ms
```

To send an SMS message, try:

```
DO"test message"[sms:+61400123456]
...
SMS: Sending to +61400123456
SMS: Sent OK
```

which will send a message to the Australian mobile number 0400 123456. In this example, the mobile number has been specified in international format: a "+", then the country code (61 in this case), then the number with any leading zero dropped.

To send an email, try:

```
DO"test email"[mailto:cat@felines.org]
...
EMAIL: Connecting to server
EMAIL: Sending to cat@felines.org
EMAIL: Sent OK
```

If you have a problem with email, try setting P56=8. This will show all traffic between the *DT80* and the SMTP server, which may be helpful in diagnosing the problem.

To close the connection, use:

```
SESSION STOP
SESSION: Aborted
```

dEX Modem Test

If you used the *dEX* Configuration Builder to configure the modem then it is convenient to use *dEX*'s modem test feature. On the modem configuration screen (*Figure 73*), press **Test modem and connection...** This will start a short "wizard" that will take the modem settings as configured in *dEX* and then carry out a similar set of tests to those described in *Command Interface* (*P218*) above.

Take note of the warnings on the first page of the wizard, then press **Next**. You can now enter a mobile number (for testing SMS), and email address (for receiving a test email) and details of an FTP server (for receiving a test file upload from the *DT80*). These settings are all optional – if omitted then the associated test is skipped.

For example, Figure 76 shows the details filled in for the SMS and email tests.

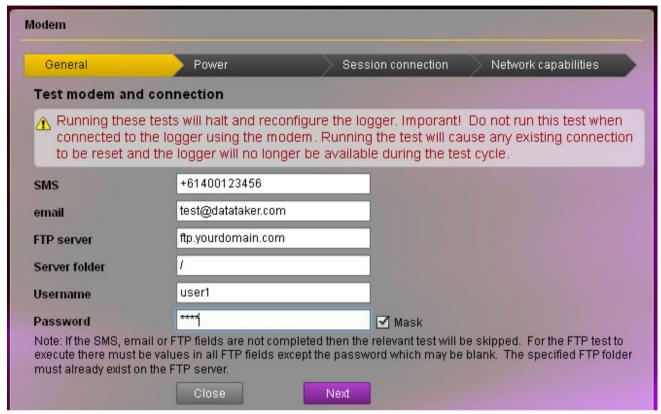


Figure 82: Modem test wizard setup page

Press Next, then Start tests. This will:

- temporarily configure the DT80 using the current dEX settings (send the required PROFILE commands)
- start a communications session (SESSION START command) and connect to the mobile network
- · connect to the Internet
- perform a network check, if enabled. This will attempt to contact the DNS or configured ping servers to verify network connectivity
- perform a DDNS update, if enabled
- send a test email (if an email address was specified)
- send a test file to an FTP server (if server details were specified)
- · verify all configured ping servers (if ping was selected as the desired network check, or heartbeat, mechanism)
- send a test SMS (if a phone number was specified)
- end the communications session

After each step, a tick or cross is displayed to indicate success or failure of the operation. If failures are indicated, refer to *Troubleshooting and Advanced Configuration* (P220)

Troubleshooting and Advanced Configuration

This section discusses possible problems that may arise when using the integrated modem.

States

The following table describes the principal states that the modem can be in:

Display	80SV Code	Description
Modem is off (error msg if any)	0	Modem is switched off
Modem starting	2	Modem is switched on but not connected to network
Enter SIM PIN:	3	SIM has a PIN, and the appropriate profile setting is not correctly set. Enter the correct PIN using the keypad, or set PROFILE MODEM PIN= nnnn
Enter SIM PUK:	4	Incorrect PIN has been entered three times, so the SIM is now blocked. Obtain the 8-digit PIN Unlock Key (PUK) from your carrier and enter it using the keypad.
Checking SIM PIN	12	SIM PIN is being checked
Registering on mobile network	5	Modem is attempting to connect to the mobile network
Carrier x Trying better	5	Modem has registered with a mobile network, but the signal level is too low so it is looking for an alternative network.
Carrier x Sending SMS	6	Modem is connected to mobile network; queued SMS message(s) are being sent.
Carrier x Connecting	7	Modem is connected to mobile network, and is attempting to connect to the carrier's APN in order to get Internet access
Carrier x Checking	8	Modem is verifying the Internet connection, and performing a DDNS update, if configured.
Carrier x 123.111.111.111	9	Modem is connected to the Internet
Modem will retry (error msg)	11	An error occurred during the last communications session. An attempt will be made in due course to establish a new session.

Notice that the modern state is reflected in system variable 80SV, which can be logged or tested in a *DT80* job.

Errors

If a communications session terminates due to an error, a message will be displayed on the lower line of the modem status screen, and system variable 81SV will be set to a negative value. The following table lists some possible error messages:

Category	Display	81SV	Description
No error	-	0	No session has been started
	-	1	Session is in progress
	-	2	Session completed normally
Incorrect configuration	[SIM problem]	-5	SIM is faulty or not inserted correctly. Ensure that the plastic tab is in the "locked" position (to the right).
	[PIN/PUK needed]	-6	The correct PIN or PUK code was not entered. Restart the communications session and enter PIN using keypad when prompted, or set the PIN profile setting
	[Network denied]	-10	The mobile network denied access. Check that the SIM is activated
	[No APN set]	-13	Access Point Name must be set in order to access the Internet. Set using the APN profile setting
	[Unkn ping host]	-19	The name of one of the configured "ping check" servers could not be resolved. Check the PING_SERVERS profile setting. This may also be due to a DNS server problem.
Coverage or network problem	[Can't register]	-8, -9	Could not connect to the mobile network. There may be no mobile service in your location. Try repositioning the antenna, or try a SIM from another carrier. Also ensure that your SIM has been activated.
	[No data service]	-17	The mobile network does not support GPRS or any other data services. Possibly try a SIM from a different carrier.
	[Signal too low]	-16	The measured signal level is below the minimum required for a usable data connection (-93dBm). Try relocating the antenna to improve reception. Or set MIN_SIGNAL_FOR_DATA_DBM profile to lower value.
	[Data dropped]	-12	The connection dropped out, possibly due to congestion or poor signal level. This can also be due to an incorrectly configured APN setting. Confirm the correct APN with your carrier.
	[SMS problem]	-13	SMS message(s) could not be sent, possibly due to congestion or poor signal level.
	[Network check]	-20	The modem appears to be connected, but the DNS server (or configured ping server) could not be reached, indicating a network problem.
Normal session	[Modem busy]	-21	A modem firmware upgrade may be in progress, so a session cannot be established at this time.
termination	[User aborted]	-99	Session was manually cancelled by the user, e.g. using SESSION STOP command.
Possible hardware	[Power problem]	-3	Problem powering up the modem. Contact dataTaker support if this problem persists.
fault	[Comms problem]	-7	Problem communicating with the internal modem. Reset the <i>DT80</i> and try again. Contact dataTaker support if this problem persists.
		–	

All error conditions (negative 81SV value) will result in the session being automatically retried, with the exception of those in the "normal session termination" category, which will not be retried if the session was started manually.

Diagnostic Commands

If you are having problems using the integrated modem, the following diagnostic commands may help in tracking down the issue. These are low level commands that bypass the normal "communications session" functionality, and should normally only be used for diagnostic purposes.

Command	I	Requirements	Description
MODEM	ON	(0)	Switch modem power on. Red indicator light should now be on.
MODEM	OFF	(0)	Switch modem power off.
MODEM	PIN?	(1)	Report PIN status of SIM card (ie whether PIN, PUK or neither is required
MODEM	PIN=nnnn	(1)	Enter current SIM PIN
MODEM	PUK=nnnnnnn, mmmm	(1)	Enter 8-digit PIN Unlock Key (PUK), followed by new PIN. Required if SIM has been locked due to too many incorrect PIN attempts
MODEM	SIGNAL	(1)	Report the current signal strength (dBm) and bit error rate (%)
MODEM	NETWORK	(1)	Report status of network registration – not registered, searching, registered (home network), or registered (roaming)
MODEM	PIN_ENABLE, nnnn	(1) (2)	Enable the SIM PIN
MODEM	PIN_DISABLE, nnnn	(1) (2)	Disable the SIM PIN. The PIN profile no longer needs to be set.
MODEM	PIN_CHANGE, nnnn, mmmm	(1) (2)	Change the SIM PIN from nnnn to mmmm
MODEM	IMSI	(1) (2)	Report the SIM card International Mobile Subscriber ID (IMSI). The first 5-6 digits of this number identify the carrier that issued the SIM, the remainder are the SIM serial number.
MODEM	ACCESSIBLE_NETWORKS	(0) (1) (2)	List all mobile networks within range. This command may take a few minutes to perform.
MODEM	OPERATOR	(1) (2) (3)	Report the name of the carrier that operates the network with which the modem is currently registered
MODEM	FIRMWARE	(1)	Report modem firmware version
MODEM	UPGRADE	(0) (1) *	See Upgrading Modem Firmware (P401)

Each of the above commands can only be used if the indicated requirements are met:

- (0) A communications session must not be active
- (1) Modem must have been switched on for at least 15 seconds
- (2) SIM PIN must have been entered (if SIM PIN is enabled)
- (3) Modem must have successfully registered with a mobile network

For example, use the following sequence to retrieve the SIM IMSI:

MODEM ON
(wait 15 seconds)
MODEM PIN=nnnn
OK
MODEM IMSI
505010123456789

Signal Levels

In order to achieve reliable data communications using the integrated modem, it is important to ensure that the signal levels are adequate.

The *DT80*'s modem samples the signal level when connecting to the mobile network, and displays it on the modem status screen in the form of 0-4 "bars". Note that the displayed signal level is not updated whilst the modem is connected.

The signal level may also be checked manually during operation using the MODEM SIGNAL command, as described in Diagnostic Commands(P221).

Mobile signal power levels are reported in **dBm**, which measures the received signal power relative to a power level of 1 milliWatt. It is expressed in decibels, which is a logarithmic scale: an increase of 10dB is equivalent to a tenfold increase while an increase of 3dB represents an approximate doubling (so 0dBm equals 1mW power while -100dBm represents a power level of 10⁻¹⁰ mW). For example, a signal level of -89dBm is roughly twice as strong as -92dBm.

For a cellular mobile device, the received signal level can be categorised as follows:

Signal level	Displayed bars	Description
-113 dBm or less		No signal – integrated modem is not usable.
-112 to -95 dBm		Poor signal level. SMS will probably be OK, but an Internet connection will not be attempted, unless you adjust the MIN_SIGNAL_FOR_DATA_DBM profile setting. You may experience drop-outs and slow transfers.
-94 to -90 dBm		Fair/marginal signal level
-89 to -72 dBm		Good signal level
-71 dBm or more		Excellent signal level

The MODEM SIGNAL command also reports the **bit error rate (BER)**, which is a measure of signal <u>quality</u>. A value of 0.1% is ideal, while a value of 15% or more is very poor. A high BER value is generally caused by interference, either from electrical machinery or signal reflections off large objects such as hills or buildings.

* Monitoring Signal Level

The system variable 82SV contains the measured signal level, as at the start of the current communications session. This can then be logged or tested, the same as any other *DT80* channel. For example, the following will send an SMS alert if the signal level is unexpectedly low (less than -90dBm in this example):

IF(82SV<-90)"Low signal: ?v dBm"[sms:+61400123456]

Continuous Signal Check Mode

During system commissioning, it can be helpful to know the instantaneous signal strength – as you position the antenna, for example. The *DT80* provides a special mode for this purpose.

To select this mode

- 1. Select the modern status screen on the display. It should indicate Modern is off. If a session is already in progress then you will need to terminate it by pressing **Func**, then selecting **Stop comms**.
- 2. Press Func to bring up the function menu
- 3. Select Check signal.

A session will now start. Once the modem registers, the signal strength and bit error rate will now be displayed on the modem status screen in place of the IP address, e.g.

The information on this screen (and the system variables 80..84SV) will now be updated every few seconds.

For more information, see Signal Check Mode (P233).

* Manual Display Update

If you select the **Check signal** option on the function menu while a communications session is in progress then this will cause the displayed mobile operator name and signal level (number of bars) to be updated (once only).

Improving Signal Level and Quality

When commissioning the logger, you should always aim for a good to excellent receive signal level (3-4 bars).

If the measured signal level in your location falls into the fair to inadequate categories (0-2 bars), or if the BER value is high, then you should take steps to try to improve it, e.g. by

- relocating the antenna so it is more elevated
- ensuring the antenna is not obstructed by metal objects

The *DT80* modem also supports **antenna diversity**. When in a poor signal area it is often helpful to connect a second antenna to the left hand antenna socket. The two antennas should then be located a reasonable distance apart. The idea is that the two antennas provide two <u>diverse</u> samples of the incoming signal, so if one suffers momentary interference or signal fade then the other may still be adequate.

Note Radio emissions from the antenna can interfere with and reduce the accuracy of analog measurements taken by the *DT80*. To prevent this, the antenna should be positioned at least 500mm away from the *DT80* and any analog sensor wiring.

Network Selection

❖ Service Type

The type of network is reported on the modern status screen, to the left of the signal level bar graph. The system variable 83SV is also updated, as shown in the following table:

Display	83SV	Description
x	0	GSM only (2G). Internet connection is not available
G	1	GPRS (2.5G) – low speed packet services are available
E	2	EDGE (2.5G) – a faster variant of GPRS
3	3	UMTS (3G) – 3 rd generation packet network (DT8xM3 only)
H	4	HSDPA (3.5G) – 3G network with high speed downlink (DT8xM3 only)
H	5	HSUPA (3.5G) – 3G network with high speed uplink (DT8xM3 only)
H	6	HSDPA+HSUPA (3.5G) – 3G network with high speed downlink and uplink (DT8xM3 only)

By default, the *DT80* modem will attempt to connect to the fastest (latest generation) network that it finds (with preference given to home networks over roaming). You can, however, override this, by setting:

PROFILE HOST MODEM SERVICE=service

where service can be:

- AUTO connect to the network that will provide the best performance
- 3G connect to a 3G network only
- 3G PREFERRED connect to a 3G network; if none available then connect to a 2G network
- GSM connect to a 2G network only
- GSM_PREFERRED connect to a 2G network: if none available then connect to a 3G network

In most cases **AUTO** is the best choice. However, if you are in an area where you know that the 3G coverage is poor or nonexistent then limiting the networks to 2G may provide a more reliable connection and may slightly reduce the time taken to register on the network, as the modem no longer has to search for 3G networks.

The above setting is not applicable for DT8xM2 models, which support GSM only.

❖ Bands

Each mobile network operates on a particular radio frequency **band**. (For example, in Australia the Telstra NextG[™] UMTS network operates on the 850 MHz band.)The *DT80* supports mobile networks using the following bands:

- GSM (2G) networks: 850/900/1800/1900 MHz
- UMTS (3G) networks: 850/1900/2100 MHz (DT8xM3 only)

By default, the *DT80* will connect to networks using any of these bands. However, in some situations, you may wish to restrict the *DT80* to only use certain bands, which will mean that it will then only be able to connect to networks that use those bands. For example, you could use this to prevent the *DT80* from ever roaming to another network (assuming that the other network uses a different frequency band).

To select the allowed bands, use the *dEX* **Modem** settings page, on the **Network capabilities** tab. The equivalent profile settings are as follows:

Allowed bands	Profile Setting
GSM 850 MHz only	PROFILE MODEM GSM_BANDS=0
GSM 900 MHz only	PROFILE MODEM GSM_BANDS=1
GSM 1800 MHz only	PROFILE MODEM GSM_BANDS=2
GSM 1900 MHz only	PROFILE MODEM GSM_BANDS=3
GSM 850/1900 MHz	PROFILE MODEM GSM_BANDS=4
GSM 900/1800 MHz	PROFILE MODEM GSM_BANDS=5
GSM 900/1900 MHz	PROFILE MODEM GSM_BANDS=6
GSM 850/900/1800/1900 MHz	PROFILE MODEM GSM_BANDS=7 (default)
UMTS 2100 MHz	PROFILE MODEM 3G_BANDS=1
UMTS 1900 MHz	PROFILE MODEM 3G_BANDS=2
UMTS 1900/2100 MHz	PROFILE MODEM 3G_BANDS=3
UMTS 850 MHz	PROFILE MODEM 3G_BANDS=16
UMTS 850/2100 MHz	PROFILE MODEM 3G_BANDS=17
UMTS 850/1900 MHz	PROFILE MODEM 3G_BANDS=18
UMTS 850/1900/2100 MHz	PROFILE MODEM 3G_BANDS=19 (default)

❖ Selecting a Network

The *DT80* will connect to the first network that it finds that satisfies the configured service type and band restrictions described above (if any). If, however, the chosen network's signal level is considered inadequate (below the threshold set by the MIN_SIGNAL_FOR_DATA_DBM profile) then the *DT80* will look for alternative networks that still satisfy the service/band restrictions but which may have better signal. Home networks are checked first, then roaming networks. If no acceptable networks can be found then the communications session will be abandoned and retried later.

Note that if the *DT80* has previously successfully connected to a network, then that network will be the first one tried when a new session is started.

Ping

The **PING** command can be useful for checking that the *DT80* is properly connected to the Internet. The command: **PING** hostname

will send an echo request to the specified host and wait for the reply. For example:

```
PING google.com
72.14.204.104 responded in 272 ms
```

DDNS Troubleshooting

If you have enabled DDNS on the logger, as described in *Dynamic DNS* (P216), then it can be tested simply by starting a communications session, then attempting to connect to the logger by entering the configured domain name into a web browser.

If this is unsuccessful, wait a minute or two, then try again. If you have previously connected to the logger using this domain name then it is possible that its old IP address is still "cached" either on your computer or another server. These cached DNS entries generally expire after a few minutes, and will then be updated with the correct address.

If you are still having problems then try the following command (ensure that the modem has successfully connected to the Internet first):

DDNSUPDATE

```
DDNS response: good 123.209.62.155
```

This command will send an update message to the configured DDNS server and report its response. The response consists of a single word (good in this case), followed by a confirmation of the registered IP address (which would have been supplied by the *DT80* in its request message).

DDNS Server Responses

Possible DDNS responses include:

Response	Status	Description
good ip-addr	OK	Successful update; the specified IP address has been registered
nochg ip-addr	OK	Successful update, although no change was detected in the specified IP address
badauth	error	The account name or password specified in the DDNS_ACCOUNT and
		DDNS_PASSWORD profiles are invalid. Note that free DDNS accounts typically expire and
		will be deleted if they are not used for a period of time.
nohost	error	The host name specified in the DDNS_HOST_NAME profile is not associated with the
		DDNS account.
abuse	error	The DDNS account has been blocked due to abuse, which generally means that too many
		unnecessary update requests have been performed (where the IP address has not
		changed). Contact the DDNS provider to have your account unblocked.
911	error	There is a problem with the DDNS server. Try again later.

Note: If you receive too many nochg responses (indicating that the requests were unnecessary, because the IP address has not changed) then your DDNS account may be blocked for "abuse" and you will start getting abuse responses. Normally, the *DT80* will only send a DDNS update request if its IP address has actually changed; however the **DDNSUPDATE** command and the *dEX* modem test will unconditionally send a request.

❖ Other DDNS Problems

If DDNS is enabled then an update request will be performed at the start of each communications session, if the *DT80* IP address has changed. If this update fails then the session will still continue; however an error message will be written to the event log.

Some other possible errors that may be reported when attempting a DDNS update are:

- Cannot connect to DDNS server check the DDNS_SERVER_URI and DDNS_SERVER_PORT settings. Note
 that three attempts will be made to contact the server.
- DDNS update aborted. Modem interface not open the *DT80* only supports DDNS via the integrated modem. A communications session must be established, with Internet access, before a DDNS update can be performed.
- DDNS update aborted. Modem interface is on private LAN DDNS will only work if the *DT80* has a <u>public</u> IP address. If it has a private IP address (10.x.x.x, 192.168.x.x or 172.16-31.x.x) then there is no point giving this to a DDNS server because no system outside the private network will be able to reach it.

Communications Sessions

DT80 integrated modem models are often deployed in remote locations, with limited power available. Power management is therefore very important in these applications.

To minimise overall power usage, the *DT80* allows modem communications to be grouped into **communications sessions**. During a session, the *DT80* will automatically:

- switch on the modem and connect to the mobile network
- send any alarm SMS messages
- perform any data transfers (alarm messages or data unloads)
- manage retries in the event of a communications failure
- optionally remain online for a period of time to allow you to connect to the logger using dEX or DeTransfer
- switch off the modem

A number of settings are available to allow you to trade off power consumption against:

- accessibility you can only connect to and remotely control the logger while the modem is switched on, and
- notification delay you can specify whether to immediately establish a connection following an alarm event, or whether it can wait until the next scheduled session

Note A similar "communications session" mechanism is also used for Ethernet transfers, although without any of the power control features. For more details see *Ethernet Sessions* (P234). The remainder of this section will deal with modem communications sessions, and is therefore applicable to DT8xM models only.

Session Timing

Starting and Ending a Session

The DT80 will begin a communications session when any of the following events occur:

- an SMS or email alarm action is triggered, unless the action is designated "low priority". (Low priority alarms are queued and will be sent when a communications session is next started for some other reason.)
- an email or FTP data unload is triggered, unless the unload is designated "low priority"
- the current time falls within the defined session time window, if any.
- the SESSION START command is issued, or the Start comms option is selected on the keypad function menu
- a session retry is required following an earlier communications failure

The session will then continue until any one of the following occurs:

- the configured maximum session duration is exceeded (by default there is no maximum), and the current time is not within the defined time window
- the configured minimum session duration has elapsed, and communications have been idle for the configured minimum idle time, and the current time is not within the defined time window. By default there is no minimum session duration and the minimum idle time is 2 minutes.
- the SESSION STOP command is issued, or the Stop comms option is selected on the keypad function menu.
- a communications failure occurs

Priorities

Alarms and data unloads may be designated as either "normal priority" (which is the default) or "low priority". When a normal priority alarm or unload file is generated, a communications session will immediately be started, if one is not already active. A <u>low</u> priority alarm/unload, on the other hand, will <u>not</u> automatically start a session.

If no session is currently active then a low priority alarm/unload will be queued until either:

- a session is started for some other reason, e.g a normal priority alarm/unload occurs, or the SESSION START command is issued, or
- · a queue has no more space available, or
- 24 hours elapses since the low priority item was generated.

Normally, SMS messages are sent at the start of a session, before a data (Internet) connection is established. Sending an SMS <u>during</u> an established session may cause the data connection to be disrupted, causing the session to end prematurely. For this reason, low priority SMS messages will not be sent during an active session – they will be queued and sent at the start of the next session (unless they have been in the queue for 24 hours, in which case they will be sent mid-session, like a normal priority SMS).

Session Time Window

A regular session **time window** may also be defined by specifying a start and end time. During this time window, the *DT80* will attempt to keep the communications session open continuously. The session timeout criteria listed above (maximum session duration, minimum session duration and minimum idle time) do not apply during the time window.

Setting up a time window will therefore allow you to contact the logger for a defined time each day (or hour, or week). It also allows you to group all of the day's communications into a single time period – perhaps a time period where communications are cheaper, or a time where the FTP server to which data is being transferred is least busy. Grouping communications into a single session will also reduce the overall power usage.

In a non power-sensitive application, a "perpetual" time window can also be configured. This will keep the modem powered at all times and will attempt to maintain a continuous connection to the network.

Session Timing Settings

The following profile settings define the session timing that applies when <u>not</u> within the defined session time window (If any). These are all in the **MODEM SESSION** section:

- MIN_DURATION_S specifies the minimum session duration (in seconds). Default is 0 (no minimum). For example, if
 this is set to 600 (seconds) and an alarm causes a communications session to be established and an SMS or email
 sent, then the DT80 will hold the connection open for 10 minutes to allow you to connect to it using dEX to check the
 status.
- MIN_IDLE_S specifies the minimum time (in seconds) that the modem session must be idle (i.e. no data sent or
 received) before the session ends. Default is 120 seconds (2 minutes), minimum is 10 seconds. Note that dEX sends
 a "heartbeat" message to the logger once a minute while it is running, so if you are running dEX over a modem
 connection then the session will normally stay active until you close dEX.
- MAX_DURATION_S specifies a hard session time limit (in seconds). The session will be terminated after this time, and any communications in progress at the time will be aborted, regardless of the MIN_DURATION_S and MIN_IDLE_S settings. It can be useful if your application has a strict power budget that provides for no more than x minutes of modem on-time per day. Set this to 0 to disable the session time limit, which is the default setting.

To define a session time window (which will override the above settings), use the following MODEM_SESSION settings:

- TIMING_CONTROL is used to specify whether you want no session time window (OFF), a perpetual time window
 where the modem is continuously connected (ALWAYS) or a configurable time window (CRON). The default is OFF.
- **START_CRON** is used to configure when the time window should start. It is only applicable if **TIMING_CONTROL** is set to **CRON**. To specify the start time, the "cron" syntax is used the same as for time of day schedule triggers (see *Trigger at Date/Time* (P49)). The default is **0:0:12:*:*:***, which translates to 12:00 daily.
- STOP_CRON is used to configure when the time window should end. The default is 0:0:13:*:*:*, or 13:00 daily. Thus with the default settings (and with TIMING_CONTROL set to CRON), a one hour communications time window will be set, from noon to 1pm daily.

❖ Example

The following settings:

```
PROFILE MODEM_SESSION MAX_DURATION_S=0
PROFILE MODEM_SESSION MIN_DURATION_S=0
PROFILE MODEM_SESSION MIN_IDLE_S=180
PROFILE MODEM_SESSION TIMING_CONTROL=CRON
PROFILE MODEM_SESSION START_CRON=0:0:9:*:*:1-5
PROFILE MODEM SESSION STOP CRON=0:30:9:*:*:1-5
```

specify that

- A half hour time window is defined, from 9:00 until 9:30 on weekdays (1-5 indicates Monday to Friday). The modem will be powered up and connected to the network during this time period
- If a session needs to be established outside this time window (e.g. due to an alarm or a scheduled data unload) then it will remain active for as long as it takes to perform the data transfer(s). Once the connection has been idle for 3 minutes (180 seconds) the session will end and the modem will be turned off.

In the *dEX* Configuration Builder, the session timing settings can be found under **Modem**, on the **Power** tab, as shown in *Figure 77*.

General	Power	Session connection	n Network capabilities
Power			
Modem power			
O Always ON			
O Out	:ı+		
Only when requ	irea~		
Only when requ			
Periodically (da Note: to conserve po modern is powered (ily) wer the logger will not p on by either the executio	erform deferred tasks(emails, Text r n of an immediate task or at the tim	
Periodically (da Note: to conserve po modem is powered (Leave the mo	ily) wer the logger will not p	n of an immediate task or at the tim	
Periodically (da Note: to conserve po modem is powered (Leave the mo Once idle, leave mo	ily) wer the logger will not p on by either the executio dem ON for at least	of an immediate task or at the tim	

Figure 83: Session timing settings

A daily time window can be defined by selecting **Periodically** and entering the start and stop time. The other "cron" fields (e.g. day of week) are not supported in *dEX*.

Error handling

Power supplies, communications links, networks and file servers are often imperfect. Communications sessions provide a mechanism for automatically handling many common errors that may arise, without the need for special handling in your *DT80* job.

In the event of a failure to establish a network connection, or a disconnection mid-session, the *DT80* will generally attempt to establish a new session, and perform periodic retries as required. Similarly, if an FTP or email data transfer fails then it will be automatically retried.

Session Failures

There are many reasons why a session might not be able to be established successfully, as indicated in the table in *Errors* (P221) above. In the event of any error, the *DT80* will automatically retry the session.

A session failure occurs when:

- the session never starts, e.g. it cannot connect to the mobile network or the Internet, or
- the modem signals that it has detected an error or has lost signal during a session, or
- the periodic "network check" test fails (see below).

* Connection Timeout

The following profile setting specifies the maximum time (in seconds) to wait when registering on the mobile network: PROFILE MODEM REGISTRATION_WAIT_S=60

If this time expires without the *DT80* being able to register on a mobile network, then it will reset the modem to automatic network selection (as opposed to reconnecting the last used network), and repeat the registration sequence. This means that the timeout may appear to be effectively double the time specified above.

❖ Network Check

The **network check** (a.k.a. "heartbeat") is used to detect cases where the modem is still connected to the mobile network, but for one reason or another has lost Internet connectivity. By default, the *DT80* verifies its network connection by periodically contacting the network Domain Name System (DNS) server. The DNS server address is provided to the *DT80* by the mobile network, so no configuration is required.

If the *DT80*'s modem is used to connect to a <u>private</u> wide area network (as opposed to the Internet) then a DNS server might not be available. If this is the case then "ping" may be used as an alternative network check mechanism. To enable this you need to set the **NETWORK_CHECK** profile, and configure a comma-separated list of one or more servers that you know will respond to a ping. For example:

PROFILE MODEM_SESSION NETWORK_CHECK=PING
PROFILE MODEM_SESSION PING_SERVERS=192.168.10.22

To disable the network check feature, use
PROFILE MODEM SESSION NETWORK CHECK=NONE

* Retries

If a retry is required following a session failure, the *DT80* will wait for a period of time then start a new session. The timing of these session retries is configurable, using the following profile setting:

```
PROFILE MODEM SESSION RETRY DELAY S=n
```

where *n* is the minimum delay, in seconds, between a communications session failing and the *DT80* attempting to start a new one. The default setting is 30 seconds. Every third attempt, this delay will be <u>increased by a factor of 60</u>, to allow some extra time for the problem to be resolved.

If there are queued items to send, or if we are inside a configured communications time window, then session retries will continue indefinitely, until either

- a session can be established successfully, or
- the session is no longer required (e.g. we are now outside the time window, or the user manually cleared the pending data/alarm transmissions using the SESSION CLEAR command; see SESSION Command (P232).

If, on the other hand, the session was started manually using the **SESSION START** command, then a maximum of 4 retries will be performed, after which the session will be abandoned.

dEX Settings

In the *dEX* Configuration Builder, the session error handling settings can be found under **Modem**, on the **Session connection** tab, as shown in *Figure 78*.

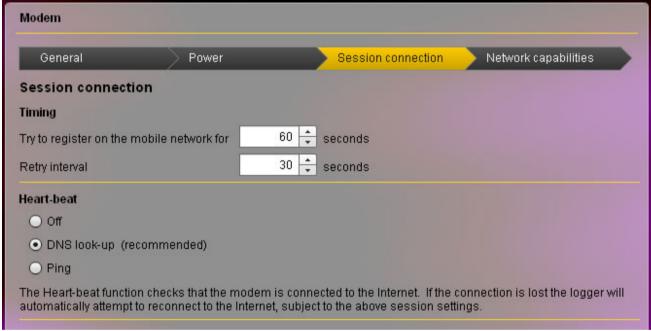


Figure 84: Session error handling settings

FTP Failures

A data unload to an FTP server, e.g.

COPYD dest=ftp://freddo:frog@ftp.sweet.net/data/may fail because of:

- a configuration error, e.g. an incorrectly specified username, password, server name or folder name
- a server problem, e.g. the FTP server may be down or overloaded
- a network problem, e.g. the modem's connection to the mobile network has dropped out.

Retries

If any error is detected during the FTP transfer, the *DT80* first determines whether the network is still functional. If the network has failed (e.g. the modern has dropped out, or the DNS/ping network check fails) then this is a session failure and will be dealt with as described in *Session Failures* (P229).

If the session is still OK then the problem must be either a problem with the FTP server, or the unload command is incorrect (e.g. an invalid server name or credentials were specified). Either way, the *DT80* will now retry the FTP transfer, using a similar strategy to that for session retries. That is, it will wait for the configured **RETRY_DELAY_S** time then retry, with this time being multiplied by 60 on every third attempt.

By default, these retries will continue indefinitely. However, you can also set a retry limit, as follows: PROFILE UNLOAD FTP_RETRIES=10

which will perform up to 10 retries, then delete the data file from the queue. Setting the profile to 0 means that only a single attempt will be made (no retries), while **INFINITE** will retry indefinitely.

Note If a data file from an incremental unload (one which specified start=new) is abandoned, then the time period covered by the failed unload will be missing from the data set on the FTP server, even if communications with the server subsequently recover. The data for this time period will then need to be manually recovered, e.g. using the dEX web interface "retrieve data" function.

❖ How Many Retries?

To avoid having to manually recover data after a prolonged server outage, it is important to carefully consider the **FTP RETRIES** setting. The best setting depends on the application:

- If you have a simple job which does periodic incremental unloads to a single FTP server then the default FTP_RETRIES=INFINITE is normally appropriate. If the server goes down then unload files won't be able to be sent and will remain in the FTP queue indefinitely. If the queue fills up completely then when subsequent unloads occur the resulting file will <u>not</u> be able to be queued. In this case the "last record unloaded" pointer will <u>not</u> be updated so it will be as if the unload never happened. When the next scheduled unload occurs, the resulting file will contain data for both the previous and current intervals. The bottom line is that, provided that the main data storefile is large enough, there will be no gaps in the data on the server when it eventually recovers.
- If your job outputs to multiple FTP servers, or there is a possibility that some FTP transfers could succeed while others continue to fail, then a finite value for **FTP_RETRIES** is preferred. Otherwise, the FTP queue may eventually fill up with requests for the bad server, which will prevent requests for the good server being processed. (Note that a full FTP queue will not prevent emails or SMS messages being sent.)

Remember that if the logger loses its network connection for a period of time (as opposed to an FTP server outage) then it will be the <u>session</u> that is failing, not the FTP transfer. The <u>FTP_RETRIES</u> setting is therefore not relevant in this case. The session will be retried indefinitely.

❖ File Transfer Process

When the *DT80* sends a file to an FTP server, it will first create a temporary file on the server, which will have a **.tmp** file extension. Once the transfer is complete, this will be renamed to the correct file name.

If a transfer fails half way (e.g. due to a mobile network drop out) then an incomplete file will be left on the server. However, because such files have .tmp file extensions they will be easily distinguishable from complete files (which will normally have a .csv or .dbd file extension).

If communications failures are frequent, a number of incomplete .tmp files may accumulate on the FTP server. Some periodical FTP server housekeeping may be required, to delete old temporary files.

Email Failures

A email data unload, e.g.

COPYD dest=mailto:bib@bob.com

may fail because of:

- a general configuration error, e.g. an incorrectly specified SMTP server name, username, password or return email address in the profile settings
- an invalid destination email address in the COPYD command
- a network problem, e.g. the modem's connection to the mobile network has dropped out.
- a transient server problem, e.g. the SMTP server may be temporarily overloaded
- the SMTP server is down

Note The *DT80* will consider that an email has successfully been sent if the message (and data file, if any) is accepted by the SMTP server. However, acceptance by the SMTP server does <u>not</u> mean that the message will necessarily make it to the recipient's email inbox. This is simply the nature of email. For example, the user's inbox may be full, or the message may be blocked or mistakenly interpreted as "spam" by a mail server or the user's email client. If a message is dropped in this way then a "bounce" message may be sent to the configured return email address, although this is not guaranteed.

* Retries

The retry strategy for email is similar to that for FTP. If any error is detected during while connecting to the SMTP server or during the transfer, the *DT80* first determines whether the network is still functional. If the network has failed (e.g. the modem has dropped out, or the DNS/ping network check fails) then this is a session failure and will be dealt with as described in *Session Failures* (P229).

If the session is still OK and the problem occurred while connecting to or logging in to the SMTP server then the *DT80* concludes that this is a server problem, or the email related profile settings are incorrect. Either way, there is nothing wrong with the actual email message, so it will remain in the queue. The *DT80* will then retry connecting to the SMTP server, using the same timing parameters as for session retries, i.e the first delay time is **RETRY_DELAY_S** seconds (60 times longer for every third attempt) and the retries continue indefinitely.

The third possibility is that the *DT80* can connect to the SMTP server successfully, but the server rejects the message. This may be due to the server being too busy, or the message may be invalid (e.g. the destination email address might be incorrectly formatted).

For alarm emails, the message will be retried four times, then discarded. An entry will be made in the event log if this happens.

For emails with attached data files, as with FTP unloads, discarding messages is undesirable due to the potential for gaps in the transmitted data following an outage. A similar approach is therefore taken to that used for FTP. By default, data emails are retried indefinitely, although you can set a retry limit using the same profile as for FTP, e.g.

PROFILE UNLOAD FTP RETRIES=10

(The name of the profile is a little misleading as it applies to both FTP and email data unloads.)

SMS Failures

SMS transmissions may fail due to a transient network problem, or (more likely) an incorrectly specified destination phone number. Either way, a failed SMS will be retried four times, then deleted – the same behaviour as for a failed alarm email (assuming that the session and SMTP connection are OK).

Note The *DT80* will consider that an SMS has successfully been sent if the message is accepted by the mobile network. However, this does <u>not</u> mean that the message will necessarily make it to the recipient's SMS inbox. The network will make a "best effort" to deliver it, but delivery is not guaranteed.

Hard Reset

If a hard reset or power loss occurs then any queued messages or data files will be preserved. Following the reset, a session will be started immediately (unless all queued items are low priority) and the transfers will proceed in the usual way.

Session Diagnostics

SESSION Command

Normally, communications sessions start and stop automatically in response to alarms and data unloads or time of day.

The **SESSION** command provides a way to manually control sessions, and determine the current status of a session and any pending transfers. This command is actually a set of related commands, which will be described below.

Starting and Stopping Sessions

The **SESSION START** command will manually start a communications session. The session will then persist for a period of time as specified in the profile settings (**MIN_DURATION_S**, **MAX_DURATION_S**, **MIN_IDLE_S**). By default, this command is assigned to an entry in the keypad function menu (**Start comms**). This would allow a central operator to, for example, ask an onsite person to wake a sleeping logger and select this option via the keypad. Shortly afterward, the modem would be online and the central operator would be able to connect to it using *dEX*.

The **SESSION STOP** command (by default **Stop comms** on the function menu) can be used to prematurely terminate a communications session. The modem will disconnect and switch off.

Note If an "always on" session has been configured (**TIMING_CONTROL=ALWAYS**) then the **SESSION STOP** command will still abort the session in progress, but a new session will be automatically started after a short delay.

❖ Session Status

The **SESSION** command (no parameter) will report the current status of the session, similar to that shown on the modem status screen on the display. A session can be in one of the following states:

Status	Description
Idle	Modem is switched off
Will retry	Modem is currently switched off, but a session retry is scheduled
Starting modem	Modem is initialising
Checking PIN/PUK	Checking configured SIM PIN, or waiting for user to enter PIN
Registering	Registering on mobile network
Sending SMS	Sending queued SMS messages
Connecting to Internet	Connecting to the Internet
Online	Successfully connected to the Internet
Closing	Session is closing

Listing Session Queues

When an alarm or unload occurs, the resulting message or data file is placed in a queue. The *DT80* uses four separate queues:

- one for SMS alarm messages
- one for email alarm messages
- one for email unload data files
- one for FTP unload data files

Once added to a queue, the message or file will stay there until either:

- it is successfully transferred to the FTP server, or the SMTP server, or to the mobile network (for SMS), or
- the message is deleted following a number of unsuccessful retries, as detailed in Error handling (P229).

The **SESSION LIST** command allows you to see the contents of each queue. For example:

SESSION LIST

(Long lines have been split)

In the above example you can glean the following:

- There is one pending SMS alarm message. The message was generated at 16:17:10 and is directed to the indicated number, with the message text as shown. Priority is "normal", which means that a session would have been started as soon as the message was queued (if one was not already active). The retry count is 0, indicating that the *DT80* has not yet attempted to send the message. The next attempt is scheduled for 16:17:10, i.e. it is due now.
- There is one pending email alarm message, which was generated at the same time as the SMS and contains the same message. It has not yet been attempted. It will be sent using the modem interface (the session queue is used for both modem and Ethernet alarms and unloads).
- There are no pending email data unloads.
- There are two pending FTP data unloads. The first has failed three times so far, with the next retry due at 16:44:12. The second FTP transfer has not yet been attempted. These unloads are designated "low" priority, so they would not have caused a session to be immediately started.
- There was a problem connecting to the SMTP server. This will be retried at 16:18:55.

Clearing Session Queues

The SESSION CLEAR command will clear all pending transfers, i.e. it will empty all four session queues. Use with care!

Note that if this command is entered while a file or message is being transmitted then that item will <u>not</u> be deleted – it will be allowed to complete. If you want to cancel the transfer half way through then first abort the session using **SESSION STOP**, then use **SESSION CLEAR**.

Forcing Retries

The **SESSION RETRY** command will cause a session to be started immediately (if one is not already active) and all pending items will be retried. This is handy if you have manually fixed a problem or setting that was causing transmissions to fail. (Of course, you could also just wait until the scheduled retry time comes around.)

❖ Signal Check Mode

The **SESSION SIGNAL** command (**Check signal** on function menu) can be used to provide a continuously updated readout of the signal strength and quality. This can be used to optimise antenna placement, for example.

See Signal Levels (P223) for more information.

While this mode is in effect, details of the currently registered network and signal strength will be updated every few seconds on the display, and a line will also be sent to the command interface, e.g.

SESSION SIGNAL

```
SESSION: Starting
Network: 3G; Operator: Telstra; Signal: -81dBm; BER: 0.14%; Acceptable: Y
Network: 3G; Operator: Telstra; Signal: -83dBm; BER: 0.14%; Acceptable: Y
```

This shows:

- network type/capability (GSM, GPRS, EDGE, 3G, or HSPA)
- carrier (network operator) name
- receive signal level (-70dBm or higher is excellent, -90dBm is fair, -100dBm is poor)
- bit error rate (BER) 0.14% is optimal, higher values indicate reduced signal quality
- whether the network is considered suitable for an Internet connection. To be acceptable, the network must support
 data connections, and the signal level must be greater than or equal to that specified by the
 MIN SIGNAL FOR DATA DBM profile setting (default is -93dBm)

To exit from signal check mode, use **SESSION STOP**.

Note Be sure to exit from signal check mode when you are done, otherwise normal communications sessions may be blocked.

Note If used while a session is already active, the SESSION SIGNAL command will take a single signal strength reading. It will return one line of information (as above) and also update the operator name and signal strength (number of bars) on the LCD display.

❖ SESSION Command Summary

The following table summarises the available **SESSION** commands:

Command		Function menu	Description
SESSION		-	Return current session state
SESSION :	START	Start comms	Start a session
SESSION :	STOP	Stop comms	Abort session/cancel signal check mode
SESSION	SIGNAL	Check signal	Enter signal check mode (if session not active) Update displayed signal/operator (if session active)
SESSION I	LIST	-	List details of all queued transmissions
SESSION (CLEAR	-	Delete all queued transmissions
SESSION I	RETRY	-	If there are any queued transmissions then start a session and retry them

Event Log

All communications failures are recorded in the *DT80* event log. The event log can be displayed using the **UEVTLOG** command, or it can be retrieved via the *dEX* web interface (**Diagnostics** page).

The following general types of communications related messages may appear in the event log:

```
    A specific error message, e.g.
        FTP: incorrect password (-5)
        or:
        EMAIL: Cannot connect to SMTP server (-2)
        which will be logged each time an attempt or retry fails.
```

• A warning that a queued message or file was <u>not</u> able to be sent (after the required number of retries) and has been deleted. This will include the words "send failed", e.g.

```
FTP DATA DISCARDED (send failed), ftp.zcorp.com, 000_20110413T161110.CSV
```

If this was an incremental unload then this message indicates that the data covered by the unload will need to be manually retrieved.

A warning that an alarm or unload file was not able to be queued because the queue was full. This will include the
words "queue overflow", e.g.

```
DATA EMAIL DISCARDED (queue overflow), heron@zcorp.com, 011_20110413T164644.CSV or:

ALARM SMS DISCARDED (queue overflow), +61400123456, temp=39.7
```

In the case of an incremental unload, the data that could not be sent will be included as part of the next unload, so no action is required. In the case of an alarm, the log message indicates that the alarm email/SMS was <u>not</u> sent. However the text of the alarm message (e.g. temp=39.7) is included in the event log.

Ethernet Sessions

Ethernet transfers also use a form of communications sessions. This allows the *DT80* to manage Ethernet transfers and retries in a consistent way, including sleeping and waking as appropriate.

Queues

```
If an FTP/email data unload is performed, e.g.
    COPYD dest=ftp://womble.com/data/?interface=eth
or an email alarm is triggered, e.g.
    IF(1TK>50)"Overtemp"[mailto:wilbur@womble.com?interface=eth]
```

then an entry will be added to the appropriate communication queue.

On a DT8xM model, the communications queues may contain items for the modem interface and items for the Ethernet interface (the interface= option is used to select which interface to use). On a standard model, all transfers will use the Ethernet interface, so the interface= option is not required.

As described in SESSION Command (P232), the SESSION LIST command can be used to view the contents of the communications queues, and SESSION CLEAR will delete all entries therein.

Session Timing

Starting and Ending a Session

An Ethernet session begins when there is something that needs to be sent now, via Ethernet. This may be an FTP data unload, an email data unload or an email alarm. It may be a newly generated item, or it may be a previously queued item that now needs to be retried.

The session ends when:

- All transfers have been completed successfully, so there are no more Ethernet entries in the FTP or email gueues, or
- The queues have been manually cleared, using SESSION CLEAR, or
- Some or all of the gueued Ethernet transfers failed, and it is not yet time to retry them, or
- The Ethernet interface is found to be not functional (does not have a valid IP address)

If there is an active Ethernet session then the logger is kept awake until the session completes, at which point it is allowed to sleep. If retries are required then the *DT80* will automatically wake at the required time in order to start a new Ethernet session.

Note The **SESSION START** and **SESSION STOP** commands are not applicable to Ethernet sessions. Also, an Ethernet session always starts immediately, so there are no "low priority" alarms or unloads.

* Retrying a Session

As with modem sessions, the **SESSION RETRY** command can be used to force the *DT80* to attempt to start a session and retry all queued items.

Plugging an Ethernet cable into the DT80 will also cause all queued Ethernet items to be immediately retried,

Session State

An Ethernet session can be in one of six states, as described in the table below. The **SESSION** command (no parameters) will return the current state. System variable 85SV reflects the state of the Ethernet interface.

Ethernet Status	85SV	Description
Disabled	0	Ethernet port is disabled
No cable	0	Ethernet cable is not connected
Starting	1	IP address is being acquired
Ready	2	A valid IP address has been obtained. The Ethernet interface is usable, but an
		Ethernet session is not currently active
Online	2	An Ethernet session is currently active
Limited connectivity	3	DHCP server not found, so a link-local IP address has been assigned

Error Handling

Ethernet session failures are handled in a very similar way to modem communications session failures. Refer to *Error handling* (P229) for full details.

If an Ethernet session fails (e.g. the cable is removed, or it cannot obtain a valid IP address) then it will be retried after a short delay, which can be set using

PROFILE ETHERNET_SESSION RETRY_DELAY_S=seconds

The default setting is 30 seconds, and every third delay will be 60 times longer to give some extra time to resolve the problem.

If the session is established OK but an email or FTP transfer fails then it will be retried after the same delay time, again with every third delay lengthened by a factor of 60. Use the **SESSION LIST** command to see when the next retry is due.

Email alarm messages will be retried four times then discarded.

By default, FTP/email data unloads will be retried indefinitely; however this can be limited if required using **PROFILE UNLOAD FTP_RETRIES=**num

which will delete the unload data file from the queue after *num* retries.

Note If a data file from an incremental unload (one which specified start=new) is abandoned, then the time period covered by the failed unload will be missing from the data set on the FTP server, even if communications with the server subsequently recover. The data for this time period will then need to be manually recovered, e.g. using the dEX web interface "retrieve data" function.

In *dEX*, the retry interval (**RETRY_DELAY_S**) is set on the **Ethernet** settings page, on the **Session** tab, while the **FTP_RETRIES** setting is on the **Advanced** page.

Ethernet Communications

All DT80 models are fitted with an Ethernet port for network communications.

Connecting to the *DT80* Ethernet Port

The *DT80*'s Ethernet port is designed to connect to any **10-BaseT Ethernet** compatible network. This includes 100-BaseT (fast Ethernet) and 1000-BaseT (gigabit Ethernet) networks. The *DT80* Ethernet port operates at a maximum data rate of 10Mbps.

There are two ways to connect to a network:

- directly connect the *DT80* to a single host computer using a "cross-over" cable. In this case you are effectively creating a new mini-network, with just two devices connected the *DT80* and the host computer.
- connect the *DT80* to a spare port on an Ethernet hub, bridge or router, using a standard ("straight through) cable. In this case the *DT80* will be joining an existing network.

Note that many recent PC and switch/router models incorporate "auto switching" Ethernet ports. Such devices may be connected to the *DT80* using either a standard or cross-over Ethernet cable.

Direct Connection to a PC

A direct Ethernet connection provides a link between a single PC and the DT80.

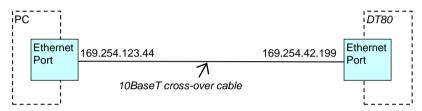


Figure 85: Direct Ethernet connection

In the above example, the PC and the *DT80* have both assigned themselves Auto-IP addresses, as there is no DHCP server available. Auto-IP addresses always begin with 169.254; the latter part of the IP address is semi-random.

Connection to a LAN

Important Do <u>not</u> connect your *DT80* to the network until you've configured the *DT80* with a suitable IP address and subnet mask, or selected the "automatic IP address" option. Connecting a device with an invalid or conflicting IP address may cause significant disruption to the operation of the network.

By connecting the *DT80* to a local area network (LAN), the *DT80* will be accessible by any of the computers on the LAN, and possibly also by computers on a wide area network or the Internet, depending on how the LAN is set up.

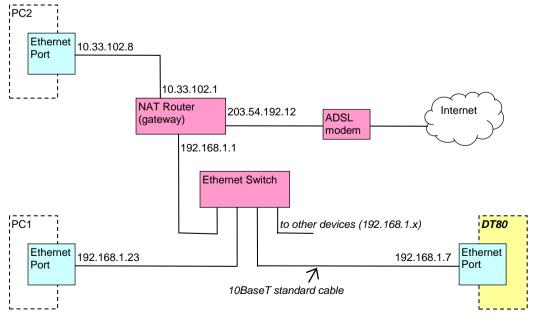


Figure 86: Typical Ethernet LAN

In the above example, the *DT80*, PC1, a router, and possibly some other devices are all connected on the same private LAN "segment", or "subnet". All devices on this particular subnet have IP addresses beginning with 192.168.1. All devices on the same subnet can communicate with each other directly.

PC2, on the other hand, is connected to a different subnet. It cannot directly communicate with the *DT80*; it needs to go via the router. In other words the router acts as a "gateway" between the various subnets, and also, in this case, the Internet.

This all happens automatically, provided that all devices are correctly configured. In particular, the **gateway address** for each device needs to point to the router. So PC1 and the *DT80* would both have their gateway address set to 192.168.1.1, while PC2's gateway would be set to 10.33.102.1.

Note that if a DHCP server is present on the LAN (which will usually be the case), and the *DT80* is configured to use it, then the DHCP server would normally take care of setting all required addresses <u>automatically</u>.

Connection to a Modem-Gateway

Another common connection scenario is where a remote *DT80* is connected to the Internet using a "modem-gateway" device that integrates the modem, NAT router and switch functions into one box. The modem may be a cable, ADSL or wireless (GPRS/3G) modem.

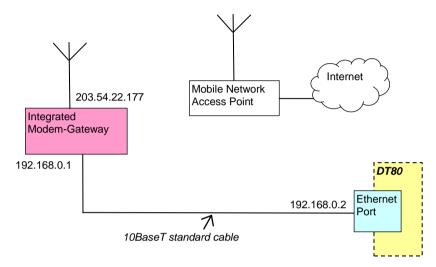


Figure 87: Typical Internet connection using an integrated modem-gateway (wireless modem in this case)

The modem-gateway will typically include a DHCP server, which will automatically set up the required network parameters on the *DT80*, including its IP address.

Ethernet Port Indicators

The two LEDs on the *DT80*'s Ethernet port (P278) indicate the following:

- Green LED Link OK; should come on and stay on as soon as you connect the Ethernet cable
- Amber LED Activity; blinks every time a data packet is received

If the green LED does not come on then either the *DT80* Ethernet port is not enabled, or the cable is faulty, or the socket you are connecting to is not connected to an active Ethernet network, or the hub/bridge/router is not powered up.

Note that the amber LED indicates communications activity anywhere on the local network – this activity is not necessarily directed at the *DT80*.

Note These LEDs will only operate if the *DT80* Ethernet port is enabled. The Ethernet port will only be enabled if its IP address has been set, or DHCP has been enabled. (See *How to set up Ethernet* (P239)).

MAC Address

All Ethernet devices have a globally unique 12-digit identifier programmed into them during manufacture. This is called the **MAC Address**. The *DT80*'s assigned MAC address can be viewed using the **EAA** (Ethernet Adapter Address) command, but it cannot be changed. You should not need to be concerned with this address.

Ethernet Commands

Querying Ethernet Parameters

The current Ethernet parameters can be viewed using the following commands

Command	Description
IP	Returns the DT80's current IP address
IPSN	Returns the DT80's current IP subnet mask
IPGW	Returns the DT80's current IP gateway
EAA	Returns the DT80's Ethernet network adapter MAC address

For example:

```
IP
192.168.42.15
IPSN
255.255.255.0
IPGW
192.168.42.3
EAA
00-90-2D-00-12-6B
```

In this example the *DT80* has IP address **192.168.42.15**, and is connected to network **192.168.42.0/24**. The computer or router at IP address **192.168.42.3** is the designated gateway for this network. Any data that needs to be sent to a different network will be sent via this computer.

Setting Ethernet Parameters

All Ethernet parameters are set using profile settings (see Profile (P262)), i.e.

```
PROFILE ETHERNET key=value
```

The following keys are defined:

Key	Value	Default
ENABLE	Set to YES to enable the Ethernet port, NO to disable (saves power)	YES
IP_ADDRESS	IP address of <i>DT80</i> Ethernet port. May be set to a static IP address, or AUTO (obtain an address from a DHCP server)	AUTO
SUBNET_MASK	Subnet mask for the network segment to which the <i>DT80</i> is connected. This setting will be <u>ignored</u> if a valid subnet mask was obtained from the DHCP server.	255.255.255.0
GATEWAY	IP address of the gateway computer/router for network segment to which the <i>DT80</i> is connected. This setting will be <u>ignored</u> if a valid gateway address was obtained from the DHCP server.	0.0.0.0

For example, the following commands would be used to set the parameters in the above example:

```
PROFILE ETHERNET IP_ADDRESS=192.168.42.15
PROFILE ETHERNET SUBNET_MASK=255.255.255.224
PROFILE ETHERNET GATEWAY=192.168.42.3
```

Alternatively, if a DHCP server was available on the network then you could simply use:

```
PROFILE ETHERNET IP_ADDRESS=AUTO
```

By default, the above command is assigned to one of the *DT80*'s user defined functions, accessible from the front panel; see *User Defined Functions* (P118). This makes it easy to enable Ethernet on a new logger without having to connect to it.

Setting DNS Server address

To set the DNS server address use

```
PROFILE NETWORK DNS_SERVER_1=192.168.42.4
PROFILE NETWORK DNS_SERVER_2=192.168.42.5
```

The first setting is for the primary DNS server; the second is for an optional alternative server, which will only be used if the primary server is offline.

These settings will be ignored if valid DNS server address(es) were obtained from the DHCP server.

Setting Up Email

To send an email, an Internet-connected computer needs to send the message to an **SMTP server** (Simple Mail transport Protocol). This server, and its brethren around the world, will then take care of delivering the message to the specified email address.

Thus in order for the *DT80* to be able to send data or alarm messages via email, it will need to know the name of a suitable SMTP server. This may be a corporate email server on the local LAN, or it may be a mail service provided by your ISP, or it may be a third-party public SMTP server on the Internet (both free and paid email services are available).

Note The DT80 only supports SMTP servers that:

- · support LOGIN authentication
- do not require SSL (Secure Sockets Layer) encryption

Note that the second condition rules out the **gmail.com** service.

Your email service provider will supply you with the SMTP server name, a username and a password, which you will need to enter into the *DT80*'s profile, as follows:

```
PROFILE ETHERNET_SESSION SMTP_SERVER=server name
PROFILE ETHERNET_SESSION SMTP_ACCOUNT=email account name
PROFILE ETHERNET SESSION SMTP PASSWORD=password
```

You also need to specify the sender name and email address that the DT80 will use when sending email. For example:

PROFILE ETHERNET_SESSION SENDER_NAME="Benjamin Bunny"
PROFILE ETHERNET_SESSION RETURN_ADDRESS=bb@firtree.net

If **SENDER NAME** is not set then the *DT80* model and serial number is used, e.g. "DT82EM-3 096605".

The **RETURN_ADDRESS** profile should be set to the email address associated with your account. In the event that an email sent by the logger is unable to be delivered, a "bounce" error message will normally be sent to this address.

In dEX, email settings are configured using the Ethernet email configuration page:

Ethernet email						
From:	Name	Turbine 12				
	email	Your.Logger@yourdomain.com				
SMTP server		smtp.yourdomain.com				
Username		user				
Password		**** 1				

Figure 88: Email configuration page

In the above screen shot, the logger has been set up to use the (fictitious) third party email provider **hailmail.com**. The server name, as specified by the provider, is **smtp.hailmail.com**. The account name (**megatech**) and password have also been entered.

Email sent by this logger will appear to come from "Turbine 12", with email address of megatech@hailmail.com.

How to set up Ethernet

Initial decisions

In order to set up an Ethernet connection to the DT80, you need to decide:

- whether the DT80 will connect directly to a PC (Figure 79), or connect to an existing LAN (Figure 80), or connect to a modem/gateway (Figure 81)
- whether the DT80 will use a static (manually configured) or a dynamic (automatic) IP address.

A direct Ethernet connection to a PC will typically be a temporary arrangement, so you would normally choose the automatic (Auto-IP) IP address option.

For a LAN or gateway connection, the automatic (DHCP) option is considerably simpler to set up, as the IP address, subnet mask, gateway and DNS server addresses will normally all be set automatically.

There are some drawbacks to a dynamic IP address if you intend to connect to the *DT80* using *dEX* or *DeTransfer* – namely you need to determine what that IP address is, and the IP address may change. If the *DT80* is close by then you can check the IP address on its display, but for a remote *DT80* this is obviously not practical and a static IP address would normally be used.

If the *DT80* is accessible via the Internet then a web-based dynamic DNS service such as **dynDNS.com** can also be used to locate its IP address. This is discussed further below.

Direct Connection to PC - Automatic IP address

1. Check that Ethernet port is enabled

Using the front panel UP and DOWN keys, select the Ethernet IP screen. It should show:

Eth IP: Auto No cable

If this is not the case then the *DT80*'s Ethernet port has been disabled or set to a static IP address. Press **Func** to access the function menu, then scroll down to the **Auto Ethernet IP** option and press **OK/Edit**. Verify that the display is now as shown above.

❖ 2. Connect Ethernet cable

You can now connect a cross-over Ethernet cable between the *DT80* and the computer. Verify that the green Link LED on the *DT80*'s Ethernet connector comes on. If the Link LED does not come on then check that:

- the cable is a correctly wired cross-over cable
- the computer's Ethernet port is enabled (check "Network Connections" in Windows control panel)

3. Check DT80 IP address

When the Ethernet cable is connected, the *DT80* will begin searching for a DHCP server. When connected directly to a PC, there will normally be no DHCP server available, so after 10 seconds or so the *DT80* will give up and assign itself an "Auto-IP" address. The **Ethernet IP** screen will then change to something like:

```
Eth IP: Auto 169.254.25.77
```

If you have a DT81 (which has no front panel display) then you can alternatively send the command:

```
IP 169.254.25.77
```

4. Wait for Windows to acquire IP address

Meanwhile, Windows will also be looking for a DHCP server. During this time you may notice an animated icon in the system tray, which, for Windows XP, will look something like the following:

Figure 89: Windows XP searching for a DHCP server

Windows normally spends about 60 seconds looking for a DHCP server, then it, like the *DT80*, will give up and assign itself an Auto-IP address, at which point the system tray icon will disappear.

A message may be displayed at this point warning that the network connection has "limited or no connectivity". This is normal, and simply indicates that the Internet will not be accessible using this network connection.

❖ 5. Test the connection

You should now be able to connect to the *DT80*. For example, you could enter the *DT80*'s IP address (169.254.25.77 in the above example) into a web browser in order to access the *DT80*'s web interface, or you could create a TCP/IP connection in *DeTransfer* or *DeLogger*, again specifying the *DT80*'s IP address.

Network Connection – Automatic IP address

The procedure for connecting to an existing LAN using automatic configuration is very similar to the above "direct connection" scenario:

❖ 1. Check Ethernet port

As for the direct connection scenario, check that the display indicates Eth IP: Auto. If not then enable the port, as described above.

❖ 2. Connect Ethernet cable

You can now connect a standard Ethernet cable between the *DT80* and a network connection point. This might be a wall socket connected to an office LAN, or a port on a desktop Ethernet switch or router unit.

Verify that the green Link LED comes on on the *DT80*'s Ethernet connector. If the Link LED does not come on then check that:

- the cable is a correctly wired straight through cable
- the network access point is active (check with your network administrator)

❖ 3. Check DT80 IP address

When the Ethernet cable is connected, the *DT80* will begin searching for a DHCP server. Within a few seconds it should receive an IP address and the **Ethernet IP** screen will then change to something like:

```
Eth IP: Auto 192.168.11.25
```

If you have a DT81 then you can alternatively send the command:

```
IP
192.168.11.25
```

If the indicated address begins with 169.254 then this indicates that a DHCP server could not be found, so the *DT80* has reverted to an Auto-IP address. This will only work if all other devices on the LAN are also using Auto-IP addresses, which would be an unusual way to set up a network. Consult your network administrator at this point to determine why there is no DHCP server available.

Note If no DHCP server was found, the *DT80* will continue to check for one periodically (every 10 seconds at first, then every 5 minutes). If a DHCP server becomes available then the *DT80* will switch over to the IP address supplied by the server.

❖ 4. Test the connection

You should now be able to connect to the *DT80*. For example, you could enter the *DT80*'s IP address into a web browser in order to access the *DT80*'s web interface, or you could create a TCP/IP connection in *DeTransfer*, again specifying the *DT80*'s IP address.

Network Connection - Static IP address

When connecting the *DT80* to an existing Ethernet network using a <u>static</u> IP address, you need to be a little more careful. Setting the *DT80* to an inappropriate IP address can severely disrupt the operation of the network.

By far the preferred approach here is to <u>ask your network administrator</u> what you should set the *DT80*'s IP address, subnet mask and gateway to (and which outlet you should connect the Ethernet cable to). You can then simply enter the required profile settings (using a USB or serial connection) as described in *Setting Ethernet Parameters* (P238), connect the *DT80*'s Ethernet cable, and you are ready to test the connection.

If you don't have a "network administrator", then the following general procedure can be used

* 1. Determine subnet details

The first step is to determine the IP address range in use on the subnet, and the gateway address. This can be done using the **ipconfig** command. This should be entered on a computer that is connected to the subnet to which you want to connect the *DT80* (i.e. one that is connected to the same Ethernet switch). It is assumed that this computer's network settings are already correctly configured.

In this case the subnet mask is 255.255.255.0, which indicates that the first three parts of the IP address (192.168.11) identify the subnet, while the last part identifies an individual computer. IP addresses on this subnet can therefore range from 192.168.11.1 through 192.168.11.254. If, on the other hand, the subnet mask was 255.255.0.0 then the subnet number is given by the first two parts of the address. Such a subnet could then contain IP addresses ranging from 192.168.1.1 through 192.168.254.254. If the subnet mask is something other than these then it becomes a little technical and you should ask an IP expert.

You should also make a note of the **Default Gateway** address (192.168.11.250 in this case) and the **DNS Server** addresses (192.168.10.100 and 192.168.10.111).

❖ 2. Select DT80 IP address

The IP address chosen for the DT80 must:

- have the correct subnet number, as determined above. In this example, the subnet number is 192.168.11.
- have a <u>unique</u> host number. So in this example the *DT80* could <u>not</u> use the host number "44" (i.e. have an IP address of 192.168.11.44), because that has already been taken by the host computer.

This is where it can get tricky. One method of finding a free address is to "ping" various IP addresses to see whether there is any reply. Be aware that this is <u>not</u> foolproof, but it may be adequate for a small network where you are aware of all the devices that use it. The procedure is as follows:

- 1. Switch on all computers and devices that are connected to the network in question and allow them to boot up.
- From the command prompt window, use the ping utility to test a candidate IP address, e.g.: ping 192.168.11.10
- 3. If you see a Reply from 192.168.11.10... response then that address is <u>not</u> free and cannot be used for the
- 4. If you see a Request timed out... response then the address can probably be used for the DT80.

❖ 3. Configure the DT80

You now have all the information you need and can proceed to configuring the *DT80*. Connect to the *DT80* using a USB or RS232 connection and enter the appropriate profile settings. For this example (assuming that IP address 192.168.11.10 passed the ping test) you would enter:

```
PROFILE ETHERNET ENABLE=YES
PROFILE ETHERNET IP_ADDRESS=192.168.11.10
PROFILE ETHERNET SUBNET_MASK=255.255.255.0
```

```
PROFILE ETHERNET GATEWAY=192.168.11.250
PROFILE NETWORK DNS_SERVER_1=192.168.10.100
PROFILE NETWORK DNS SERVER 2=192.168.10.111
```

❖ 4. Check Ethernet port

Using the front panel UP and DOWN keys, select the Ethernet IP screen. It should show the configured IP address:

```
Eth IP: No cable 192.168.11.10
```

If this is not the case then the DT80's Ethernet port has not been properly configured, see Step 3 above.

❖ 5. Connect Ethernet cable

You can now connect a standard Ethernet cable between the *DT80* and a network connection point. Verify that the green Link LED comes on on the *DT80*'s Ethernet connector. If the Link LED does not come on then check that:

- · the cable is a correctly wired straight through cable
- the network access point is active (check with your network administrator)

❖ 6. Check DT80 IP address

When the Ethernet cable is connected, the No cable indication should disappear from the Ethernet IP screen:

```
Eth IP: Manual 192.168.11.10
```

If you have a DT81 then you can alternatively send the command:

```
IP
192.168.11.10
```

❖ 7. Test the connection

You should now be able to connect to the *DT80*. For example, you could enter the *DT80*'s IP address (192.168.11.10 in this case) into a web browser in order to access the *DT80*'s web interface, or you could create a TCP/IP connection in *DeTransfer* or *DeLogger*, again specifying the *DT80*'s IP address.

Accessing the *DT80* via the Internet

One of the major advantages connecting to the *DT80* via its Ethernet port is that you can then potentially access the *DT80* from anywhere in the world via the Internet. That is, you use your computer and its existing Internet connection to access the *DT80* in much the same way as you would access a web site. This section discusses what is required in order to make this happen.

There are essentially two possible connection scenarios:

- The *DT80* is on a private network, "behind" a NAT (Network Address Translation) router or firewall. This private network may be a corporate LAN (*Figure 80* (P236)), or a single cable between the *DT80* and an integrated modem-gateway (*Figure 81* (P237)).
- The DT80 is connected to the Internet directly, or via a conventional (non-NAT) router.

DT80 on Private Network

Figure 80 (P236) shows a typical network arrangement where the DT80 is on a private LAN. In this case the DT80 has been configured with a static private IP address, 192.168.1.7.

In this example, the organisation's ISP has allocated a single public IP address (203.54.192.12) which is "shared" by PC1, PC2, the *DT80* and any other devices on the local network. As far as the outside world is concerned, the whole network looks like one single computer with one IP address. The NAT router is responsible for maintaining this fiction – it does this by remembering which local computer made a given request (e.g. to view a particular web page) and making sure that when the matching reply from the Internet is received (containing the web page itself), then it is forwarded to the correct computer.

With this network configuration, the DT80 would be set up as follows

```
PROFILE ETHERNET ENABLE=YES
PROFILE ETHERNET IP_ADDRESS=192.168.1.7
PROFILE ETHERNET SUBNET_MASK=255.255.255.0
PROFILE ETHERNET GATEWAY=192.168.1.1
PROFILE NETWORK DNS_SERVER_1=203.54.22.1
PROFILE NETWORK DNS_SERVER_2=203.54.22.2
```

In this case there is no DNS server set up on the LAN, so the addresses specified by the Internet Service Provider are used.

❖ Port Forwarding

The above setup will allow the *DT80* to access servers on the Internet – for example, it can send email or upload data to an FTP server. However, the *DT80* can also act as a <u>server</u>, where it waits for incoming web or FTP or command interface requests, then processes them.

If you want to allow access to the some or all of the *DT80*'s servers from the Internet, then it is necessary to tell the NAT router (firewall) to forward such incoming requests to the *DT80*'s IP address. Otherwise, the router will not know what do with these requests, and simply discard them.

This process is known as **port forwarding**. You (or your network administrator) will need to configure the router so that incoming requests using the following TCP/IP ports will be forwarded to the *DT80*'s IP address:

- TCP port 80 allows access to the DT80's web server
- TCP port 21 allows access to the DT80's FTP server (command port)
- TCP ports 1024-5000 allows access to the *DT80*'s FTP server (data port). For "passive mode" FTP transfers, the *DT80* randomly selects a data port from this range.
- TCP port 7700 allows access to the DT80's command interface server
- TCP port 843 allows access to the DT80's enhanced web interface
- TCP port 502 allows access to the DT80's Modbus server
- ICMP (Internet Control Message Protocol) allows "ping" requests to be sent to the DT80; this can be helpful when
 diagnosing network problems

(Note that it is <u>not</u> necessary to forward the FTP ports in order for the *DT80* to be able to connect to an external FTP server. It is only necessary if you want to be able to remotely access the *DT80*'s own FTP server.)

The actual procedure for setting up port forwarding will vary according to the particular model of router/firewall. Consult the unit's documentation for more details.

(Note that the above port numbers listed above are the defaults. Some of these can be changed in the *DT80* profile, see *Profile Settings* (P262).)

Note You should only enable port forwarding for *DT80* facilities that you wish to make available to the Internet. For example, if you want to prevent any access to the *DT80* command server then you should not set up port forwarding for port 7700.

Once the NAT router has been set up to forward the required ports, you should now be able to access the *DT80* from outside the local network using the network's public IP address. So in this example, you could enter http://203.54.192.12 into a web browser and you should see the *DT80* web interface.

Note The public IP address (203.54.192.12) should only be used from computers outside the local network. If you wanted to access the *DT80* from PC1 or PC2 you would still use the *DT80*'s private address, 192.168.1.7.

* Adding a DNS Entry

It is customary (although not essential) to set up a **Domain Name System (DNS)** entry for an Internet-accessible *DT80*. This allows you to associate a meaningful name, e.g. **mydt80.gigadata.com**, with the *DT80*'s public IP address, so users can just type in the name without having to remember the actual IP address.

Depending on the structure of the local network, this may involve configuring the local DNS server (if any) and/or requesting that the ISP add an entry to its DNS server. For more details, contact your network administrator or ISP.

Note This assumes that the ISP has assigned a <u>static IP</u> address. More commonly, it will assign a dynamic IP address, in which case you will need to use a dynamic DNS service in order to locate it.

❖ Dynamic DNS

The *DT80* does not directly support Dynamic DNS (DDNS) on the Ethernet interface – only on the integrated modem interface (for DT8xM models). However, most Ethernet router or gateway devices include a DDNS client. You could therefore create a DDNS account as described in *Dynamic DNS* (P216) and then configure the router/gateway DDNS client to update it with the *DT80*'s public IP address.

Direct Internet Connection

The other possible configuration is where the *DT80* is essentially connected directly to the Internet. A typical setup is shown in *Figure 84* below.

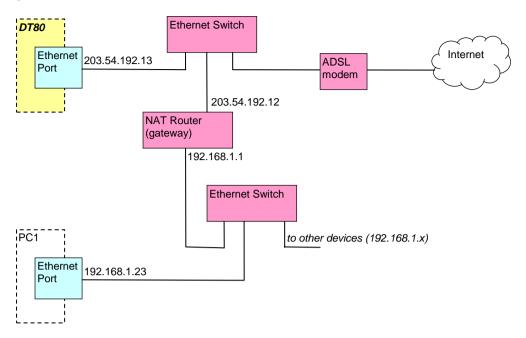


Figure 90: Typical Ethernet LAN with DT80 directly connected to the Internet

In this case <u>two</u> public IP addresses have been allocated by the ISP – one (203.54.192.13) for the *DT80* and one (203.54.192.12) for everything else, via the NAT router.

Because the *DT80* is now effectively directly connected to the ISP's network, its IP address, subnet mask, gateway and DNS server addresses will need to be set up using values provided by the ISP.

Once the *DT80*'s network profile settings have been set it should be possible to connect to it from either a local computer (e.g. PC1) or a remote system on the Internet, using its unique public IP address (203.54.192.13).

Note that in this case port forwarding is <u>not</u> required, as requests for the *DT80* no longer pass through the NAT router.

If desired, you can request that your ISP set up a DNS entry so that the *DT80* can be referred to by name, e.g. mydt80.nanodata.com.

PPP Communications

About PPP

Point-to-Point Protocol (PPP) allows TCP/IP-based protocols to be run over the USB, Host RS-232 and/or serial sensor port of the *DT80*.

The *DT80* operates as a PPP server. A client computer can connect to the *DT80*, via modem or direct cable, in much the same was connecting to a dial-up Internet Service Provider. (Modem connections are only supported on the host RS232 port.) When a PPP connection is made, the *DT80* will, like an ISP, verify the supplied username and password and allocate an IP address for the host PC to use for the duration of the session.

Each of the *DT80*'s three PPP-capable ports has its own IP address, which is in turn different to the IP address for the Ethernet port. This means that TCP/IP can potentially be active on all four ports simultaneously.

Note For the USB port, the dataTaker *DtUsb* driver software is used to set up and manage a PPP connection in a simple manner. See *USB Port* (P188) for more details. There is no need for any of the PPP configuration described in this section if you are using the USB port. This section is, however, still applicable if you plan to use a direct RS232 or modem connection.

Note While DT8xM models do use PPP to connect to the mobile network, there is no need for any of the PPPconfiguration described in this section in order to use the integrated modem.

Setting up PPP

Setting up a PPP connection involves four main steps:

- 1. Set or verify the required profile settings on the DT80
- 2. Install the physical communications link (RS232 cable, modem etc.)
- 3. Define a "modem device" on the host computer to represent the physical comms link.
- 4. Define a PPP "network connection" on the host computer, which will use the defined modern device.

This normally needs to be done once only. Once the PPP network connection has been set up and saved on the host computer, you can then establish a connection as and when required. This process is the same as you would use when connecting to an Internet Service Provider via a dial-up connection. See *Using PPP* (P252).

1. DT80 Profile Settings

* PPP Settings

The DT80's PPP settings can be listed using the PROFILE command:

```
PROFILE PPP
[PPP]
USER = DATATAKER
PASSWORD = DATATAKER
```

These show the username and password that the host computer must supply when establishing a PPP connection.

These profile settings can be changed in the usual way, e.g.

```
PROFILE PPP USER=DT
PROFILE PPP PASSWORD=SECRET
```

❖ IP Addresses

Because PPP is used for a point-to-point connection between just two devices, it doesn't really matter what IP addresses are chosen for each end – so long as the two addresses are different.

The *DT80* therefore uses a <u>fixed</u> IP address for each of its three serial ports, and allocates a fixed IP address to the host computer at the other end of the link.

The IP addresses used by the DT80 for PPP are as follows:

Interface	DT80 IP address	Host computer IP address
serial sensor port	1.0.0.1	1.0.1.1
host RS232 port	1.0.0.2	1.0.1.2
USB port	1.0.0.3	1.0.1.3

For example, if you establish a PPP connection to the host RS232 port then the *DT80*'s IP address would be 1.0.0.2. You could therefore access the *DT80*'s web interface by entering http://l.o.o.2 into a web browser, for example.

Comms Port Settings

The settings for the desired *DT80* port will also need to be set or checked. For example, if the host RS232 port is used then the current settings can be queried using:

```
PROFILE HOST_PORT
[HOST_PORT]
```

```
BPS = 57600

DATA_BITS = 8

STOP_BITS = 1

PARITY = NONE

*FLOW = HARDWARE

FUNCTION = COMMAND
```

In order for the port to support PPP, the **FUNCTION** parameter must be set to **COMMAND** or **PPP**:

- The COMMAND setting (which is the default for USB and host RS232 ports) means that the port supports both the
 regular command interface and PPP, automatically switching between the two when a PPP connection is established
 and disconnected.
- The PPP setting only allows PPP connections on the port. This provides improved security, especially on modem links, as a valid username and password must be supplied before a PPP connection can be established.

For the host and serial sensor RS232 ports, the flow control should be set to **HARDWARE** (RTS/CTS). Software flow control is not recommended for PPP.

For RS232 ports, also make a note of the baud rate and framing settings – these will be needed when setting up the host PC end of the connection.

2. Install the Physical Communications Link

The physical communications link over which PPP is to be run should now be installed. This link might be

- a null modem (cross-over) RS232 cable, connected between the DT80 host RS232 or serial sensor port and a PC RS232 port (or USB to RS232 adapter). For the serial sensor port, RS422/485 may also be used, with an appropriate adapter at the PC end.
- a modem (dial-up, radio, cellular), connected to the *DT80* host RS232 port, with another internal or external modem connected to the host computer.

You now need to determine the PC COM port. This can be done by attempting to establish a standard command interface connection, using *DeTransfer*. (Note that this will not work if the *DT80* port function has been be set to **PPP**. Set it to **COMMAND** for this test.)

Once you have verified that a connection can be established, be sure to <u>close the connection</u> in *DeTransfer*. Make a note of the COM port number.

3. Install the Windows Modem Device

It is now necessary to set up the "modem device" that Windows will use for communicating over this link. This is done as follows. Be sure that the cable or modem is plugged in to the host computer before proceeding.

Note When using Windows Vista, note that at various points during this process you may see "Windows needs your permission" messages. Click **Continue** in each case.

- 1. Open the Windows Control Panel.
- 2. Open the **Phone and Modems Options** item. This may be listed under the **Printers and Other Hardware** (XP) or **Hardware and Sound** (Vista) category.
- 3. If the **Dialling Rules** dialog is displayed, ensure that a valid area code is entered.
- 4. Once the area code has been set, select the **Modems** tab:

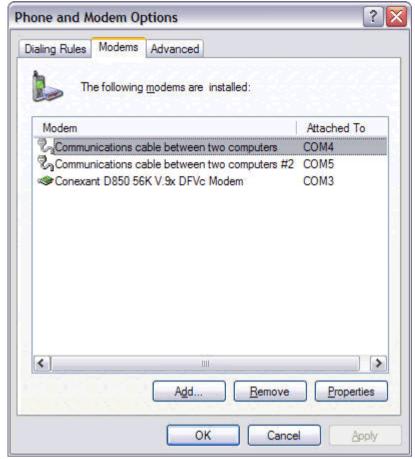


Figure 91: List of installed modem devices (Windows XP)

This dialog shows all currently installed modem devices. In the above example the computer's internal dial-up modem is shown (COM3), along with two null modem cables (which, as far as the computer is concerned, are still "modems"). In this case it so happens that the COM4 null modem cable is an RS232 cable, while COM5 is a USB cable – although this is not apparent in this dialog.

- 5. If the modem (or null modem cable) that you intend to use for PPP is <u>not</u> listed, then you will need to add it, using the **Add** button. This will launch the Windows **Add Hardware Wizard**.
- a) If you are using a direct USB or RS232 null modem cable then tick the **Don't detect modem; I will select it from a list** option. (If you are using a modem then you can leave this unticked; Windows will then attempt to automatically detect it. If this fails then you will need to select the modem type from a list, in the next step.)
- b) You should now see a list of different modem types. If you are using a direct USB or RS232 null modem cable then select the first one in the list, **Communications cable between two computers**.
- c) Select the correct COM port number from the list. If the required COM port number is not listed then double check that you have closed any connections using that port in *DeTransfer* or *DeLogger*.
- d) The modem device should now have been added, and you will be returned to the modem list screen (*Figure 85*). Verify that the newly added modem device is now present.
- If a <u>direct RS232</u> cable is being used then one further step is required. This is not necessary for a direct USB or modem connection.
 - a) Select the RS232 cable from the list of modem devices and click **Properties**.
- b) Select the **Modem** tab and set the **Maximum Port Speed** field equal to the configured baud rate on the *DT80*, then press **OK**.

The final step is to define a Windows "network connection" using the **Network Connection Wizard**. This process varies depending on whether a direct cable or modem connection is used.

4a. PPP Network – Direct Cable Connection

This section describes the process of creating a Windows "network connection", when using a <u>direct USB or RS232 cable connection</u>. If you are using a modem, see *4b. PPP Network – Modem Connection* (P250).

The following is applicable to Windows XP

- 1. From the Start menu, select **Control Panel**, then **Network Connections**. This will display a list of currently defined network connections (if any).
- Select the New Connection Wizard, or the Create a new connection task. This will start the Network Connection Wizard.
- 3. Select Setup an advanced Connection.

- 4. Select the option to Connect directly to another computer.
- 5. Specify that you are setting up a Guest connection
- 6. Enter a name for the connection, e.g. "DT80 USB ppp"
- 7. Select the appropriate "Communications cable between two computers" modem device from the list.
- 8. Specify whether you want the connection to be available just for your Windows user name, or for anyone who uses the computer.
- Complete the wizard by specifying whether or not you would like it to create a desktop icon for the connection. (A desktop icon allows you to establish the PPP connection simply by double clicking on the icon.)
- 10. The wizard will now display the Connect dialog. (Figure 86; you will see this dialog each time you establish a PPP connection to the logger.) Press Cancel for now. A few more options should be set before connecting, as detailed below.

The following is applicable to Windows Vista and Windows 7

- 1. From the Start menu, select Control Panel, then Network and Sharing Center.
- 2. Select Setup a new connection or network. This will start the Network Connection Wizard.
- 3. Select Setup a dial-up connection.
- 4. If more there is more than one "modem device" installed then you will be asked to select which one you want to use. Select the appropriate "Communications cable between two computers" from the list.
- 5. You will now be prompted for your ISP connection details (telephone number, username and password). For a direct cable connection the telephone number won't be used so you can enter anything here.
 - Enter a name for the connection, e.g. "DT80 USB ppp". The username and password can be left blank for now. Press **Connect**.
- Windows will report that the connection attempt failed. Select Setup the connection anyway to save the connection details.
- 7. Press Close.

❖ Additional Settings

A few further settings are required (these are applicable to both XP and Vista/Windows 7)

- 1. Select Connect to a network, then select the PPP connection that you just created. If required, press Connect.
- 2. The Connect dialog will now be displayed.

Figure 92: PPP Connect dialog (Windows XP)

Enter the username and password specified in the *DT80* profile (by default **DATATAKER** and **DATATAKER**, note these are case sensitive), and tick the **Save this username and password** option so you won't have to enter it next time.

Now click Properties.

3. The connection properties page will now be displayed. On the General tab, click Configure.

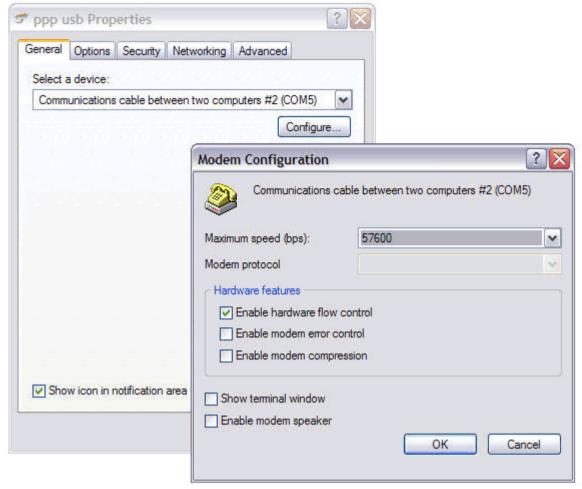


Figure 93: PPP Modem Configuration for direct cable connection (Windows XP)

For a direct RS232 cable connection, ensure that the **Maximum speed** setting is set to the configured baud rate of the *DT80* serial port in use. For a USB connection this setting is irrelevant. Check that the other settings are as shown in *Figure 87*, then press **OK**.

4. On Windows XP, select the **Networking** tab, then press **Settings**. On Windows Vista/Windows 7, select the **Options** tab then press **PPP Settings**. This will display the PPP Settings dialog.

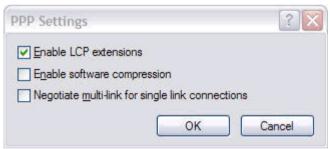


Figure 94: PPP Settings

Set the options as shown. In particular, <u>disable</u> the **Enable software compression** option, then press **OK**. This will reduce the time taken to establish a PPP connection.

- 5. On the **Networking** tab, select the **Internet Protocol** option (**Internet Protocol Version 4** on Windows 7) and then click **Properties**.
- 6. Click **Advanced** to display the **Advanced TCP/IP Settings** dialog.

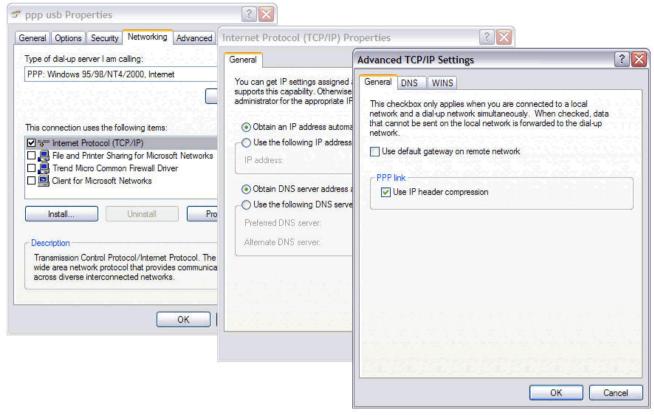


Figure 95: TCP/IP Settings - uncheck the Use Default Gateway option

Check the settings against those shown in *Figure 89*. In particular, the **Use default gateway** option should be <u>disabled</u>. If this is not done then Windows will attempt to use the PPP connection as its default Internet connection, the end result being that the Internet will not be accessible from your computer while a PPP connection to the *DT80* is in progress. (If your computer does not have an Internet connection then this step can be ignored.)

7. Press **OK** to close the various "properties" dialogs, and return to the **Connect** dialog (*Figure 86*). You can now try establishing a PPP connection, see *Using PPP* (P252).

4b. PPP Network – Modem Connection

This section describes the process of defining a Windows "network connection" when using a <u>modem connection</u>. It is assumed that an appropriate "modem device" has already been installed, as described in 3. *Install the Windows Modem* Device (P246).

The following is applicable to Windows XP

- 1. From the Start menu, select **Control Panel**, then **Network Connections**. This will display a list of currently defined network connections (if any).
- Select the New Connection Wizard, or the Create a new connection task. This will start the Network Connection Wizard.
- 3. Select Connect to the Internet.
- 4. Select Set up my connection manually.
- Select Connect using a dial-up modem.
- 6. When prompted for an "ISP Name", enter a name for the connection, e.g. "DT80 modem ppp"
- 7. Select which modem you wish to use. If you only have one modem connected then this step will be skipped.
- 8. Enter the phone number for dialing in to the DT80 modem.
- Specify whether you want the connection to be available just for your Windows user name, or for anyone who uses the computer.
- 10. Enter the username and password specified in the *DT80* profile (by default **DATATAKER** and **DATATAKER**, note these are case sensitive).
 - Uncheck the Use this account when anyone connects to the Internet option.
 - Uncheck the Make this the default internet connection option.
- 11. The wizard will now display the **Connect** dialog. (*Figure 86*; you will see this dialog each time you establish a PPP connection to the logger.) Press **Cancel** for now. A few more options should be set before connecting, as detailed below.

The following is applicable to Windows Vista/Windows 7

- 1. From the Start menu, select Control Panel, then Network and Sharing Center.
- 2. Select Setup a new connection or network. This will start the Network Connection Wizard.

- 3. Select Setup a dial-up connection.
- 4. If more there is more than one modem installed then you will be asked to select which one you want to use. Select the correct one from the list.
- 5. You will now be prompted for your ISP connection details (telephone number, username and password).

Enter the phone number for dialing in to the DT80 modem.

Enter the username and password specified in the *DT80* profile (by default **DATATAKER** and **DATATAKER**, note these are case sensitive).

Enter a name for the connection, e.g. "DT80 modem ppp".

Press Connect.

- Windows will report that the connection attempt failed. Select Setup the connection anyway to save the connection details.
- 7. Press Close.

❖ Additional Settings

A few further settings are required (these are applicable to both XP and Vista/Windows 7)

- 1. Select **Connect to a network**, then select the PPP connection that you just created. If required, press **Connect**. The **Connect** dialog (*Figure 86*) will now be displayed. Click **Properties**.
- 2. The connection properties page will now be displayed. On the **General** tab, click **Configure**.

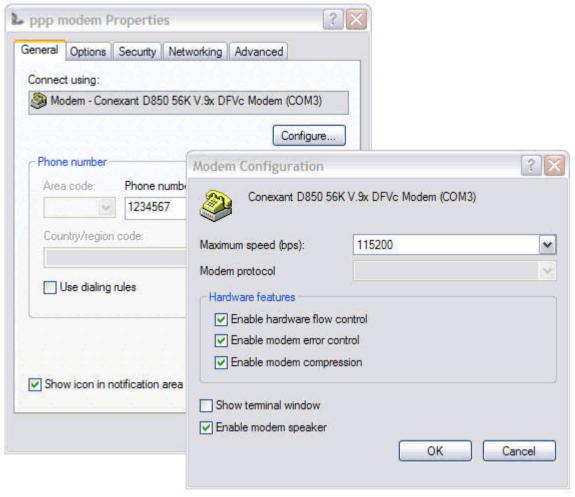


Figure 96: PPP Modem Configuration for modem connection (Windows XP)

For a modem connection, the **Maximum speed** setting should normally be set higher than the modem connect speed (e.g. set to 115200 for a 56kbps modem). Unlike the direct cable connection case, it does <u>not</u> need to match the *DT80* port speed.

The modem error control and compression options should also be enabled. Enabling the modem speaker is optional. Press **OK**.

- 3. On Windows XP, select the **Networking** tab, then press **Settings**. On Windows Vista/Windows 7, select the **Options** tab then press **PPP Settings**. This will display the PPP Settings dialog (*Figure 88*). As with the direct connection, disable the **Enable software compression** option, then press **OK**.
- 4. On the **Networking** tab, select the **Internet Protocol** option (**Internet Protocol Version 4** on Windows 7) and then click **Properties**.

- Click Advanced to display the Advanced TCP/IP Settings dialog (Figure 89). As with the direct connection, the Use
 default gateway option should be disabled to prevent Windows from attempting to use the PPP connection as its
 default Internet connection.
- 6. Press **OK** to close the various "properties" dialogs, and return to the **Connect** dialog (*Figure 86*). You can now try establishing a PPP connection, see *Using PPP* (P252).

Using PPP

Once a PPP connection has been set up, the general day to day process for using it is as follows:

- 1. Ensure that the physical communications link is plugged in (modern or null modern cable).
- 2. Establish a PPP connection by "dialing up" to the DT80 (for a direct cable connection no actual "dialling" occurs).
- 3. After the connection process completes you will be able to access the *DT80* via the IP address for the serial port in use (see *IP Addresses* (P245). For example, if the host RS232 port is being used then the IP address is 1.0.0.2.
- 4. When you have finished, the PPP connection can be disconnected. The *DT80*'s IP address (e.g. 1.0.0.2) will no longer be valid.

See below for more details.

Establishing a Connection

To establish a connection:

- From the Start menu, select Control Panel, then Network Connections (or Network and Sharing Center), then Connect to a Network, then select the "network connection" that you created for the PPP link.
- The Connect dialog (Figure 86) will be displayed. Press Connect.
- 3. If all goes well, a few status messages will be displayed briefly as Windows establishes the physical connection, logs in to the *DT80*, and then adds the *DT80*'s IP address to its networking configuration.
- 4. By default, an icon representing the PPP connection will now be displayed in the Windows system tray:

Figure 97: System tray icon for an active PPP connection (Windows XP)

Note that for a USB connection, the indicated "speed" is irrelevant. USB always operates at a fixed rate.

Using the Connection

Once the connection has been established, you can access the *DT80* in much the same way as you would using an Ethernet connection. The IP addresses for the three *DT80* serial ports are:

- 1.0.0.1 for the serial sensor port
- 1.0.0.2 for the host RS232 port
- 1.0.0.3 for the USB port

The appropriate IP address can then be entered into a web browser, or FTP client, or DeTransfer/DeLogger, etc.

The IP address of the host computer at the other end of the PPP link is as above but with a 1 rather than a 0 in the second last position. So for a host RS232 PPP connection the *DT80*'s IP address is 1.0.0.2, and the host computer's IP address is 1.0.1.2.

Limitations

It is important to note that a PPP connection provides connectivity between the *DT80* and a single host computer only. The PPP "network" linking the computer and the *DT80* is a <u>private</u> network and is not visible to any other computers.

Closing a Connection

To terminate a PPP session, simply right click on the connection's system tray icon and select **Disconnect**. Alternatively, use **Connect To** to bring up the list of all defined network connections, then right click on the appropriate connection and select **Disconnect**.

You can also end a PPP session by sending the *DT80* command **CLOSEDIRECTPPP**. By default, this command will close all currently active PPP connections. To close a connection on one particular port, specify the port number (1=serial sensor, 2=host, 3=USB), e.g.

CLOSEDIRECTPPP 3

will close the PPP session on the USB port.

A PPP session will also be automatically terminated if the USB cable is disconnected, or the modem connection drops out.

Troubleshooting

This section discusses a few possible reasons why a PPP connection may fail to connect. The error messages listed here are the common ones returned by Windows XP. Windows Vista is somewhat less helpful in that it simply indicates that "the connection failed", which could be due to any of the reasons below.

❖ Error 663 – Modem already in use or not configured properly

This indicates that Windows could not open the specified COM port. Check that:

- the cables are properly connected
- you specified the correct COM port when creating the Windows modem device
- no other programs (e.g. *DeTransfer*) are currently using the specified COM port.

Error 691 – Access is denied

Check that the username and password specified in the **Connect** dialog exactly match that configured in the *DT80* profile.

Error 777 – Modem or remote computer is out of order

This indicates that the expected responses were not received from the DT80. Check that:

- for direct RS232 cable connections, the specified maximum baud rate matches that configured in the DT80 profile.
- the port function setting in the *DT80* profile is set to COMMAND or PPP.
- if a modem is used, it appears to be dialling and connecting successfully. If not then check phone number and phone
 line.

Slow connection

When connecting, if there is a long pause (up to 60 seconds) during which **Registering your computer on the network** is displayed, this normally indicates that Windows is requesting a particular PPP option but that the *DT80* is rejecting it. One such option is "software compression"; ensure that this option is unchecked in the PPP Settings dialog (*Figure 88*).

Network Services

Unless otherwise specified, the TCP/IP network services described here operate the same way regardless of the hardware interface used (Ethernet, serial PPP, DtUsb or integrated modem).

Using the Network Command Interface

Connecting

To access the *DT80*'s command interface over Ethernet you need to use a terminal program on the host computer that can send/receive text to a TCP port. *DeTransfer* and *DeLogger* support this. By default, **TCP Port 7700** is used; this can be changed in the *DT80* profile if required.

Using *DeTransfer*, for example, you first need to set up a **connection**. This is the same as setting up a connection for RS232 or USB, except that instead of specifying a COM port number, you now need to specify an IP address. The following screen shot illustrates this.

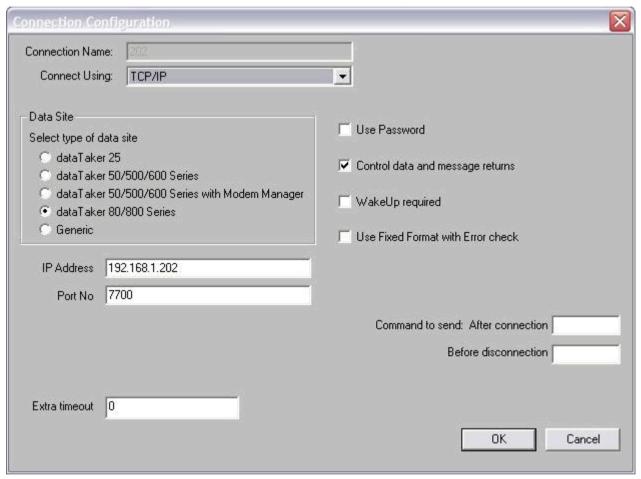


Figure 98: Example software connection for a DT80 on an Ethernet network (DeTransfer software shown)

Note When creating a new connection the current version of *DeTransfer* defaults to Port 8. It must therefore be explicitly set to Port 7700.

If you now press Connect, you should be able to send commands to the *DT80* and receive data, just as you would using USB or RS232.

Multiple Connections

Up to three client computers (or three *DeTransfer* sessions on the one computer) can simultaneously connect to the *DT80* command interface using the TCP/IP network. This is in addition to a possible USB and/or RS232 connection.

At any one time, only one of these interfaces/sessions can be the **active** interface. The active interface is the one on which the most recent *DT80* command was sent.

Whenever the *DT80* transmits something over the command interface (e.g. returned/unloaded data, prompt strings, messages, etc.), it is send to the current active interface, <u>plus</u> all connected TCP/IP sessions. This provides a way to "broadcast" data to a number of different computers, each of which operates as a passive listener.

Disconnecting

It is important to note that all Ethernet sessions will be disconnected if the DT80:

- undergoes a hard reset (HRESET, manual reset or power failure)
- enters low power sleep mode.

For this reason, the *DT80* normally disables sleep mode while an Ethernet cable is connected (although this can be overridden by setting P15 to 3 or 4.

If an Ethernet session is disconnected in this way, you may need to manually disconnect then reconnect in DeTransfer.

Using the DT80 FTP Server

The *DT80* can also function as an FTP (File Transfer Protocol) server. You can use this mechanism to transfer data and program files to and from the *DT80*. This is done by running an **FTP client** application on the host computer and using it to connect to the *DT80*'s **FTP server** (by specifying the *DT80*'s IP address).

Passwords

The FTP server supports two types of access:

- an anonymous login (username ANONYMOUS, password can be anything) provides read-only access to the DT80's file system.
- a full login (using the username and password configured in the DT80 profile) provides read/write access.

To set the FTP password, use the following profile commands:

```
PROFILE FTP_SERVER USER=DT
PROFILE FTP SERVER PASSWORD=TOPSECRET
```

If, for security reasons, you want to disable the FTP server altogether, enter:

```
PROFILE FTP SERVER SUPPORTED=NO
```

You can also disable anonymous logins, using:

PROFILE FTP SERVER ALLOW ANONYMOUS=NO

FTP Client Software

A Windows computer includes at least two different FTP clients that can be used to access the *DT80*'s file system. You can run the traditional command-line version by typing

```
ftp ip-address
```

in a command prompt window (ip-address is the IP address of the DT80).

Alternatively, most web browsers will allow you to browse the DT80 by entering the following URL:

```
ftp://user:password@ip-address/drive:/,or
```

ftp://ip-address/drive:/ (for anonymous read-only access)

where:

- user and password are the username and password to use.
- ip-address is the DT80's IP address
- drive is the DT80 drive to browse (A or B).

The browser should then present a list of available files and folders, through which you can navigate simply by clicking on links.

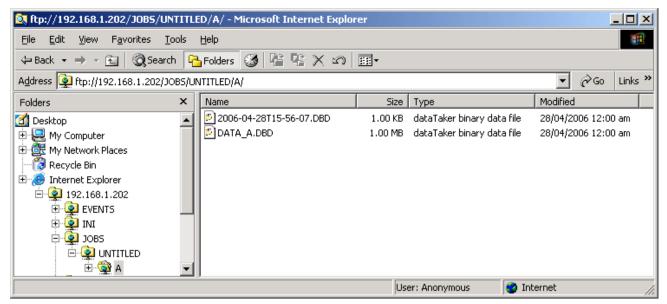


Figure 99: Typical file display when connected to DT80 FTP server

In order to load a file onto the DT80, or delete a file, you will need to:

- use a true FTP client, as opposed to a web browser. Windows Explorer (not Internet Explorer), or the command line client are suitable, or there are numerous others available.
- specify the configured username and password as set in the profile. For example, with the default settings you could enter the following into the Windows Explorer address bar:
 ftp://DATATAKER:DATATAKER@192.168.1.202/B:/
 and then if you drag files into it then they should be uploaded to the logger.

Troubleshooting

If you experience problems connecting to the *DT80* FTP server, it can be helpful to examine the raw FTP messages that are being exchanged. To enable display of received and transmitted FTP messages, set **P56=8**. For example:

```
P56 = 8
>> 220 dataTaker FTP Server ready. Type HELP for help
<< USER anonymous
>> 331 User name okay, need password.
<< PASS IEUser@
>> 230 User logged in, proceed.
<< syst
>> 215 UNIX Type: L8
<< PWD
>> 257 "/" is current directory.
<< CWD \b:\
>> 250 Requested file action okay, completed.
<< TYPE A
>> 200 Command okay.
<< PASV
>> 227 Entering Passive Mode (192,168,1,202,14,183)
<< LIST
>> 150 File status okay; about to open data connection.
>> 226 Closing data connection. Transfer succeeded
```

This shows an anonymous user logging in and requesting a directory listing. Lines beginning with << were received by the *DT80*, while >> indicates lines that were transmitted by the *DT80*.

Note that this setting will also show exchanges between the *DT80* and an external FTP server – for example when unloading or copying archive files to an FTP server (see *Retrieving Logged Data* (P95)).

Security

If the DT80 is made visible on the Internet then you should carefully consider the security implications of this.

With a public IP address, the logger will be visible and accessible by anyone on the Internet. This may make it vulnerable to disruption by malicious software that exists in the wilds of the Internet.

Given the specialised nature of the *DT80*'s operating system, it is highly unlikely that any type of computer virus would be able to be loaded onto the *DT80*.

However the network services provided by the *DT80* may be vulnerable to disruption. For example, if the *DT80*'s FTP server is enabled then it may be found by an automated "port scanner" program, which may then repeatedly attempt to guess the FTP server username and password. If successful, it would then be able to access and delete files on the *DT80*'s internal file system.

To minimise the risks, there are a number of measures you can take:

• Disable any servers that are not required, using the appropriate profile settings, e.g.:

```
PROFILE FTP_SERVER PORT=0
PROFILE HTTP_SERVER PORT=0
PROFILE MODBUS_SERVER TCPIP_PORT=0
PROFILE COMMAND SERVER PORT=0
```

• Use non-standard port numbers, e.g.

```
PROFILE FTP_SERVER PORT=2100
PROFILE HTTP_SERVER PORT=8000
PROFILE MODBUS_SERVER TCPIP_PORT=50200
PROFILE COMMAND SERVER PORT=7709
```

which may fool casual hackers. When legitimate users connect they will need to specify the port number, e.g. http://mylogger.com:8000/

Enable the command server password (see Password Protection (P187)), e.g.

```
PASSWORD=zx81
SIGNOFF
```

Disable anonymous FTP login:

```
PROFILE FTP SERVER ALLOW_ANONYMOUS=NO
```

Change the FTP username and password

```
PROFILE FTP_SERVER USER=paranoia
PROFILE FTP_SERVER PASSWORD=Cant89203432reMemBer9909283thIS
```

- Set up the DT80 on a private LAN behind a NAT router. You will need to configure the router to forward traffic to the required servers' ports to the DT80 (see DT80 on Private Network (P242)).
- Disable any pages that are not required in the *dEX* web interface, using the Web Interface Configuration Tool (see *Customising the Web Interface* (P165)).
- Disable the dEX Configuration Builder by renaming the "jango" folder, which will make it disappear from the logger home page, e.g.

```
RENAME \www\jango \www\secret_builder
```

• Disable the Web Interface Configuration Tool by renaming the "needa" folder, which will make it disappear from the logger home page, e.g.

```
RENAME \www\needa \www\secret_customise
```

 If you connect to the DT80 using PPP over a dial-up modem then configure the host port for PPP only: PROFILE HOST_PORT FUNCTION=PPP

which means that incoming connections will be rejected if the correct PPP username and password is not specified.

If you connect to the DT80 using PPP over a dial-up modem then change the default PPP username and password:
 PROFILE PPP USER=fear

```
{\tt PROFILE\ PPP\ PASSWORD=Cant89203432reMemBer9909283thIS222eithER}
```

Note that in the dEX configuration builder, FTP and PPP share the same username and password.

Part M - Configuration

Configuring the DT80

Parameters

DT80 **parameters** are internal system settings. They are global in their effect, and allow a variety of options to be set. As a general rule, set the parameters that require changing before programming schedules and alarms.

Parameters are numbered from **P0** to **P62**, although not all numbers are used. Each parameter is an <u>integer</u>; the range of allowable values varies from parameter to parameter.

Reading Parameters

To read the current setting of a parameter, simply send the parameter's ID. For example, to read the value of P11: P11

50

Setting Parameters

Parameters can be set at any time, and new settings generally take effect immediately. For example, send: P11=60

to set parameter P11's value to 60.

Note Parameters are not channels. The statement **P11=60** is a **command**, and is carried out immediately, even if it appears within a schedule definition. You can use the **DO** command to set parameters when a schedule executes – see *Executing Commands in Schedules* (P56) for more information.

Parameter Lifetime

All parameter settings are cleared back to their default values when a soft or hard reset (**INIT** or **HRESET**) is performed, or if both external and battery power is lost.

To make a parameter setting "permanent", it should be set using the matching profile setting (see *Profile Settings* (P262)), e.g.

```
PROFILE PARAMETERS P11=60
```

When a parameter is set in the profile, it effectively becomes the new default value. You can still override it temporarily using the **P**nn=xx command, but it will revert to the profile value if a soft or hard reset occurs.

To reset a parameter to its factory default value you can use

- PROFILE PARAMETERS P11= to reset a single parameter
- PROFILE PARAMETERS= to reset all parameters
- FACTORYDEFAULTS to reset all settings, including parameters, switches and profile settings

Parameter	Specifies	Units	Default Value	Range of Values	Comment
P0	Max analog input drift before re-calibration	μV	3	0 to 10000	Voltage measurements may "drift" as the ambient temperature changes. If the drift is greater than this amount the <i>DT80</i> will automatically re-calibrate itself to restore accuracy.
Р3	Minimum sleep period	ms	1500	1 to 30000	The <i>DT80</i> will only go to sleep if the sleep duration can be for at least this period of time
P4	Sleep-to-wake latency	ms	800	1 to 30000	Time required by <i>DT80</i> to resume normal operation after leaving sleep mode
P8	Command processor diagnostic mode	mode	0	0 to 1	If this parameter is set to 1 then each and every command string will be displayed before being executed. This can be useful for verifying that alarm actions are being carried out, as these commands are not normally echoed.
P9	Logging of alarm state	mode	1	0 to 3	0 = do not log alarms 1 = log false to true transitions only 2 = log true to false transitions only 3 = log both transitions
P11	Mains frequency	Hz	50	1 to 10000	Sets analog measurement duration to 1/P11 seconds . Set P11 to the local mains frequency for best noise rejection.
P14	Comms ports password protection timeout	seconds	600	1 to 30000	When a password is defined, the <i>DT80</i> automatically signs off after this period of inactivity (see <i>Password Protection</i> (<i>P187</i>)
P15	Low-power operation	Mode	0	0 to 4	0 = Allow sleep, but not if externally powered or if Ethernet/USB is connected 1 = Allow sleep, but not if Ethernet/USB is connected 2 = Do not allow sleep 3 = Allow sleep 4 = Allow sleep, but not if externally powered See Controlling Sleep (P298)
P16	LED test mode	bitmask	0	0 to 32	0 = normal operation 32 = LCD backlight and all LEDs off 1-31: set specific LED pattern, as follows: bit 0 set = turn on Power LED bit 1 set = turn on Attn LED bit 2 set = turn on Disk LED bit 3 set = turn on Sample LED bit 4 set = turn on backlight
P17	Delay to low-power mode	seconds	30	1 to 30000	Sets how long the <i>DT80</i> waits before entering low-power sleep mode after the last communication or key press
P20	LCD backlight control	mode	2	0 to 3	0 = backlight off always 1 = backlight on always 2 = backlight on for P17 seconds after last user activity e.g. key press 3 = if externally powered: backlight on always; if battery powered: as for P20=2
P21	Analog subsystem power	mode	0	0 to 1	0 = analog subsystem powered during analog measurement only 1 = analog subsystem always powered
P22	Data delimiter character	ASCII	32 (space)	1 to 255	In free format mode with units disabled (/h/u), this character is inserted between the data value and the next data value
P24	Scan delimiter character	ASCII	13 (CR)	1 to 255	In free format mode with units disabled (/h/u), this character is inserted at the end of each schedule's data. Note that CR characters are always followed by LF.
P26	Flow control timeout	seconds	60	0 to 30000	If the <i>DT80</i> has been prevented from returning data for this amount of time (e.g. due to XOFF received or CTS not active) then it will assume that the host computer is no longer connected and will discard subsequent output text. Set to 0 to disable this timeout
P27	3HSC input mode	mode	0	0 to 3	Clock source for 3HSC counter 0 = 3C terminal 1 = internal 32768Hz signal, count while 3C terminal is low 2 = 3C terminal, count while 4C terminal is low 3 = internal 1024Hz signal
P28	12V power output mode	mode	0	0 to 3	0 = Auto CEM power. If schedule contains any CEM20 channels then 12V is turned on prior to any analog measurement, then turned off again at the end of the schedule if no other schedules are due. 1 = 12V on all the time

Parameter	Specifies	Units	Default Value	Range of Values	Comment
Tarameter	Openius	Oillis	Value	Values	2 = 12V on all the time including while asleep 3 = manual control of 12V output . CEM20s if used are
P31	Date format	mode	1	0 to 3	assumed to be externally powered. 0 = days since 1-Jan-1989
FJI	Bate format	mode	•	0 10 0	1 = European (DD/MM/YYYY)
					2 = North American (MM/DD/YYYY)
					3 = ISO (YYYY/MM/DD)
P32	Number of significant digits	digits	8	1 to 9	Sets the number of significant digits shown in returned data or unloaded logged data
P33	Minimum field width	characters	0	0 to 80	If non-zero, all data values returned in free format mode (/h) will be padded with leading spaces so that the total field width is at least P33 characters.
P36	Temperature units	mode	0	0 to 3	Units for all temperature measurements:
					0 = °C Celsius
					1 = °F Fahrenheit
					2 = K Kelvin
	Desired rejet sharester	A C C II	40 ()	4 += 055	3 = °R Rankine
P38	Decimal point character	ASCII	46 (.)	1 to 255	In CSV and free format mode (/h) data, this character is used as the decimal point character. CSV data separator automatically changed to ";" if this is set to comma (44).
P39	Time format	mode	0	0 to 3	0 = HH:MM:SS.TTT
					1 = decimal seconds since midnight
					2 = decimal minutes since midnight
					3 = decimal hours since midnight
P40	Time separator character	ASCII	58 (:)	1 to 255	This character is used to separate HH, MM and SS fields in time values.
P41	Time sub-second digits	digits	3	0 to 6	Sets number of decimal places in time values
P50	Time instant format	mode	0	0 to 5	Specifies the format to use when returning an absolute date/time value:
					0 = P39P22P31 (time, delimiter, date)
					1 = P31P22P39 (date, delimiter, time)
					2 = decimal seconds since 1-Jan-1989
					3 = decimal minutes since 1-Jan-1989 4 = decimal hours since 1-Jan-1989
					5 = decimal hours since 1-Jan-1989
P51	Time interval format	mode	6	0 to 5	Specifies the format to use when returning a relative time value:
					0 = P39P22d.d (time, delimiter, days) 1 = d.dP22P39 (days, delimiter, time)
					2 = decimal seconds
					3 = decimal minutes
					4 = decimal hours
					5 = decimal days
	5.6.6.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.				6 = P39 format (hours may be > 24)
P53	Default serial sensor timeout	seconds	10	0 to 30000	Max time that the <i>DT80</i> will wait for a serial sensor input or output action to complete.
					May be overridden by channel factor
					If P53=0 then characters satisfying the input action must
					already have been received at the time that the input
	E 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.2	4605	0.4. 10555	action is processed.
P55	Enable schedule wakeup	bitmask	16383	0 to 16383	bit 0 = not used
					bit 1 set = wake from sleep if schedule X is due
					bit 2 set = wake from sleep if schedule A is due bit 3 set = wake from sleep if schedule B is due
					bit 12 set = wake from sleep if schedule K is due
					bit 13 set = wake from sleep if schedule S is due
DEC	Diagnostic output	bitmask	0	0 to 16383	By default <i>DT80</i> will wake if any schedule is due.
P56	Diagnostic output	Dillilask	U	0 10 10363	Enable diagnostic output bit 0 set (e.g. P56=1) – SERIAL channel
					bit 0 set (e.g. P56=1) – SERIAL CHAITIEI bit 1 set (e.g. P56=2) – SDI12
					bit 2 set (e.g. P56=4) – Modbus
					bit 3 set (e.g. P56=8) – FTP and SMTP
					bit 4 set (e.g. P56=16) - Modem
P62	Retain multiplexer settings after measurement	mode	0	0 to 1	0 = all terminals are disconnected from the <i>DT80</i> measurement and excitation circuits at the end of each
					scan
					1 = connections are left set according to the last measurement in the schedule. This can be useful for verifying the DT80's excitation output, or for rapid
					verifying the <i>DT80</i> 's excitation output, or for rapid measurements of a single channel.

Table 6: DT80 Parameters

Switches

DT80 **switches** provide a further set of <u>boolean</u> parameters. Each switch is identified by a letter, and can either be **on** (uppercase) or **off** (lowercase).

Reading Switches

To read the current settings of all switches, use the **STATUS9** command (P275), e.g.:

/C/d/E/f/h/i/K/l/M/N/R/S/t/U/w/x/Z

Switches that are ON are displayed in uppercase.

Setting Switches

Switches can be set at any time, and new settings generally take effect immediately. For example, send:

/T /e/m

to set switch T on, and set switches E and M off.

Note Switches are not channels. The statement /**T** is a **command**, and is carried out immediately, even if it appears within a schedule definition. You can use the **DO** command to set switches when a schedule executes – see *Executing Commands* in Schedules (P56) for more information.

Switch Lifetime

Switches work in the same way as parameters. All switch settings are cleared back to their default values when a soft or hard reset (INIT or HRESET) is performed, or if both external and battery power is lost.

As with parameters, to make a switch setting "permanent", it should be set using the matching profile setting (see *Profile Settings* (P262)), e.g.

PROFILE SWITCHES T=ON

The DT80 recognises the following switches:

Switch	Function	Default	Comment
/C	Include Channel name	/C	Returns channel name before each data value (/h mode only)
/D	Include Date	/d	Returns current date before each scan's data. (/h mode only, see also /N)
/ E	Enable command Echo	/E	Enables echo of commands to host computer (if not unloading data and not in fixed-format mode).
/F	Lock (Fix) schedules	/f	Prevents a <i>DT80</i> 's scan schedules (trigger or channel list) being modified. Note that a reset still erases the schedules.
/H	Fixed-format (Host) mode	/h	Returns data in fixed-format mode (P26).
/I	Include Schedule ID	/i	Returns schedule ID before returning the schedule's data (/h mode only, see also / \mathbf{N})
/ K	Enable automatic re-calibration	/K	Before each scan the <i>DT80</i> checks for drift due to changes in ambient temperature and re-calibrates if required.
/L	Include serial number	/1	Returns logger serial number before each scan's data (/h mode only, see also /N)
/ M	Enable Messages	/M	Enables error and warning messages to be returned to host
/N	Include verbose ID	/N	Returns "dataTaker 80 " before serial number (/h/L mode only) Returns "Schedule " before schedule ID (/h/I mode only) Returns "Date " before scan date (/h/D mode only) Returns "Time " before schedule ID (/h/T mode only)
/R	Enable data Return	/R	Returns real-time data to the host computer.
/s	Synchronize to midnight	/S	Synchronizes all schedules' time intervals to midnight — for example, RA1H scans on the hour. See <i>Time Triggers</i> — <i>Synchronizing to Midnight (P55)</i> .
/T	Include Time	/t	Returns current time before each scan's data. (/h mode only, see also /N)
/υ	Include Units	/U	Appends measurement units to returned data (/h mode only) Separates data items by CRLF rather than P22 character (/h mode only) Makes error messages verbose
/W	Return Working channels	/w	Allows working channels (see w channel option (P44)) to be returned (for diagnostic purposes) but not logged.
/X	Progressive maxima and minima	/x	Displays the progressive maximum and minimum values for statistical channels on the built-in display only.
/ Z	Enable alarm messages	/ Z	Enables alarms to issue action text to host computer or printer.
//	Default switches	-	Sets all switches to their default state

Table 7: DT80 Switches

Profile Settings

The *DT80* **profile** is a group of named settings which control aspects of the logger's operation. Unlike parameters and switches, profile settings are "permanent", in that they are <u>not</u> cleared by a soft or hard reset (**INIT** and **HRESET** commands respectively, see *Resetting the DT80* (P271))

Structure

The *DT80*'s profile settings are divided into a number of **sections**, each of which deals with a particular area, e.g. host port, modem, Modbus server, etc. Each section is identified by name, e.g. "HOST PORT".

Each section then contains a number of **keys** (settings). Each key has a name (e.g. "BPS") and a value (e.g. "57600"). Depending on the key, the value may be a numeric, boolean (yes/no) or string value.

The value of any of the defined keys can be viewed of changed using the **PROFILE** command.

The PROFILE Command

The **PROFILE** command syntax is as follows:

Command	Description
PROFILE	return current settings for all profile keys
PROFILE section	return current settings for all profile keys in section
PROFILE section key	return current value of specified profile key
PROFILE section key=	set specified profile key to default value
PROFILE section=	set all keys in section to default value
PROFILE section key=keystring	set specified profile key to keystring. Enclose in quotes, i.e. "keystring" if
	the string contains spaces or control characters

Displaying Profile Settings

The following command will display all profile values in the **HOST_PORT** section:

```
PROFILE HOST_PORT
[HOST_PORT]

BPS = 57600

DATA_BITS = 8

STOP_BITS = 1

PARITY = NONE

*FLOW = HARDWARE

FUNCTION = COMMAND
```

When profile values are returned, an asterisk (*) before a key name indicates that the key has been changed from its factory default value. In the above example, to return the **FLOW** key to its default setting you would use:

```
PROFILE HOST PORT FLOW=
```

Setting Profile Keys

The following command will change the default host baud rate to 115200 bps:

```
PROFILE HOST_PORT BPS=115200
```

Profile setting changes generally take effect immediately. So in this case, if the active command port was the host RS232 port then all subsequent commands would need to be sent at 115200 bps.

The DT80 supports the following profile keys:

Section Name	Key Name	Legal Values	Factory Default	Comment
USER	SITE	string	ractory Delault	Site name to display on LCD instead of
		ourng		job name
HOST_PORT	BPS	300, 600, 1200,	57600	Serial parameters for Host RS-232 port
(not present on		2400, 4800, 9600,		See Configuring the Host RS-232 Port
DT8xM models)		19200, 38400,		(P197)
		57600, 115200		_
	DATA_BITS	7, 8	8	<u>_</u>
	STOP_BITS	1, 2	1	_
	PARITY	NONE, EVEN, ODD	NONE	<u>_</u>
	FLOW	HARDWARE,	SOFTWARE	
		SOFTWARE, NONE		
	FUNCTION	COMMAND, PPP,	COMMAND	Host port function: command/PPP
		SERIAL, MODBUS,		interface, PPP interface, serial channel or Modbus
		MODBUS_MASTER, DISABLE		or Modbus
SERSEN_PORT	BPS	300, 600, 1200,	1200	Serial parameters for Serial Sensor port
(not present on		2400, 4800, 9600,	1200	See Configuring the Serial Sensor Port
DT82E models)		19200, 38400,		(P201)
		57600		<u>_</u>
	DATA_BITS	7, 8	8	
	STOP_BITS	1, 2	1	
	PARITY	NONE, EVEN, ODD	NONE	_
	FLOW	HARDWARE,	NONE	_
		SOFTWARE, NONE		
	MODE	RS232, RS422,	RS232	_
		RS485		
	FUNCTION	COMMAND, PPP,	SERIAL	Serial sensor port function:
		SERIAL, MODBUS,		command/PPP interface, PPP interface,
		MODBUS_MASTER,		serial channel or Modbus
USB_PORT	FUNCTION	DISABLE	COMMAND	USB port function: command/PPP
(not present on	FUNCTION	COMMAND, PPP, SERIAL, MODBUS,	COMMAND	interface, PPP interface, serial channel
DT82E/82I models)		MODBUS_MASTER,		or Modbus
		DISABLE		See Configuring the USB Port (P188)
HOST_MODEM	EXT_POWER_SWITCH	NONE, 1RELAY,	NONE	Output channel used to control modem
(not present on		nDSO, PWR12V		power
DT8xM models)	DETECTION	DSR, ALWAYS,	DSR	Method used to detect whether modem
		NEVER, WHEN_ON		is present
	INIT	string	AT	String to send to initialise host port
				modem
	MAX_CD_IDLE	0-864000	43200	The number of seconds to wait while the
			(12 hours)	DCD signal is inactive before re-initialising the modem (0=disable).
MODEM	PIN	string		If SIM has a PIN set then it can be
(DT8xM models		diring		entered here.
only)	PIN_WAIT_S	0-86400	120	Max time to wait for user to enter PIN via
• /				keypad
	SERVICE (not DT8xM2)	AUTO, GSM 3G,	AUTO	Specifies the network types that the
		GSM_PREFERRED,		modem to which the DT80 should
		3G_PREFERRED		attempt to connect.
	GSM_BANDS	0-7	7	Specifies the GSM bands to use
				See Network Selection (P224)
	3G_BANDS (not DT8xM2)	1-511	19	Specifies the 3G bands to use
				See Network Selection (P224)
	REGISTRATION_WAIT_S	0-86400	60	Time allowed for modem to register on
	MIN_SIGNAL FOR_DATA_	-11351 (dBm)	0.2	mobile network If signal level is below this then a data
	DBM	-11351 (UDIII)	-93	connection will not be attempted and
				DT80 will attempt to find a better
				network.
	SMS_ONLY	YES, NO	NO	If YES then an Internet connection will
				not be established. SMS will be sent.
	APN	string	(*)	Access Point Name, as specified by
	ADM ACCOUNT	a tuin a	(*)	mobile carrier.
	APN_ACCOUNT	string	(*)	Account name if required, as specified by mobile carrier
	APN_PASSWORD	string	(*)	Account password if required, as
	III II_I ADDNORD	dinig	()	specified by mobile carrier
MODEM_SESSION	MIN_DURATION_S	0-86400	0	Minimum communications session
(DT8xM models				duration
only)	MAX_DURATION_S	0-86400	0	Maximum communications session
		· · · · · · · · · · · · · · · · · · ·	· ·	

Coation Name	Vay Name	Logal Values	Factory Default	Comment
Section Name	Key Name	Legal Values	Factory Default	duration (hard limit, 0=disable)
	MIN_IDLE_S	10-86400	120	End communications session if
	MIN_IDHE_5	10-00400	120	communications link has been idle for
				this time.
	RETRY_DELAY_S	10-86400	30	Delay between session retries
	TIMING_CONTROL	ALWAYS, CRON, OFF		Session will be maintained between
	TIMING_CONTROL	ALWAIS, CRON, OFF	OFF	start and stop time, or always
	START_CRON	cron-spec	0:0:12:*:*:*	If TIMING_CONTROL=CRON then this
	BIAKI_CKON	cron-spec	0.0.12	specifies session start time
	STOP_CRON	cron-spec	0:0:13:*:*:*	If TIMING_CONTROL=CRON then this
	DIOI_CRON	Cion-spec	0.0.13	specifies session end time
	NETWORK CHECK	DNS, PING, OFF	DNS	Method to use for checking network
	<u></u>	DNS, FING, OFF	DINO	connectivity.
	PING_SERVERS	string		If NETWORK_CHECK=PING then this
		oung		is a comma-separated list of ping
				servers
	SMTP_SERVER	string	(*)	Name of SMTP (email) server
	SMTP_ACCOUNT	string	(*)	SMTP account name, if required
	SMTP_PASSWORD	string	(*)	SMTP password, if required
	RETURN ADDRESS	string	your.logger@	Sender email address to use in email
		oung	datataker.com	from logger
	SENDER NAME	string		Sender name to use in email from logger
		oung		(if blank then logger model/serial used)
	DDNS ENABLE	YES, NO	NO	Enable Dynamic DNS client
	DDNS SERVER URI		members.dyndns.	DDNS server "address update" URI
	DDMS_SERVER_URI	string	members.dyndns. org/nic/update	DDING Server address update UKI
	DDNS SERVER PORT	0-65535	80	DDNS server port number
	DDNS_ACCOUNT		00	DDNS account name
		string		
	DDNS_PASSWORD	string		DDNS password
	DDNS_HOST_NAME	string		Configured logger domain name
	dian dinim	- total		associated with DDNS account
ETHERNET_	SMTP_SERVER	string		Name of SMTP (email) server
SESSION	SMTP_ACCOUNT	string		SMTP account name, if required
	SMTP_PASSWORD	string		SMTP password, if required
	RETURN_ADDRESS	string	your.logger@	Sender email address to use in email
			datataker.com	from logger
	SENDER_NAME	string		Sender name to use in email from logger
	DEEDLE DELLE C	10.06400	20	(if blank then logger model/serial used)
	RETRY_DELAY_S	10-86400	30	Delay between session retries
ETHERNET	ENABLE	YES, NO	YES	Enable Ethernet port
	IP_ADDRESS	n.n.n.n or AUTO	AUTO	IP address to assign to the DT80's
				Ethernet port
				AUTO = use DHCP to automatically set IP address, subnet mask, gateway and
				DNS servers.
	SUBNET MASK	n.n.n.n	255.255.255.0	Subnet mask for the network segment
			233.233.233.0	connected to the <i>DT80</i> 's Ethernet port.
				Ignored if IP_ADDRESS=AUTO.
	GATEWAY	n.n.n.n	0.0.0.0	IP address of the computer that acts as
				a gateway to other networks.
				Ignored if IP_ADDRESS=AUTO.
PPP	USER	string	DATATAKER	User name and password that a remote
	PASSWORD	string	DATATAKER	PPP client must supply in order to
		J		connect to the DT80 via PPP (not
				required for USB port)
FTP_SERVER	PORT	0-65535	21	TCP port number used by FTP server
				(0=disable)
	USER	string	DATATAKER	Username and password that an FTP
	PASSWORD	string	DATATAKER	client must supply in order to be granted
	ALLOW ANOTHERS		VDC	read/write access.
	ALLOW_ANONYMOUS	YES, NO	YES	If YES, read-only FTP access is
				permitted for anonymous users
				If NO, all FTP users must login using the configured username and password.
NETWORK	DNS_SERVER_1	nnnn	0.0.0.0	IP address of primary DNS server.
METHORK	DHO_DERVER_I	n.n.n.n	0.0.0.0	Ignored if IP_ADDRESS=AUTO.
	DNG GEDITED 2	n n n n	0 0 0 0	
	DNS_SERVER_2	n.n.n.n	0.0.0.0	IP address of secondary DNS server, to be used if primary server is unavailable.
				Ignored if IP_ADDRESS=AUTO.
COMMAND SERVER	PORT	0-65535	7700	TCP port number used by command
COMPAND_SERVER	1 OKI	0.03333	7700	interface (0=disable)
COMMAND SERVER	SESSION_TIMEOUT	0-65535	0	
JULIAND_DERVER		0 03333		If 0 the session never disconnects.
				Any value can be set in seconds and command server session will end after
				Command Server Session Will Chiu ailei

Section Name	Key Name	Legal Values	Factory Default	Comment
				inactivity for the specific period.
HTTP_SERVER	PORT	0-65535	80	TCP port number used by web server (0=disable)
HTTP_SERVER	ENABLE_WDG	YES,NO	YES	If YES, HTTP and socket monitor is enabled.(NO=disable)
MODBUS_SERVER	TCPIP_PORT	0-65535	502	TCP port number used by Modbus server (0=disable)
	SERSEN_ADDRESS	0-247	0	The DT80's slave address when using Modbus on the serial sensor port (0=disable)
	HOST_ADDRESS	0-247	0	The DT80's slave address when using Modbus on the host port. (0=disable)
	USB_ADDRESS	0-247	0	The DT80's slave address when using Modbus on the USB port. (0=disable)
NTP	BACKGROUND_ENABLE	YES, NO	NO	Periodically synchronise <i>DT80</i> system time to an NTP server
	SERVER	string	<pre>0.datataker. pool.ntp.org</pre>	NTP server address (numeric IP address or host name)
	BACKGROUND_PERIOD	time 30M-7D	3599S	Interval between NTP updates
	MAX_SLEW_CORRECTION	time 0-60s	3S	Max allowable time adjustment using "gradual" adjustment method
	MAX_JUMP_CORRECTION	time 0-24H	24H	Max allowable time adjustment using "time jump" method
	MIN_CORRECTION	time 0-24H	50T	Minimum time adjustment to apply
	SLEW_RATE	1-50	10	Percentage change to clock rate during gradual adjustment
	TIMEOUT	time 0-10s	2S	NTP request timeout
	BACKGROUND_WAKEUP_DE LAY	time 0-10M	3S	Delay following wakeup before first NTP request
LOCALE	TIME_ZONE	time -24H-24H	0S	Local time zone offset
STARTUP	RUN	CURRENT_JOB, NONE, jobname	CURRENT_JOB	Job to be automatically loaded following hard reset
	MAINTAIN_OUTPUTS	YES, NO	NO	Restore state of digital outputs 18DSO and 1RELAY following hard reset
UNLOAD	FTP_RETRIES	0-1000, INFINITE	INFINITE	Number of times to retry a failed FTP unload.
DISPLAY	AUTOSCROLL_INTERVAL	time 0-24H	0S	Auto scroll through channel screens on LCD at this rate (0=disable)
	AUTOSCROLL_DELAY	time 0-24H	30S	Suspend autoscroll for this time if key pressed
	AUTOACK_DELAY	time 0-24H	0S	Auto-acknowledge pop-up messages on LCD after this time (0=disable)
FUNCTION	Fn_LABEL	string		Label for LCD function key #n (n=1-10)
	Fn_COMMAND	string		Command string for LCD function key #n (n=1-10)
SWITCHES	A, B, C,Z	OFF, ON	varies with switch	Similarly for switches See Table 7: DT80 Switches (P261)
PARAMETERS	Pn	integer limits vary with parameter	varies with parameter	Sets the specified parameter to the specified value, and makes it the "default" value, i.e. the value to which it will be set on soft or hard reset. See Table 6: DT80 Parameters (P260).

Table 8: DT80 PROFILE Details

Command Server Timeout Profile

A command server timeout has been added while fixing the communication issues over TCPIP on poor network connection. The default value on the Command _Server SESSION_TIMEOUT is zero, which will never disconnect the connection. Any value can be set in seconds and command server session will end after inactivity for the specific period.

Values marked *time* in the table are specified in a similar way to schedule time intervals – that is, an integer followed by a unit letter (D, H, M, S or T for days, hours, minutes, seconds and milliseconds respectively).

Values marked cron-spec are a "cron" time/date specifier, as described in Trigger at Date/Time (P49).

In the default column, (*) indicates that a suitable default value will be set automatically, if possible, based on the mobile carrier that issued the SIM.

Examples

To set the *DT80*'s IP address for the Ethernet port:
PROFILE ETHERNET IP_ADDRESS=192.168.1.225

To set the default date format to North American style: PROFILE PARAMETERS P31=2

Note Special characters may be inserted into profile values using x or nnn notation, as described in ASCII-Decimal Tables (P394). This means that if the profile value requires an actual c character then it must be entered twice, e.g.

PROFILE FUNCTION F1_COMMAND="DIR B:\\JOBS

Remember also that if <u>DeTransfer</u> is used to send the above line then the backslashes must be doubled again, i.e. PROFILE FUNCTION F1_COMMAND="DIR B:\\\JOBS

Setting the System Time

The *DT80*'s real-time clock/calendar is based on a 24-hour clock that has a resolution of approximately 0.1ms. This is used to timestamp all logged data.

Time and date are maintained when the logger is switched off or reset. If the logger is switched off and the internal Memory-Backup battery (see *Internal Memory-Backup Battery*(P289)) is removed or discharged, then the date and time will be reset to 1989/01/01 00:00:00

D and T Channel Types

The DT80's time and date can be set using the T and D internal channel types (Time (P34)), e.g.:

```
T=13:05
Time 13:05:00.000
D=1/4/2006
Date 01/04/2006
```

The time and date must be specified in the current P39 and P31 formats.

The time can also be set to a CV value, where the CV value is the number of seconds since midnight. Similarly for the date, except the value is now the number of seconds since the base date (1/1/1989).

For example, to set the system time forward one hour you could use:

```
T(=1CV) 1CV(W)=1CV+3600 T=1CV
Time 15:59:23.460
Time 16:59:23.461
```

Note that only a single CV can be placed after the "=". Expressions are not supported.

DT Command

Alternatively, the **DT** command can be used to set both date and time. In this case the date/time is specified either in dataTaker ISO format or ISO8601 format and enclosed in square brackets, e.g.:

```
DT=[2006/04/01,13:05:00] or DT=[2006-04-01T13:05:00]
```

Time Zone

Depending on the application, you may choose to set the DT80's time to either:

- local time. In this case you may need to alter the time periodically to adjust for daylight saving time, if applicable.
- local standard time. The logger is still set to the local time zone, but no correction is made for daylight saving time.
- UTC (GMT) time. This may be appropriate if there are a number of *DT80*s (connected to the host computer via a wide area TCP/IP network, for example) which are in different time zones.

The *DT80* and the *dataTaker* host software currently do not provide any specific support for data collected in disparate time zones – it is therefore up to the user to manage this.

Note If the *DT80* system time is synchronised to an NTP server (see below), and the *DT80* time is set to local or local standard time, then the **TIME_ZONE** profile setting must be set correctly. If NTP is not used then this profile setting is not used.

Setting the Time in dEX

The *dEX* configuration builder can be used to set the *DT80* time manually, or synchronise it to the PC's time. Select the **Logger** menu, then **Set logger date & time**. This will display a dialog box showing the PC time and the logger time.

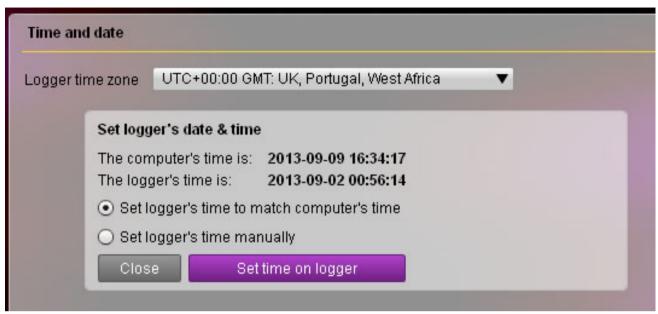


Figure 100: Time adjustment dialog in configuration builder

To correct the logger time so that it matches the PC time simply press the **Set logger's time to match computer's time** button. Alternatively, select the manual option to set the logger's time to a specific value. This will be required if the logger is set to a different time zone to the PC, for example.

Automatic Time Adjustment (NTP)

Network Time Protocol (NTP) allows devices on a TCP/IP network to synchronise their clock to an NTP server, which will in turn be linked to a very accurate time reference.

If your *DT80* has Internet access, or if you have access to an NTP server on your local network, then you can enable the *DT80*'s automatic time adjustment feature. The *DT80* will then periodically (by default, hourly) contact the NTP server and if necessary adjust its clock/calendar to match.

For small time adjustments (by default, up to 3 seconds) the *DT80* will <u>gradually</u> adjust its time by speeding up or slowing down its clock for a period of time. This avoids any sudden changes in time, and the time will never go backwards (which could have caused complications when you came to interpret the logged data). This process is also referred to as "slewing" the time.

For example, if the NTP server indicates that the *DT80* time is 1.2 seconds fast then the *DT80* clock will be slowed down by 10% (by default). After 13.2 seconds (12.0s as measured by the *DT80* clock) the required time adjustment of -1.2s will have been made and the clock rate will be set back to normal.

If a larger time adjustment is required, the "gradual" method is impractical and the *DT80* will do a "jump" adjustment, where the time will change instantaneously (forward or backward). A message is logged to the event log (see *Event Logs* (P274)) each time a time jump occurs (including manual time changes).

Using NTP

In order to use NTP, you first need to ensure that you have an accessible NTP server.

If the DT80 has access to the Internet then you can use the public NTP server at 0.datataker.pool.ntp.org.

Alternatively, a local NTP server may be available on the local area network to which the *DT80* is connected. If this is the case then you will need to find out the IP address or host name of the NTP server. Note that using a local server will normally result in better time accuracy, because it avoids the variable delays that may occur when making a request over the Internet.

Once you have determined the address of the NTP server that you wish to use, you can enable NTP updates by setting the following profiles:

```
PROFILE LOCALE TIME_ZONE=offset
PROFILE NTP SERVER=host address
PROFILE NTP BACKGROUND_ENABLE=YES
```

The timezone setting (offset) is the time difference between UTC (GMT) time and the logger's local time. For example, for Pacific Standard Time (UTC-8:00), use

```
PROFILE LOCALE TIME_ZONE=-8H
```

while for Australian Central Standard Time (UTC+9:30), use

PROFILE LOCALE TIME ZONE=570M

(9.5 hours = 570 minutes)

The NTP server address (host address) may be specified as a numeric IP address (e.g. 10.2.30.212) or as a host name (e.g. ntp3.petacorp.com). Using a host name requires that the DT80 have access to a working DNS (domain name system) server.

NTP Options

The above three profile settings are the minimum that need to be set in order to enable NTP updates. There are, however, a number of settings that may be adjusted to suit particular applications.

❖ Time Request Interval

By default, the *DT80* will perform a time request every 3599 seconds. Selecting a value of "not quite one hour" helps ensure that the *DT80*'s requests do not ever end up always occurring "on the hour". NTP servers tend to be busiest at this time and this can cause reduced time accuracy for requests made at these times.

The request interval can be changed to any value from 30 minutes to 7 days, using the following profile:

```
PROFILE NTP BACKGROUND PERIOD=time
```

where time is a time value such as 50M (50 minutes) or 97H (97 hours)

Correction Limits

When the *DT80* obtains a time value from the NTP server, it will do one of the following, based on the magnitude of the required time adjustment:

- do nothing (the DT80 time is already "close enough")
- begin a gradual time adjustment (speed up or slow down the DT80 clock rate until it reaches the correct time)
- immediately set the DT80 time to the NTP server value
- do nothing (the time difference is very great possibly the NTP server is faulty)

The following profiles set the thresholds between these behaviours:

- PROFILE NTP MIN_CORRECTION=time specifies the smallest time adjustment that will be applied. By default this
 is 50T, so if the DT80's time is within 50ms of the server time then nothing will be done.
- PROFILE NTP MAX_SLEW_CORRECTION=time specifies the largest adjustment that will be performed using the "gradual" adjustment method. By default this is 3 seconds (3S). Setting this larger will reduce the chance of time jumps in logged data, at the expense of possibly allowing larger time deviations from the true time.
- **PROFILE NTP MAX_JUMP_CORRECTION=** time specifies the largest adjustment that will be performed using the "jump" adjustment method. If the time difference is greater than this then the *DT80* will reject it and do nothing. By default this setting is 24 hours (24H). This value allows a logger that has changed time zone to receive its initial time update from NTP rather than having to be set manually. However you may wish to reduce this value in order to prevent the *DT80* clock being changed when the server time difference is unexpectedly large possibly due to a faulty server. Set to 0 to disable "jump" corrections altogether.

If all power to the *DT80* is lost, including the internal lithium battery, then the *DT80*'s clock will be reset to 1-Jan-1989. As a special case, therefore, if the *DT80* finds that its date is set to a value earlier than 2000 then it will apply any NTP update, even though the "max jump correction" limit is exceeded.

❖ Gradual Adjustment Rate

By default, during a gradual time adjustment the *DT80* clock will run 10% faster or slower. This rate can be adjusted between 1% and 50% using the following profile:

```
PROFILE NTP SLEW RATE=percent
```

Lower rates will give a more gradual time adjustment, which may be preferable if your data is being logged at a fast rate, at the expense of the adjustment process taking longer.

* Communications Timing

When the *DT80* sends a time request, it expects a timely reply. A late reply (e.g. due to network congestion) may be worse than no reply at all, given that the purpose of the message is to accurately set the *DT80* time. The default communications timeout for NTP is 2 seconds (25). This may be made shorter or longer using:

PROFILE NTP TIMEOUT=time

❖ Sleep Wakeup Timing

Each time the *DT80* wakes from sleep, it will attempt to perform an NTP time update. However, it can take a little time for the network to become operational following wake – for example a DHCP query may need to be done. By default therefore, the *DT80* will, after waking up, wait 3 seconds before attempting an NTP request. This may be adjusted up or down using the following profile:

PROFILE NTP BACKGROUND_WAKEUP_DELAY=time

Manually Triggered NTP Reguests

When background NTP requests are enabled in the profile, a request will be performed:

· at the configured time intervals

- following hard reset
- · following wake from sleep
- following any change to any of the NTP profile settings

An NTP request can also be triggered <u>manually</u>, regardless of whether or not background NTP updates are enabled. This is done using the <u>NTP</u> command. This command may then be included in a schedule, inside an <u>ALARM</u> or <u>DO</u> statement, which allows more control over the timing of NTP requests.

The NTP command will perform an immediate NTP request, using the settings defined in the profile (the BACKGROUND_ENABLE, BACKGROUND_PERIOD and BACKGROUND_WAKEUP_DELAY settings will be ignored) . For example:

```
NTP: Adjusting time (-254 ms)
NTP
NTP: No time change required
```

Checking NTP Status

System variable 26SV reports the status of the last NTP request, as follows

26SV	Meaning
0	No NTP requests have been performed
1	Gradual time adjustment in progress
2	Time adjustment completed successfully
-1	Could not resolve NTP server name
-2	NTP request failed: could not connect to server, or no response within timeout time
-3	Required time adjustment was not performed because it exceeded the
	MAX_SLEW_CORRECTION and MAX_JUMP_CORRECTION settings.
-4	NTP request failed due to an internal DT80 error
-5	Daily limit of 50 requests to 0.datataker.pool.ntp.org was exceeded

System variable 27SV returns the discrepancy between the *DT80*'s time and the NTP server, as at the last successful NTP request. If the NTP request resulted in the *DT80* clock being adjusted, 27SV holds the discrepancy <u>before</u> the correction was applied. For example, a value of -150 indicates that the logger time was 150ms ahead of the NTP server time. 27SV=0 if no NTP requests have been made.

Any request that results in a "time jump" adjustment will also be logged to the event log.

Resetting the DT80

The DT80 can be **reset** in the following ways:

- soft reset clears current job and resets parameters and switches
- hard reset restarts DT80 firmware
- safe mode reset (a.k.a. triple push reset) restarts DT80 firmware and runs using factory default settings.

Soft Reset

The **INIT** command performs a **soft reset**, which has the following effects:

- The message Initializing... is returned.
- The current job is cleared, i.e. all schedule and channel definitions are cleared.
- All span/polynomial definitions are cleared.
- All CVs are reset to 0.0.
- All parameters and switches are reset to their power-on default values, as specified in the associated profile settings.
- All digital outputs are reset to their default state.
- All counter channels are reset to 0.
- All Modbus definitions set using the **SETMODBUS** command are cleared.
- All serial port settings set using PH= and PS= revert to the settings specified in the profile.
- The modem dialout number set by **SETDIALOUTNUMBER** is cleared.
- A self-calibration is performed.

A soft reset is analogous to closing and restarting an application on a PC.

Hard Reset

A **hard reset** causes all *DT80* hardware to be physically reset, and the *DT80* firmware will be restarted. A hard reset may be caused by:

- the HRESET command
- pressing the manual reset button (by inserting a straightened paper clip into the small hole between the Ethernet and USB connectors)
- applying power following a complete loss of power (e.g. external power disconnected and the battery link is <u>not</u> in place, or the main battery is completely flat)
- applying power after the *DT80* entered forced sleep mode due to battery voltage dropping below power fail threshold.
- the *DT80* detecting a critical error such as a serious hardware fault, or an internal inconsistency in the firmware. In these situations a hard reset is forced in order to try to return the *DT80* to a stable operational state.

A hard reset is analogous to rebooting a PC.

A hard reset has the following effects:

- All TCP/IP (Ethernet or PPP) connections are terminated.
- USB connection is terminated if power was lost or the reset button was pressed.
- All communications and other settings are read from the profile and applied.
- All LEDs flash rapidly four times.
- If the reset was due to a power failure, manual reset button or critical error, then a message is displayed on the LCD
 (e.g. DT80 restarted / Power loss) and the Attn LED starts flashing.
- A sign-on message e.g. dataTaker 80 Version 8.00 is returned. (This can be disabled if required by switching off the messages flag in the startup profile, i.e. PROFILE SWITCHES M=OFF)
- A soft reset is performed, as described in the previous section.
- If the STARTUP / MAINTAIN_OUTPUTS profile is set to YES then all digital outputs are restored to the state they
 had prior to the reset.
- The job that was running prior to the reset is re-loaded, and becomes the current job. Alternatively, a particular job or
 no job at all may be loaded by setting the STARTUP / RUN profile.

Note A hard reset may take a few seconds to perform. You should refrain from sending further commands to the *DT80* during this time.

Safe Mode

If there is an error in the *DT80*'s profile settings or the job that is automatically loaded following hard reset then you may find that you are unable to communicate with the logger. For example – the startup profile specifies the wrong RS232 parameters (and you're not sure what they are), or the job specifies an immediate **1SERIAL** channel with a very long timeout (and the serial channel is not connected to anything).

Safe Mode provides a mechanism to regain control and fix the problem. To select safe mode you need to perform a "triple-push" reset:

- 1. Press the manual reset button
- 2. Wait approximately 3 seconds, then press the reset button again.
- 3. Wait approximately 3 seconds, then press the reset button a third time.
- 4. Verify that DT80 restarted / Safe mode is displayed on the LCD.

This will have the same effect as a hard reset, except that:

- all profile settings are ignored factory default settings are used (for example, the host port parameters will be set to 57600,8,N,1,SWFC)
- · no job is loaded
- · any queued unload or alarm messages will not be attempted

Note that the profile settings are not cleared – they are simply ignored for this session only. If you now do a normal hard reset they will once again be loaded.

Factory Settings

To restore the *DT80* to factory default settings, send the **FACTORYDEFAULTS** command, which will reset all profile settings to their factory defaults, then perform a hard reset.

Note that this command does not delete any files from the internal file system. The **DELALLJOBS** command may be used to remove all jobs and all logged data.

Diagnostic Commands

TEST Command

The **TEST** command causes the *DT80* to perform a self-calibration, then run a series of self tests. Test results that are out of range are flagged with a FAIL message.

This command can also be issued via the DT80 web interface (Series 2 only).

A typical test report is shown below.

```
TEST
```

```
TEST report generated at 2008/02/13,16:05:09
0 dataTaker 80 Version 7.02.0002 Flash 2007/12/21 17:09:56
29 Product:
                    DT80-2
                   080043
1 Serial Number:
2 VEXT
                         11.0
3 VBAT (6V)
                         6.74
                               V
                                    PASS
4 IBAT
                                    PASS
                         +13 mA
5 VSYS
                         6.71
                               V
                                    PASS
6 VLITH (3.6V)
                        3.68
                               V
                                    PASS
7 VDD (3.3V)
                        3.25
                               V
                                    PASS
                               V
8 VANA (3.8V)
                        3.65
                                   PASS
9 VRELAY (4.5V)
                              V
                        4.20
                                   PASS

      10 VREF (2.5V)
      2509.72 mV
      PASS

      11 Ics I
      0.21341 mA
      PASS

12 Ics II
                     2.5755 mA PASS
13 Vos diff
                        -0.2 uV PASS
14 Vos 3W I
24 Vos 3W II
                      345.7 uV PASS
                       -58.7 uV PASS
15 Vos shunt
                        -1.2 uV PASS
16 Vos +
                        2.4 uV PASS
17 Vos -
                         2.9 uV PASS
18 Vos *
                      -24.3 uV PASS
19 Vos #
                       57.6 uV PASS
25 Vos diff atten
26 Vos + atten
                       -0.3 uV PASS
26 Vos + atten
                       64.4 uV PASS
27 Vos - atten
                       67.7 uV PASS
28 Vos * atten
                        37.2 uV PASS
20 Term. factor 1.00470
21 Shunt (100R) 99.681
                                  PASS
                    99.681 Ohm PASS
22 CMRR
                       137.3 dB PASS
23 Overall health
                                    PASS
```

You can also request just one line of the report using **TEST***n*, where *n* is the line number (0-29, as indicated above). For example, the following will return the firmware version number: **TESTO**

```
dataTaker 80 Version 7.02.0002 Flash 2007/12/21 17:09:56
```

Some other useful test report parameters are described below:

- Product this indicates the product type and series, for example DT80-2 indicates a DT80 Series 2.
- Serial number this should match the number on the label affixed to the outside of the unit.
- VEXT the voltage at the external power input.
- VBAT internal battery terminal voltage.
- IBAT internal battery current: positive when battery is charging, negative when discharging.
- VLITH internal memory backup battery terminal voltage.

The other parameters listed in the test report are generally only useful to dataTaker service personnel. A description of these entries is beyond the scope of this manual.

Note that if the main or Lithium battery are absent then there will be FAIL lines in the output from the normal TEST command but this will not affect the overall pass/fail result.

* Power on Self Test

The TEST command is also run automatically, following a hard reset. If this test fails then Self test failed

is displayed on the LCD in conjunction with two flashing LEDs, and a message is output to comms port and event log. Press any key to clear the LCD message. You should then send a **TEST** command to see which particular test is failing.

If the power-on test passes there will be no indication (no report is generated).

Event Logs

To aid in troubleshooting, the DT80 automatically logs significant events into an event log, which is a text file **B:\EVENTS\EVENT.LOG**. These events include:

- any of the errors listed under Error Messages (P402)
- USB memory device inserted
- external power connected or disconnected
- system time changed
- low power forced sleep
- · communications errors
- logger reset
- · safe mode (triple push) reset
- self test failure
- logger not characterised warning
- user defined messages, using the LOG "string" command

The event log may help pinpoint the cause of any unexpected readings or failures, and will be used by dataTaker engineers if the *DT80* is returned for service.

In the event of an abnormal reset due to a firmware error, the *DT80* may store additional information in a companion file, the **error log** (B:\EVENTS\ERROR.LOG).

The contents of the event and error logs can be viewed using the **UEVTLOG** and **UERRLOG** commands.

They may also be viewed via the web interface.

The event and error logs can be cleared using the **CEVTLOG** and **CERRLOG** commands.

STATUS Command

The **STATUS** command returns a report showing the status of the *DT80*'s schedules, channels, alarms, memory and logging to the host computer. A typical report is shown below:

STATUS

```
dataTaker 80 Version 6.16.0002 Flash 2007/03/21 17:09:56
A B C,F Scan Schedules Active, Halted
4,0 Alarms/IFs Active, Halted
0 Polynomials/Spans Defined
A B C F, none Scan Schedules LOGON, LOGOFF
61650,1026 Internal kB free, used
0,0 External kB free, used
/C/d/E/f/h/I/K/1/M/N/r/S/t/U/w/x/Z
```

If the /u switch is set (don't display units) then the descriptive text on the end of each line is not returned.

As with the TEST command, lines in the status report can be returned individually, using STATUS n.

Command	Description
STATUS1	returns model name and firmware version (same as TEST0)
STATUS2	lists active schedules, and halted schedules
STATUS3	returns the number of alarms in active schedules, and the number in halted schedules
STATUS4	returns the number of polynomial/spans defined, and displays the definition of each
STATUS5	lists schedules with logging enabled, and schedules with logging disabled
STATUS6	returns total free space (kbytes) on internal file system, and total used space
STATUS7	returns total free space (kbytes) on inserted USB memory device, and total used space
STATUS9	returns current settings for all switches
STATUS10	returns internal details about the current job
STATUS14	an extended version of STATUS10

The STATUS14 command is somewhat special in that it can also be applied to a non-current job, i.e.: STATUS14 "jobname"

CHARAC Command

During manufacture, each *DT80* is **characterised** – that is, various operational parameters are measured and then programmed into the unit's flash memory. This process is designed to cancel out any variations between units due to component tolerances and such like.

The CHARAC command lists the various characterisation parameters. These will vary slightly from unit to unit.

If any of these parameters have not been set correctly then a warning message such as DT80 not characterised

will be displayed on the LCD. Contact dataTaker technical support if you see this message.

SERVICEDATA Command

The **SERVICEDATA** command automatically issues a number of diagnostic commands which together provide a comprehensive "snapshot" of the current state of the *DT80*. If you contact dataTaker support to resolve a problem with the logger you may be asked to run this command and then send the results to dataTaker for analysis.

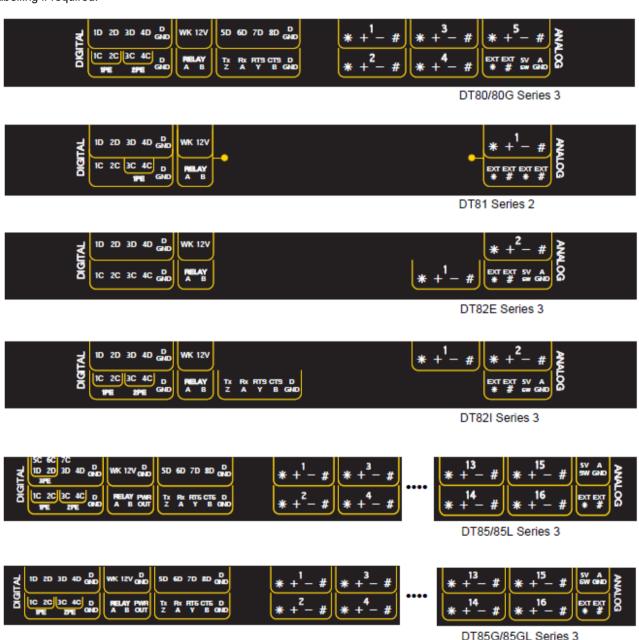
By default, this command will output its results to the current comms connection. Alternatively, it may be directed to a text file using: **SERVICEDATA** "filename". This file may then be retrieved from the logger using FTP or by using the **COPY** command to copy it to a USB memory device.

This command can also be issued via the DT80 web interface (Series 2 only).

A **SERVICEDATA** report includes:

- TEST command output
- CHARAC command output
- STATUS command output
- current parameter settings
- current profile settings
- event log
- error log
- current job program listing
- DIRJOB* command output (storefile status for all jobs)

- **DIRTREE** command output
- internal file system integrity check
- comms settings and statistics
- firmware thread status
- memory status
- TCP/IP communications status


Part N - Hardware & Power

Inputs and Outputs

Wiring Panel

The front face of the *DT80* is the sensor interface. Removable screw terminal blocks make it easy to connect and disconnect sensor wiring.

The terminals are labelled as shown below. Note that the label is removable, so it can be replaced with application specific labelling if required.

Note: for DT80/81 Series 1 units, DGND replaces 12V, EXT* replaces 5V SW, AGND replaces EXT# for DT80/82/85 Series 2 units, EXT* replaces 5V SW, EXT# replaces AGND

Figure 101 Standard terminal labels for DT80, DT81, DT82 and DT85

The sensor interface comprises:

- 1D 8D: Digital Input/Output Channels (P332)
- WK: Wake Terminal (P298)
- 12V: 12V power output (not DT80/81 Series 1) (P288)
- **DGND**: Digital Ground (P371)
- 1C 4C: High Speed Counter Inputs (P341), shared with Phase Encoder Inputs (1PE 2PE) (P344)
- 5C 7C: High Speed Counter Inputs, shared with Phase Encoder Input (3PE) (DT85/85L Series 3 only)
- **RELAY**: Relay Output (P335)
- **PWR OUT**: Unswitched external power output (DT85) (P288)
- Tx/Z Rx/A RTS/Y CTS/B: Serial Sensor Port (P199)
- 1 16 (* + #): Analog Input Channels (P299)
- **5V SW**: Isolated switched 5V output (Series 3) (P289)
- **AGND**: Analog Ground (P372)
- **EXT***: External Excitation Input (P21)
- EXT#: Switched Analog Ground (not DT80/81 Series 1) (P372)

Left Side Panel

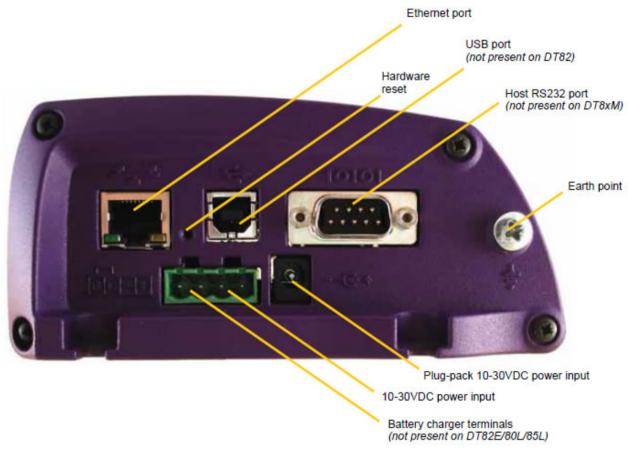


Figure 102 DT80 Left Side Panel

The *DT80*'s side panel provides communications and power interfaces. Some models use cast endplates (as shown in *Figure 96*) while some use plain sheet metal endplates. However the layout of the ports is the same. Interfaces on the side panel include:

- Ethernet Port (P208)
- USB Port (not present on DT82E/82I/82EM) (P188)
- RS232 Port (not present on DT82EM/80LM/85LM/85GLM) (P194)
- Hardware Reset Hole (P271)
- External 10-30VDC Input Terminals (P285)
- Battery Charger Terminals (not present on DT82E/82EM/80L/80LM/85L/85GL/85GLM) (P285)
- 10-30VDC Plug Pack Connector (P285)

A threaded hole is also provided as an earthing point. This is internally connected to DGND. On some models, this point also acts as a protective ground (indicated by the Earth symbol enclosed within a circle). See *Grounding* (P284) for more information

Right Side Panel (DT8xM only)

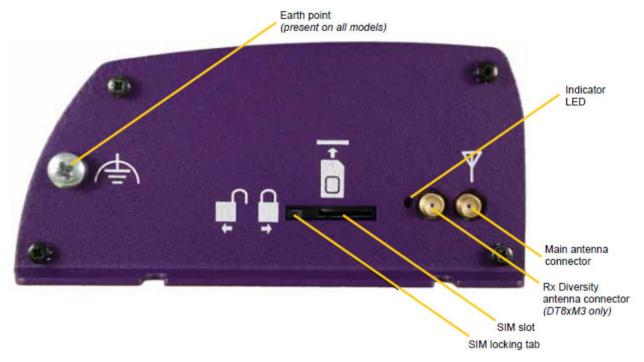


Figure 103 DT8xM Right Side Panel

DT80 models with integrated modem have modem related interfaces on the right side panel. From left to right:

- SIM card slot. Be sure to slide the locking tab into place after inserting the card.
- Indicator LED (red). On indicates that the modem is powered on, flashing indicates that the modem is connecting or connected to the mobile network
- **Diversity antenna** connector. This is a <u>receive-only</u> antenna connection, which can provide improved receive signal level when operating on a 3G network.
- **Main antenna** connector. The supplied external antenna cable should be connected here. To minimise interference, the actual antenna should be located <u>at least 500mm</u> away from the logger.

A threaded hole is also provided as a functional earth point. This is internally connected to DGND.

Front Panel

The top face of the *DT80* is the user interface – keypad, display, indicators and USB memory device slot. See *DT80 Front Panel* (P115)

Rear Panel (DT8xG only)

For DT80G/85G GeoLoggers, there is also a headphone jack on the rear panel, normally covered by a rubber grommet. This is used for checking the response of vibrating wire strain gauges. See *Listening to the Gauge*(P326)

Inside the DT80

Accessing the main battery (if fitted)

1. Remove the power connector

Remove the screws from the other end of the logger

3. Remove this end of the logger

4. Pull the purple 'battery tail'

5. Disconnect the battery terminals

Figure 104: How to remove the main battery

Warning When reconnecting the main battery, observe the correct polarity. The <u>red</u> plug connects to the <u>positive (+)</u> battery terminal.

Warning Any replacement battery must be identical in specification to the factory fitted battery. There is a risk of explosion if the battery is replaced by an incorrect type.

Warning Dispose of used batteries via an appropriate recycling facility only.

Warning When reinserting the main battery, ensure that the battery is oriented so that battery terminals are closest to the upper side of the battery. If the battery is inserted upside down then the terminals may contact the case, causing a risk of a short circuit.

Accessing the lithium memory backup battery

1. Remove the power connector (if fitted)

2. Remove all the terminal blocks

3. Terminal blocks removed

4. Remove the screws from the right hand end of the logger

5. Remove this end of the logger

6. Pull the purple 'battery tail' (models with internal battery only)

7. Disconnect the battery terminals (models with internal battery only)

 Remove screws on bottom of logger. DT80/81/82 models have two screws, DT85 models have three.

9. Remove the battery cage (models with internal battery only)

10. Carefully slide the circuit board bundle partially out of the case. Be careful of the flexible cable running between the top circuit board and the keypad. Do not completely remove the circuit boards from the case.

For models with integrated modem, remove the modem module from the logger case but leave its cables connected.

Note Before touching the circuit boards, discharge any static electricity that may be present on your body by touching a grounded metal surface or wearing an anti-static wrist strap.

11. Open the boards slightly so the lithium battery can be removed.

Figure 105: How to remove the lithium battery

Warning When installing the new lithium battery, observe the correct polarity, as marked on the printed circuit board.

Warning Any replacement battery must be identical in specification to the factory fitted battery. There is a risk of explosion if the battery is replaced by an incorrect type.

Warning Dispose of used batteries via an appropriate recycling facility only.

Warning When reconnecting the main battery (if fitted), observe the correct polarity. The <u>red</u> plug connects to the <u>positive</u> (<u>+</u>) battery terminal.

Warning When reinserting the main battery, ensure that the battery is oriented so that battery terminals are closest to the upper side of the battery. If the battery is inserted upside down then the terminals may contact the case, causing a risk of a short circuit.

Installation

Dimensions

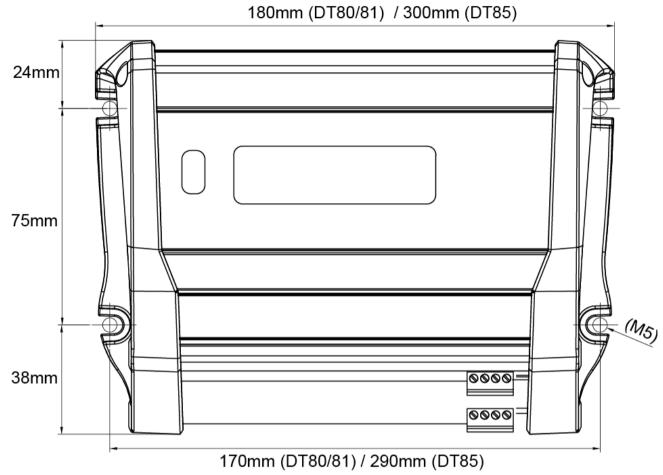


Figure 106: Mounting hole positions and overall dimensions

- DT80/81/82 overall dimensions (L x W x H): 180mm x 137mm x 65mm
- DT85 overall dimensions: 300mm x 137mm x 65mm
- CEM20 overall dimensions: 180mm x 100mm x 50mm. Note that CEM20 mounting hole centres are the same as for the DT80/81/82.
- Mounting screw size: M5
- Some clearance for communications/power cabling will be required on the left hand side of the unit, and at the front for sensor wiring. DT8xM models require access on the right hand side for the antenna connection.
- Logger should be oriented either in table top configuration (keypad/display facing up), or wall mounted (terminals facing down). Do not wall mount with terminals facing upwards.

Operating Environment

The *DT80* is an electronic instrument. Electronics and water in any form do not mix. Condensation can be a serious problem in the tropics, and in cooler areas where wide temperature variations are possible. Use a sealed case and include sachets of silica gel to avoid problems.

If the *DT80* gets wet, immediately disconnect and remove all power sources (including the main internal battery), and dry the *DT80* in a warm place. If the unit comes into contact with salt water, rinse it thoroughly in fresh water, then in distilled water, then dry it — salt must NOT be allowed to remain on the circuit boards.

The DT80 operates over a wide temperature range (-45° C to $+70^{\circ}$ C), but its accuracy can be reduced at extremes. Try to minimize the DT80's exposure to temperature extremes.

The capacity and service life of the lead acid battery in the logger will be significantly reduced if it is operated outside the range -15°C to +50°C. Furthermore, if the battery is subject to regular charge/discharge cycles then the recommended temperature range is +5°C to +35°C. When operating outside these ranges consideration must be given to an alternative power source for the logger.

The LCD display is typically only usable over a temperature range of 0°C to +50°C.

Grounding

Warning Correct grounding provides a safe discharge path for large electrical currents which may occur due to lightning or electrical faults. When installing the *DT80*, consideration must be given to proper grounding, particularly where sensor or antenna cabling is outdoors, and therefore potentially subject to lightning strike.

Figure 107: Protective earth connection

Some *DT80* models incorporate a **protective earth** connection. This is identified by the earth symbol enclosed in a circle, as shown in *Figure 101*. Any ground point that is <u>not</u> marked with this symbol is a **functional earth**, and is <u>not</u> suitable for a protective earth connection.

When installing a protective earth, note the following points:

- The earth connection must be made by a qualified electrician.
- The earth connector must be permanently connected to an earth ground as defined by the local wiring code.
- The protective earth cable and connector are not supplied with the logger. Use connector and cable with a minimum wire size of 14 AWG that are certified as appropriate for the country of installation.
- Ensure the earth terminal screw is tightened properly to prevent accidental loosening.

Note All sensor cables that may be subject to lightning must have a maximum current rating of no more than 5A.

Powering the DT80

Power Subsystem

The following block diagrams give an overview of the DT80's internal power subsystem.

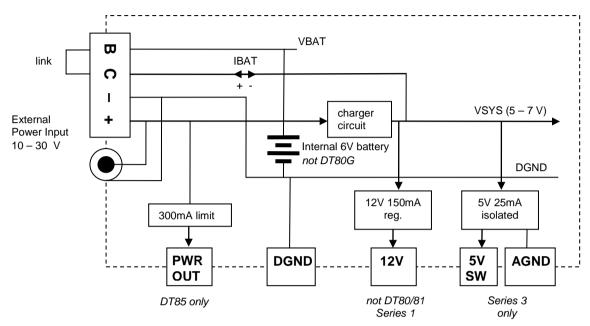


Figure 108: DT80/81/82I/85 internal power subsystem

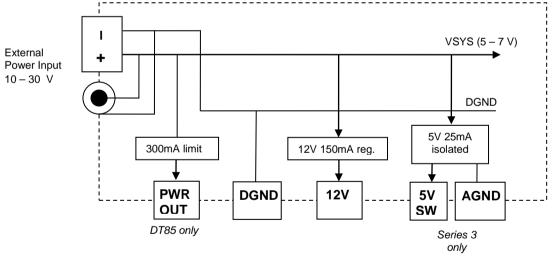


Figure 109: DT82E/80L/85L internal power subsystem

External Power

The DT80 is normally powered by an external 10-30V DC supply. This might, for example, be:

- a mains supply (e.g. using the supplied plug pack)
- a 12V or 24V solar charged external battery
- a 12V or 24V vehicle supply.

This external power supply may be connected in one of two ways, using either:

- the round plug pack power socket (inner pin is positive), or
- the rightmost two terminals (- and +) of the adjacent 4-way removable screw terminal power connector. This provides a more robust connection.

Internally these two connectors are wired in parallel, so you can for example power the unit via the plugpack and then draw power from the screw terminals for powering external relays or sensors.

Note <u>Switch mode</u> power supplies can introduce noise into analog readings and are therefore not normally recommended for powering the *DT80*.

Internal Power

not applicable to DT82E/80L/85L/85GL

If the external power supply is interrupted, the DT80 can run for a limited time on battery power.

Main battery

The DT80 and DT81/82I are fitted with an internal **6V 1.2Ah** sealed lead-acid gel-cell battery, while the DT85 uses a higher capacity **6V 4Ah** battery. It's known as the *DT80*'s "main" battery to distinguish it from the *DT80*'s other internal battery, the "memory-backup" battery.

Note The DT80G does <u>not</u> include an internal battery. It does, however, include the battery charger circuit so an external lead acid battery can easily be connected; see *Connecting a Larger Battery* (P286).

The main battery is completely maintenance-free and rechargeable, being automatically charged by the logger's inbuilt battery charger whenever an external power supply is connected to the *DT80*. If properly cared for (which essentially means keeping it charged), the battery should give several years' service.

Note The battery's life will be reduced if operated at temperatures exceeding 50°C.

If the main battery ever needs to be replaced, Inside the DT80 (P280) explains how to do so.

Connect the Battery Link

The DT80 is shipped with the main battery disconnected.

To connect the battery, all you need to do is plug the supplied 4-way terminal block into the power connector on the side of the *DT80*. The supplied terminal block includes a link which connects the **B** and **C** terminals on the power connector. This will connect up the internal battery to the *DT80* circuitry.

It is recommended that the battery link be left permanently attached to the *DT80* during operation. This guarantees uninterrupted data acquisition and logging because the internal main battery is always available to continue powering the data logger if the primary/external supply is accidentally disconnected or fails.

Main Battery Life

The length of time that the DT80 can operate using its internal battery depends on many things, such as:

- scan interval
- number and types of channels being scanned
- volume of RS232/USB/Ethernet communications
- power management settings (e.g. sleep mode timeouts)
- · sensor excitation requirements
- · condition of internal battery and ambient temperature

For the DT80/81/82I (1.2Ah internal battery), a new, fully charged battery will typically run the logger for between 3 and 3000 hours (4 months), depending on the above factors. The DT85's power consumption is similar to the DT80/81/82I, so its 4Ah battery can be expected to last 3-4 times longer.

The scan interval is the main determinant of battery life. For a continuous schedule with some analog channels, the battery life would typically be about 3 hours; for a 5 second schedule it would be about 24 hours; while for sample intervals of 1 hour or greater the battery would typically last for up to 4 months.

In order to properly estimate the expected battery life, it is necessary to calculate the *DT80*'s average power consumption for the particular application. This is discussed further in *Power Consumption* (P290).

Connecting a Larger Battery

To extend the time that the *DT80* can run whilst on battery power, a larger capacity battery can be connected externally. (This is also applicable for the DT80G, which does not include an internal battery.) There are two main options, which are discussed below.

1. External Battery Charged by Logger

An external **6V lead acid** battery (max capacity **4Ah**) may be connected between the **C** and – terminals. This will connect the battery to the output of the *DT80*'s charging circuit. An external power supply should then be connected to the **+** and – terminals (or DC power socket).

Note To prevent excessive current flows between the batteries, the internal battery should always be <u>disconnected</u> from the charging circuit when an external 6V battery is used. This can be achieved either by:

• not connecting the battery link between the B and C terminals (Figure 104), or

• connecting the link between the **B** and **C** terminals but <u>disconnecting</u> the internal battery connector (*Figure 105*). If desired the internal battery can then be removed altogether. This is the preferred option because then the **VBAT** channel type can be used to monitor the state of the external battery; see *Monitoring DT80 Power* (P290).

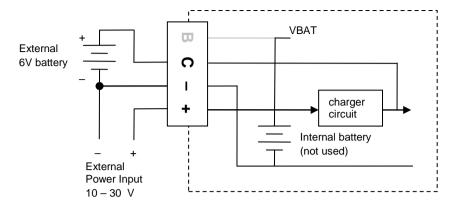


Figure 110: Connecting an external 6V battery - battery link removed

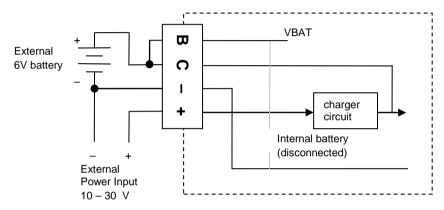


Figure 111: Connecting an external 6V battery - internal battery disconnected or removed

Note that larger capacity batteries will take longer to charge.

Note also that this configuration is not useful for a DT85 because it already includes a 4Ah internal battery.

Note The *DT80*'s charging circuit includes temperature compensation. For this to be effective, the external battery and the *DT80* must be at a similar ambient temperature.

* 2. External Battery with External Charger

In this case an external **6V** battery (any type and capacity) is again connected to the **C** and – terminals. However this time an external power supply is <u>not</u> connected. The battery is therefore the primary power source for the logger.

As with Option 1, the internal battery must be <u>disconnected</u>, either by not connecting the battery link or by unplugging the internal battery connector (the latter scenario is shown in the diagram below).

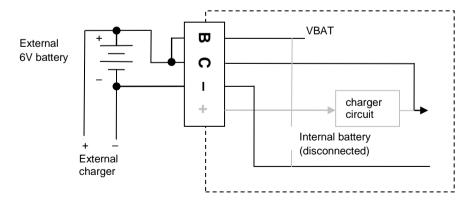


Figure 112: Connecting an externally charged 6V battery – internal battery disconnected or removed

In most cases, an external 12/24V battery system connected to the logger's external power input is preferable to an externally charged 6V battery. This is because it allows the internal battery to act as an Uninterruptible Power Supply (UPS) and keep the logger running if the external supply is temporarily interrupted. Also, the **PWR OUT** (DT80 Series 2 and DT85 only) power output will not be available when running from 6V.

The 6V option is, however, the most power-efficient way to run the logger. See *Power Consumption* (P290) for more details. It can therefore be useful in emergency situations where normal power is not available. In these cases the logger could be powered for a limited time by connecting 4 x 1.5V alkaline cells, for example.

Storage

If the DT80 is not to be used for a period of time, consideration needs to be given to the health of its internal battery.

Important Avoid storing the internal battery in a discharged state. If a gel-cell battery remains flat for any length of time, its capacity and service life will be significantly reduced.

Before placing a *DT80* into storage, you should therefore ensure that the main battery is fully charged (at least eight hours charge time). The battery link should then be disconnected.

Other Considerations

The main battery is a "sealed" type; however it does contain a regulator valve on its top face near the terminals. This has the following implications:

- Ventilation must be provided to allow any battery gases to escape. If the *DT80* is mounted in a sealed enclosure then a valve should be provided to prevent gas build-up.
- When operating at high temperatures, acid may seep from the regulator valve if it is facing downward. The internal
 battery's terminals face the rear panel of the *DT80*. The logger should therefore be oriented either in table top
 configuration (keypad/display facing up), or wall mounted (input terminals facing down). It should not be wall mounted
 upside down (input terminals facing upwards) because then the battery terminals and regulator valve would face
 downward.

Power Outputs

As shown in Figure 102, the DT80 provides various general purpose power outputs.

Standard Outputs

For the following power outputs the return terminal is **DGND**.

- The **PWR OUT** terminal (DT85 only) provides a current limited power output derived from the external power input. The output voltage will be 1-2V below that of the external power input. If you attempt to draw more than the rated maximum current then the voltage output will drop.
- The 12V terminal (not DT80/81 Series 1) provides a switched regulated 12V output (max 150mA). Unlike PWR OUT, this power is available even if the logger is running on battery power.

These power outputs may be used to power such devices as:

- CEM20 channel expansion modules (see The CEM20 (P377))
- relays (see DO1 Driving a Relay (P337))
- SDI-12 sensor networks (see SDI-12 Channel (P346))
- modems (see also Powering the DT80's Modem (P205))
- application-specific digital interfaces

Note The plug pack supplied with the *DT80* is rated at 15V 800mA (12W). However this may be insufficient for a DT85 with fully loaded power outputs and a flat internal battery, in which case a higher capacity power supply may be required. See *Power Consumption* (P290) for more details.

Isolated Output

The Series 3 models also provide an isolated switched 5V output, **5V SW**. The return terminal for this power output is **AGND**. This output is typically used for powering analog sensors. Maximum output current is 25mA.

Controlling 12V Power Output

The switched 12V output may be controlled in three different ways:

- It may be switched on or off manually using the PWR12V (or 1SSPWR) channel type. Use PWR12V=1 to switch on the 12V output, or PWR12V=0 to switch it off.
- It may be switched on automatically prior to execution of a schedule containing CEM20 channels. (As noted in *Powering the CEM20 (p379)*, any connected CEM20 units are normally powered using the 12V output.)
- It may be switched on or off automatically if the *DT80* is configured to power a modem using this power output, as described in *Powering the DT80's Modem* (P205).

Parameter P28 is used to control the behaviour of the 12V output.

P28	Description	Scenarios
P28=0 default	Auto CEM20 power control: <i>DT80</i> ensures that 12V is switched on prior to execution of a schedule that contains CEM20 channels. 12V will be switched off at the end of the schedule (unless there is another schedule due which requires it)	12V output is used to power CEM20s
P28=1	12V output is switched on all of the time	 12V output is used to power other equipment 12V output is used to power CEM20s and you wish to avoid the 50ms warm up delay which occurs each time the 12V output is switched on
P28=2	12V output is switched on all of the time, even when asleep	• 12V output is used to power other equipment which needs to remain powered even if <i>DT80</i> is asleep (e.g. a dial-in modem)
P28=3	12V output is not changed	 12V output to be controlled explicitly, using PWR12V= CEM20s are assumed to be independently powered

The current state of the 12V output can be gueried at any time sending PWR12V.

Controlling 5V Power Output

Use PWR5V=1 to switch on the isolated 5V power output, and PWR5V=0 to switch it off.

Note The 5V output is derived from the analog power supply, so it will only be on if the analog section is powered. By default, the *DT80* analog section is only powered while a measurement is being taken. If you require the 5V output to be on continuously then it is necessary to set P21=1 so that the analog section is continuously powered. See *Analog Measurement System* (P296) for more details.

Internal Memory-Backup Battery

In addition to the internal main battery, the DT80 contains a small lithium "memory-backup" battery.

The memory-backup battery maintains the *DT80*'s clock/calendar and certain memory settings. (Note that the *DT80*'s internal file system, which stores programs and logged data, uses non-volatile flash memory. This does <u>not</u> depend on the memory-backup battery.)

Replacing the Battery

Under normal operation the memory-backup battery should last approximately five years, or approximately one year if there is no other power to the *DT80* (i.e. both external power and the main battery are disconnected).

See *Inside the DT80* (P280) for details on how to remove and replace the internal memory-backup battery. The memory-backup battery is a ½AA size 3.6V lithium type (for example, SAFT LS 14250). It's important that 3.6V and not 3.0V types be used (both types are the same physical size).

Storage

If the *DT80* is to be placed in long term storage, it is recommended that the memory-backup battery be removed, to keep it from discharging. When disconnected, the battery has a 10-year shelf life.

Monitoring DT80 Power

The *DT80* provides a number of internal channel types for monitoring the various power systems. These can be queried at any time or used in alarms, like any other channel type.

The following channel types are available:

Channel Type	Units	Description
VEXT	V	External power supply voltage
VBAT	V	Main battery terminal voltage (5.6V or lower indicates that internal battery is flat)
IBAT	mA	Instantaneous main battery current – positive if charging, negative if discharging
VLITH	V	Memory-backup battery voltage

Note that **VEXT** will read about 1V under the actual input voltage, due to a series diode.

Power Consumption

The *DT80* incorporates a number of power management features which aim to minimise the overall power consumption. This section discusses how to estimate the average power consumption of the *DT80* in a given application, and gives some guidelines on how to configure the *DT80* for minimum power usage.

Power Consumption

Power States

At any point in time the DT80 is in one of three power states:

- **Active** the *DT80*'s microprocessor is running at full speed, actively performing a computation. Power usage is highest when in this state.
- Idle processor is idle; running at reduced speed and waiting for something to happen. The *DT80* automatically and instantly switches between idle and active mode as required. Power usage is reduced by about 70% in this state.
- Sleep processor and most other hardware is powered down. The DT80 will automatically "wake up" when certain
 events occur (see Sleep Mode (P297)), a process which typically takes about 800 ms. Power usage is lowest in this
 state as low as 2mW when running from the internal battery.

Power Source

The DT80 uses the least amount of power when it is running from the internal battery.

When external power is connected, there will be some losses in the *DT80*'s internal power supply and battery charger, so the overall power consumption will be higher. These losses will increase as the external voltage increases.

The following table gives an indication of how the typical instantaneous power consumption varies according to the power source (internal/external) and supply voltage:

Power state	DT80 Battery power (6V)	DT80 External power (12V)	DT80 External power (24V)	DT82E/80L/85L External Power (12V)	DT82E/80L/85L External Power (24V)
Active	1200 mW	1800 mW	2200 mW	1300 mW	1400 mW
Idle	300 mW	500 mW	700 mW	350 mW	400 mW
Sleep	2 mW	60 mW	250 mW	10 mW	20 mW

Table 9: DT80 and DT82E/80L/85L core hardware instantaneous power consumption

Notice that the power consumption for the low power models (those with 'E' or 'L' in the model name) is significantly less. This is partly due to the fact that these models do not have an internal battery charger, which will consume some power even if no battery is connected.

Note that the power consumption values listed above are for the core hardware only, and do not include power used by other hardware modules (within the *DT80*) which may or may not be enabled, depending on the application. These modules are described in the following section.

Hardware Modules

The following hardware modules will consume additional power whilst they are enabled:

- analog measurement subsystem
- Ethernet Interface
- integrated modem (DT8xM only)
- LCD backlight (not DT81)
- battery charger (DT80/81/82I/85/85G only)
- 12V regulated power output (not DT80/81 Series 1)

• **5V SW** regulated power output (Series 3 only)

The actual power consumption of each of these will be discussed further below.

Calculating Average Power Consumption

The DT80's average power consumption will depend on:

- the amount of time that is spent in each power state (active, idle and sleep), which mainly depends on the schedule sample rate and the number and type of channels being measured
- the number of <u>analog</u> channels being measured (sampling an analog channel will cause the analog measurement subsystem to be enabled for the duration of the measurement)
- which other hardware modules are enabled
- · whether logging is enabled

❖ Step 1 – Core Hardware

The first step is to determine the average power consumption of the *DT80* core hardware – that is, excluding "non-core" hardware modules such as Ethernet or the battery charger.

Each of the following tables lists the typical power consumption of the *DT80* core hardware for various sample rates (a single time based schedule is assumed) and various numbers of analog channels (0, 5, 30 and 300). It is assumed that logging is enabled (**LOGON**), real-time data returns are disabled (**/r**), and sleep is enabled (see *Sleep Mode* (**P297**)).

The first table indicates the average power consumption when running from the internal 6V battery, the second is for when an external 12V supply is used and the third is for an external 24V supply.

Scan rate	0 analog channels	5 analog channels	30 analog channels	300 analog channels
continuous	1200 mW	1550 mW	1520 mW	1520 mW
1 sec	320 mW	610 mW	1520 mW	1520 mW
5 sec	170 mW	250 mW	510 mW	1520 mW
10 sec	90 mW	120 mW	260 mW	1520 mW
1 min	16 mW	20 mW	45 mW	280 mW
10 min	4 mW	4 mW	6 mW	30 mW
1 hour	3 mW	3 mW	3 mW	7 mW
10 hour and above	2 mW	2 mW	2 mW	2 mW

Table 10: DT80/81/82I/85/85G core hardware average power consumption (internal battery power)

Scan rate	0 analog channels	5 analog channels	30 analog channels	300 analog channels
continuous	1800 mW	2300 mW	2260 mW	2260 mW
1 sec	520 mW	950 mW	2260 mW	2260 mW
5 sec	310 mW	420 mW	800 mW	2260 mW
10 sec	190 mW	240 mW	430 mW	2260 mW
1 min	85 mW	90 mW	120 mW	470 mW
10 min	62 mW	63 mW	65 mW	100 mW
1 hour	61 mW	61 mW	61 mW	67 mW
10 hour and above	60 mW	60 mW	60 mW	60 mW

Table 11: DT80/81/82I/85/85G core hardware average power consumption (external 12V power)

Scan rate	0 analog channels	5 analog channels	30 analog channels	300 analog channels
continuous	2200 mW	2800 mW	2760 mW	2760 mW
1 sec	730 mW	1250 mW	2760 mW	2760 mW
5 sec	530 mW	650 mW	1080 mW	2760 mW
10 sec	390 mW	450 mW	670 mW	2760 mW
1 min	275 mW	290 mW	320 mW	720 mW
10 min	253 mW	253 mW	255 mW	300 mW
1 hour	250 mW	250 mW	250 mW	255 mW
10 hour and above	250 mW	250 mW	250 mW	250 mW

Table 12: DT80/81/82I/85/85G core hardware average power consumption (external 24V power)

The following tables show the equivalent data for the "low power" DT80 models

Scan rate	0 analog channels	5 analog channels	30 analog channels	300 analog channels
continuous	1300 mW	2020 mW	2000 mW	2000 mW
1 sec	370 mW	720 mW	2000 mW	2000 mW
5 sec	200 mW	280 mW	630 mW	2000 mW
10 sec	100 mW	150 mW	320 mW	2000 mW
1 min	25 mW	35 mW	65 mW	380 mW
10 min	12 mW	12 mW	15 mW	50 mW
1 hour	10 mW	10 mW	11 mW	17 mW
10 hour and above	10 mW	10 mW	10 mW	10 mW

Table 13: DT82E/80L/80GL/85GL core hardware average power consumption (external 12V power)

Scan rate	0 analog channels	5 analog channels	30 analog channels	300 analog channels
continuous	1400 mW	2300 mW	2300 mW	2300 mW
1 sec	420 mW	820 mW	2300 mW	2300 mW
5 sec	220 mW	320 mW	720 mW	2300 mW
10 sec	120 mW	170 mW	370 mW	2300 mW
1 min	35 mW	45 mW	80 mW	440 mW
10 min	21 mW	22 mW	26 mW	65 mW
1 hour	20 mW	20 mW	21 mW	27 mW
10 hour and above	20 mW	20 mW	20 mW	20 mW

Table 14: DT82E/80L/80GL/85GL core hardware average power consumption (external 24V power)

Note that:

- At slow scan rates the logger spends nearly all of its time asleep, so the average power consumption is determined solely by the core hardware's sleep mode power consumption, which is fixed.
- If sleep is disabled, then for slow scan rates the core hardware power consumption will approach the "idle" power state value (300/500/700 mW for 6/12/24 V supply, or 350/400mW for 12/24V supply for low power models)
- For a continuous schedule, the "30 analog channels" case actually uses slightly <u>less</u> power than the "5 analog channels" case. This is because a greater proportion of the time is spent with the processor idle, waiting for the analog sampling to complete.
- These tables assume that the schedule contains only analog channels. Digital channels can usually be disregarded, but if there are a significant number of calculations being done then the average power consumption will increase. If any very time consuming operations are performed (e.g. reading SDI-12 sensors) then these tables are no longer applicable. Refer to *Example 3* (P294) for more information.
- A measurement made using a CEM20 channel takes approximately twice as long as a DT80 channel. Thus if 15
 CEM20 channels are sampled, you should use the values in the "30 analog channels" column above. See Example 4
 (P294).

For example, if 10 analog channels are being sampled once per minute then interpolating from *Table 11* the core hardware will draw an average of approximately 100 mW from a 12V external supply (although from *Table 9* the peak demand may be up to 1800 mW).

❖ Step 2 – Other Hardware

The following table specifies the typical additional power required by each of the DT80's "non-core" hardware modules:

Module	Powered during sleep	Battery power (6V)	DT80/81/82I/85/85G External power (12/24V)	DT82E/80L/80GL/85L/85GL External power (12/24V)
Ethernet	no	300 mW	500 mW	400 mW
LCD Backlight	no	450 mW	600 mW	350 mW
Analog Subsystem (see note below)	no	650 mW	1000 mW	650 mW
12V Power Output	no (yes if P28=2)	400 mW	550 mW	350 mW
CEM20 active	no (yes if P28=2)	350 mW	350 mW	350 mW
12V Load (max 150 mA)	no (yes if P28=2)	up to 1800 mW	up to 1800 mW	up to 1800 mW
PWR OUT Load (max 300 mA)	yes	-	up to 3600 mW	up to 3600 mW
Battery charge current (max 600 mA)	yes	-	up to 3600 mW	-
DT8xM3 modem idle	no	-	-	1600 mW (3G)
				1200 mW (GSM)
DT8xM3 modem sending	no	-	-	2500 mW (3G)
				1900 mW (GSM)
DT8xM2 modem idle	no	-	-	400 mW (GSM)
DT8xM2 modem sending	no	-	-	700 mW (GSM)
				· '

Table 15: Power consumption for DT80 hardware modules

Note that:

- The Ethernet interface is enabled by default, and will consume close to the indicated power even if there is no Ethernet cable connected. To save this power it is necessary to explicitly disable the port using **PROFILE ETHERNET**ENABLE=NO or **PROFILE ETHERNET IP ADDRESS=0.0.0.0.**
- The LCD module itself consumes negligible power, but the backlight's power usage is significant. By default, the backlight will switch off 30 seconds after the last key press.
- The Analog Subsystem figures represent the power used while performing an analog measurement. This power does not need to be added when calculating average power consumption, as it has already been incorporated into the Core Hardware calculation. It is included here to assist in calculating the peak power demand.
- The figure quoted for the 12V Power Output is the "no load" consumption which will be present whenever the power output is enabled (PWR12V=1, or during a CEM20 measurement). The additional power drawn by an external device connected to the 12V output is shown separately.
- The quoted CEM20 power consumption is for when it is actively in use i.e. its relays are enabled. Only one CEM20 will be active at any one time. CEM20s which are powered but idle draw minimal power (10mW).
- The battery charge current will be close to zero once the battery is fully charged; for a flat battery it will be up to 600 mA (3600 mW).
- For integrated modem models, the modem draws zero power when it is not in use. The "idle" power is applicable during the network registration process (typically 60s) and while the modem is online but not actively sending data.
- For integrated modem models, the indicated power values are <u>average</u> values. Peak power usage can be up to 3500mW for the DT8xM3 and 1700mW for the DT8xM2.

For hardware modules which are powered during sleep mode (e.g. **PWR OUT** output), their power consumption can be simply added to the core hardware average power consumption calculated above.

For modules which are <u>not</u> powered during sleep mode (e.g. **12V** output) it is necessary to scale their power usage according to the percentage of time that the logger spends awake, which can be estimated from the following table:

Scan rate	0 analog channels	5 analog channels	30 analog channels	300 analog channels
2 sec and below	100%	100%	100%	100%
3 sec	24%	34%	100%	100%
5 sec	15%	20%	38%	100%
10 sec	7%	10%	19%	100%
1 min	1.2%	1.7%	3.2%	19%
10 min	0.1%	0.2%	0.3%	1.9%
1 hour	0.02%	0.03%	0.05%	0.3%
10 hour and above	0%	0%	0%	0.03%

Table 16: Approx. percentage of time spent awake

❖ Example 1

A DT85 is powered by an external 12V supply, is running a 10 second schedule with 5 analog channels, and the **12V** power output is enabled with a 200mW load connected. The Ethernet port is disabled.

Using *Table 11*, the average power consumption for the core hardware is 420mW. We now need to add the power used by the **12V** power output (550+200 = 750mW, from *Table 15*). But from *Table 16*, the logger spends only 10% of its time awake, so this hardware module will, on average, contribute $750 \times 10\% = 75$ mW. The overall average power consumption is therefore 420 + 75 = 495mW.

* Example 2

A remote monitoring station consists of a DT80L measuring and logging 10 analog channels and 5 digital channels every 5 minutes. It is powered by a 12V solar-charged battery. The Ethernet port is disabled.

Using *Table 13*, we need to interpolate between the 5 and 30 analog channel columns, and between the 1 and 10 minute schedule rate rows. So we estimate <u>16 mW</u> average power usage for a 5 minute schedule. Note that we can disregard the digital channel measurements as the power usage will be negligible compared to the analog channels. We also assume that Ethernet and the LCD backlight will be disabled, so there is no extra power usage there.

The solar panel and external battery can now be sized based on these calculated power requirements (16 mW average).

The power system (i.e. the external battery) will also need to be able to handle the <u>peak</u> power demand, which can be calculated by adding up the worst case instantaneous consumption figures: 1300mW (core hardware, active power state) + analog subsystem (650 mW). This works out to around 2W, or 200 mA @ 12V.

❖ Example 3

A DT85 is powered by an external 12V supply and is set up to poll a network of SDI-12 sensors every 5 minutes. It takes a total of 30 seconds to power up and read all of the sensors. The SDI-12 network is powered by the DT85's switched **12V** output, and draws a total of 800 mW. The Ethernet port is disabled.

In this case we cannot just look up the average power consumption for a 5 minute schedule with zero analog channels, because the long SDI-12 measurement will keep the logger awake for much longer.

Instead, we need to estimate how long the logger is spending in each of its power states. In this case:

- allow 2 seconds for the logger to wake up and do the actual SDI-12 communications, logging, etc. (active power state)
- allow 30 seconds of doing nothing waiting for the sensors to return values (idle power state)
- and sleep for the remaining 4 minutes and 28 seconds (268 seconds) (sleep power state).

The power consumption for each power state is listed in *Table 9* – 1800, 500 and 60 mW for the active, idle and sleep states respectively.

We also need to allow for the power drawn from the **12V** output terminal by the SDI-12 network, which will be 550 mW for the power supply plus 800 mW for the load (1350 mW total). This power output will be active for 32 seconds.

So if we average the power consumption over the 5 minute (300 second) schedule interval:

Ave Power = (1800+1350)mW x 2/300 + (500+1350)mW x 30/300 + 60mW x 268/300 = 260 mW

❖ Example 4

80 thermocouples are connected to two CEM20 modules controlled by a DT80, and are measured once a minute. The CEM20s are powered by the *DT80*'s **12V** output. The Ethernet port is disabled.

CEM20 measurements take about twice as long as regular measurements, so this system is roughly equivalent to sampling 160 analog channels. Using *Table 11*, we estimate the average core hardware power drawn from an external 12V supply to be 300mW.

We now need to add the power used by the 12V output and the CEM20s, which will be 550+350 = 900mW, from *Table 15*). From *Table 16*, we estimate that the logger spends about 10% of its time awake, so the CEM20s will, on average, contribute $900 \times 10\% = 90$ mW. The overall average power consumption is therefore approximately 300 + 90 = 390mW.

❖ Example 5

A DT82EM3 powered by a 12V supply is set up to sample 2 analog channels every 10 seconds and transmit the resulting data daily at 9am via modem to an FTP server. Ethernet is disabled. The modem is configured to stay online for a minimum of 10 minutes during this process to allow the user to connect via *dEX* in case any maintenance is required. In this example the modem is in an area with 3G network coverage.

Using Table 13, we estimate the average core power consumption to be 120mW.

Based on the rule of thumb of 10 bytes per sample plus 10 per schedule iteration, a total of $24 \times 60 \times 6 \times (10 + 2 \times 10) = 260$ kbytes of data. If the 3G data rate is, say, 15kbyte/s then the data will take about 17 seconds to transfer, which is fairly negligible compared to the modem startup and network registration time (60s) plus the configured minimum session time (10 minutes).

So assuming that each day the modem spends 640 seconds idle and 20s actively sending then the additional daily power use for the modem is, from *Table 15*, $640 \times 1600 + 20 \times 2500 = 1074000$ mW.s, so the increase in overall average power would be 1074000 / (24x60x60) = 13 mW

Note also that the logger is now spending an extra 680s awake each day, so you need to add this additional power. Assuming that the logger is predominately in the idle state (350 mW) during this time the average extra power is $680 \times 350 / (24 \times 60 \times 60) = 3 \text{ mW}$

The total average power use would therefore be about 136 mW. However some additional margin would need to be added to allow for communications retries and time spent online using *dEX*.

Note that <u>peak</u> power consumption could be much higher: 1300mW (core hardware, active power state) + 650mW (analog subsystem) + 3500mW (modem), makes a total of about 5500mW (450mA @ 12V). It is necessary to ensure that the external battery can deliver this current for a short period while maintaining its output voltage.

❖ Example 6

The DT82EM3 in the previous example is reconfigured to send the data every 30 minutes. No minimum session time is configured, and the minimum idle time is reduced from the default of 120s to 10s (the minimum setting).

There has been no change to the sample rate, so the average core power use remains at 120mW.

Only 5kbyte of data is now being sent each time, which will typically be transferred in less than a second, so it can be ignored. However each day the modem now spends about $48 \times (60+10) = 3360$ seconds in the idle state (1600mW for 3G), as 48 times a day it now needs to power up and register (60s) then wait for the connection to be idle for 10s. During this time the logger also needs to be awake, in its idle power state (350mW)

So the total power usage is $120 + 3360 \times (1600 + 350) / (24 \times 60 \times 60) = 195 \text{ mW}$.

Incidentally, you could trim 15mW from this by forcing the modem to use a GSM connection (PROFILE MODEM SERVICE=GSM), as the difference in data transfer time would be negligible but the idle power consumption is now 1200mW rather than 1600mW.

Battery Life

Once the average power consumption for the application has been calculated, we can estimate how long the *DT80*'s internal battery will be able to keep the logger operating.

For a lead acid battery, the battery voltage is relatively constant during discharge, then drops rapidly once the battery is nearly flat. The *DT80* will automatically enter an indefinite **forced sleep** mode once the terminal voltage drops below about 5.5V. The "battery life" is therefore defined as the elapsed time between disconnecting external power and the *DT80* being forced into sleep mode.

The quoted capacity of a lead acid battery (e.g. 1.2Ah) is the energy that can be extracted from the battery <u>at a 20 hour discharge rate</u>. In other words if you draw 1.2/20 amps (60 mA, or 360 mW) then the battery will last for 20 hours. It does not follow, however, that if you draw 600 mA (10 times more) then the battery will last for 2 hours (10 times less). In fact it will last for closer to 1 hour.

The maximum instantaneous discharge current for a lead acid battery is typically three times the capacity, i.e. 3.6A (21W) for a 1.2Ah battery. (At this rate the battery life would be only about 3 minutes.)

At the other end of the scale (very low discharge currents), the self-discharge rate of the battery can become significant. A lead acid battery will typically lose 3% of its capacity per month at 20°C (1.5% per month at 0°C, 10% per month at 40°C).

The following table takes all these effects into account, and can be used to estimate the life of a new, fully charged 1.2Ah (DT80/81) or 4.0Ah (DT85) battery, given a calculated average power consumption:

Average power consumption from battery	Approx 1.2Ah battery life	Approx 4.0Ah battery life
5000 mW	0.5 hours	3 hours
2000 mW	2 hours	10 hours
1000 mW	5 hours	24 hours
500 mW	12 hours	48 hours
200 mW	36 hours	5 days
100 mW	3 days	10 days
50 mW	6 days	20 days
20 mW	15 days	45 days
10 mW	30 days	3 months
5 mW	1.5 months	5 months
2 mW	4 months	11 months

Table 17: Approximate lead acid battery life

The above assumes a battery ambient temperature of 20°C.

At 40°C, the battery life will be slightly improved at high discharge currents, but will be significantly shorter at low discharge currents, due to the accelerated self-discharge rate.

At 0°C, the overall battery capacity will be reduced by about 20% (compared to 20°C), so the battery life for high and mid discharge rates will be shortened. However, the self-discharge rate will also be reduced, so for very low discharge rates the battery life will be comparable to that for 20°C.

Example 1

A DT85 is set up to measure 10 analog channels every 5 seconds. How long can it run using the internal 4.0Ah battery?

The first step is to calculate the average power consumption. Using *Table 10*, we estimate the core hardware power consumption at 300mW for a 5 second schedule with 10 analog channels. No other hardware modules (e.g. Ethernet) are used, so we take this value as the overall power consumption.

Using Table 17, we see that at 300 mW the battery life should be around 3-4 days.

Example 2

A DT80 is powered by the supplied 15V plug pack and every 10 seconds it reads 2 analog channels and polls a serial sensor (which we assume has its own battery backed power supply). Communications with the host computer use the Ethernet interface. For how long will the logger be able to run in the event of a mains power failure?

The Ethernet interface is enabled, so the *DT80* will normally <u>not</u> sleep, as going to sleep will cause any network connections to be disconnected. We therefore cannot use *Table 10* to estimate average power consumption, because this table assumes that the logger will sleep between scans.

Instead, we will assume that the DT80 spends:

- 1 second doing the communications and measurements, logging the result etc. (<u>active</u> power state, analog subsystem <u>enabled</u>, Ethernet enabled)
- 9 seconds waiting for the next scan to come around (<u>idle</u> power state, analog subsystem <u>disabled</u>, Ethernet enabled)

Using *Table 9*, the average core hardware power consumption when battery powered will be 1200mW while active and 300mW while idle. Using *Table 15*, the analog subsystem will add 650mW while enabled, and Ethernet adds 300mW.

Putting this all together:

Ave Power = (1200+650+300)mW x 1/10 + (300+300)mW x 9/10 = 755 mW

Finally, from Table 17 we see that the DT80's 1.2Ah battery should keep the logger running for about 8 hours.

Minimising Power Consumption

In order to minimise power consumption, the general aims are to:

- · disable hardware modules which are not required, and
- maximise the time spent in the "sleep" power state (see Sleep Mode (P297))

Disable Unnecessary Hardware

❖ Analog Measurement System

Setting P21=0 (which is the default) will minimise power consumption. When an analog measurement is due, the analog subsystem will be switched on, then the *DT80* will wait 50 ms for it to stabilise and then take the measurement. The analog power will remain on until there are no more schedules to execute; hence any subsequent analog measurements in the schedule or any other schedule due to be executed at the same time will not include this 50ms delay.

For high speed sampling, where power consumption is less of a concern, it is preferable to set **P21=1**. In this case the analog subsystem remains powered all the time (except in sleep mode), which removes the need for the 50ms delays. For situations where the logger stays awake all the time, this setting will also minimise differences between readings due to the analog section's warm-up characteristic, which can take a few minutes to fully stabilise (see *Analog Warm Up Time* (P374)).

❖ CEM20

Setting P28=0 (which is the default) will cause the CEM20 power (i.e. the *DT80* 12V output) to be managed in a similar way to the analog subsystem power when P21=0. That is, the power output will be switched on only during schedules which include a CEM20 analog measurement.

Ethernet Port

The Ethernet interface is enabled by default, and will consume power even if no Ethernet cable is connected. If Ethernet connectivity is not required then the port should be disabled, as follows:

```
PROFILE ETHERNET ENABLE=NO
```

❖ Serial Ports

The serial ports also use a small amount of power while idle, so if they are not required then they can be disabled, too:

```
PROFILE SERSEN_PORT FUNCTION=DISABLE
PROFILE HOST_PORT FUNCTION=DISABLE
PROFILE USB PORT FUNCTION=DISABLE
```

LCD Backlight

Parameter P20 controls the operation of the LCD backlight. By default (P20=2), it will switch on when there is user activity (e.g. key pressed, or USB cable inserted), then switch off a short time (P17 seconds) later. This should be adequate for most applications. For minimum power usage it can be forced to be always off by setting P20=0.

Maximise Sleep Time

The following guidelines will help maximise the time that the logger spends asleep, thereby minimising power consumption:

- Scan as slowly as possible don't scan every minute if you can get away with scanning every 5 minutes
- Align schedule intervals to minimise the number of wakeups, even if this means that some schedules sample more
 frequently. For example:

```
RA40S 1V RB20S 2V is generally better than
```

RA40S 1V RB30S 2V

because the two schedules are more likely to be processed together.

- Reduce the P17 setting (delay before entering sleep mode, seconds), say P17=5, so that if a wakeup event does
 occur, the logger will go back to sleep guickly.
- Consider reducing the **P4** setting (wake-up latency, ms), say **P4=100**. This will result in the *DT80* allowing less time for the wake process than it actually takes, so it will therefore be able to sleep a little longer. Following wake, the *DT80* will now not have to wait for the schedule's appointed time to come around it will have already passed. The schedule will then be executed immediately, albeit slightly late.
- It is normally <u>not</u> recommended to change the **P3** (minimum sleep time) setting. Sleeping for periods shorter than 1.5 seconds is generally counter-productive: the additional processing time associated with waking up outweighs the lower sleep mode power usage, leading to a net increase in the average power consumption.

Optimise Modem Communications

The integrated modem can use a significant amount of power so the aim is to minimise the amount of time spent with the modem powered up. For example:

- Upload data infrequently. As shown in *Example 6* (P295) above, unloading every 30 minutes can use 5 times more power than unloading daily (75mW vs. 13mW)
- If the volume of data to be transferred is not great, consider using GSM in preference to 3G. Using the DT8xM3 model, you can force it to use GSM with the following profile setting:

```
PROFILE MODEM SERVICE=GSM
```

If available in your market, choosing the DT8xM2 model (GSM only) over the M3 will result in an even more significant reduction in power consumption.

• If you don't need to interactively access the logger remotely, set the minimum session and minimum idle times to the minimum value, so that the modem is switched off as soon as possible:

```
PROFILE MODEM_SESSION MIN_DURATION_S=0
PROFILE MODEM SESSION MIN IDLE S=10
```

(Note however that if the connection quality is poor then it may be necessary to increase MIN_IDLE_S to avoid unwanted disconnections cope in the event of long network delays.)

- If possible, use SMS rather than email for alarms.
- For large data transfers, unloading to email <u>may</u> be faster (and therefore use less power) than unloading to an FTP server because the data is being transferred to the carrier's own SMTP server rather than going over the Internet to the FTP server. Note however that for email attachments, any binary file (such as a DBD format data file) must be encoded into printable form for transmission, which can increase the data volume by about 30%. This is not the case for FTP.

Sleep Mode

The *DT80* has a low power **sleep mode** that significantly reduces the power consumption – to as low as 2 mW when running from the internal battery. While asleep no measurements or processing can be done, but the state of the current job is preserved. The *DT80* will automatically wake from sleep when a measurement is due, or some other event occurs.

About Sleep Mode

While the DT80 is asleep:

- The LCD and all front panel LEDs are switched off.
- All communications ports (Ethernet, USB, serial) are disabled. Any USB or TCP/IP connections will be disconnected
 when the logger goes to sleep and will need to be re-established by host software after the logger wakes.
- Digital output states and the state of the latching relay are maintained.
- Digital inputs are <u>not</u> scanned transitions will <u>not</u> wake the logger, trigger schedules or be counted by low speed counter channels (1..4C channel types).
- Pulses on the high speed counter inputs (**1C-4C** terminals, **1..4HSC** channel types) will be counted, without waking the logger. As discussed in *Counting While Asleep* (P343), it is necessary to wake the logger periodically using a timed schedule to ensure that the 16-bit hardware counters do not overflow.
- The 12V power output is switched off.
- The PWR OUT power output will still be available, assuming that the logger is externally powered.
- All parameter settings, CV values, comms port settings and other job-related state information is preserved.

Wake Events

Once asleep, the DT80 will stay that way until one of the following events occur:

- a timed schedule becomes due
- a modem communications session time window becomes due
- a modem/Ethernet communications session retry is due
- a keypad button is pressed
- the WK (wake) input terminal is pulled to logic low
- a character is received on the serial sensor port, or there is a transition on the CTS line
- external power is connected
- a USB communications cable is connected
- a character is received on the host RS232 port

Any of these will cause the *DT80* to wake. If the reason for waking was a timed schedule, the *DT80* will execute the schedule, then immediately go back to sleep (if there are no other schedules due within the next few seconds). During this time the LCD and backlight will remain off.

For all other wake sources, the *DT80* will stay awake for at least the period specified by parameter **P17** (default 30s). This timer will be reset if any further wake events occur, or if data is received on any comms port. Once the timer expires the *DT80* will go back to sleep.

Note also that:

- Event triggered schedules (i.e. schedules triggered by digital input transitions, counters, serial data or CV values) will not cause the logger to wake. Only timed schedules will cause a wake up.
- If the *DT80* is woken by receipt of RS232 data on the host or serial sensor port, the first character (and possibly some of the following ones) will be lost. You should therefore always send a dummy character (e.g. LF) to wake the *DT80*, then wait about one second before sending the first actual command.

Controlling Sleep

By default, the DT80 will not go into sleep mode if any of the following are true:

- a schedule or command is being executed, or is due to execute soon
- the Ethernet port is enabled and a cable is connected
- a USB cable is connected
- a PPP session is currently active
- · a modem or Ethernet communications session is active
- a job has been partially entered
- there has been "activity" (e.g. key press, command, Modbus/web/FTP request) within the last P17 seconds

Note that any Ethernet and USB connections are terminated whenever the *DT80* goes to sleep – which is why the *DT80* will by default disallow sleep while either of these ports are connected.

Some of the above conditions can be overridden using the P15 parameter, as follows.

Setting	Result
P15=0 (default)	Allow sleep, but not if externally powered or if Ethernet/USB is connected
P15=1	Allow sleep, but not if Ethernet/USB is connected
P15=2	Do not allow sleep
P15=3	Allow sleep
P15=4	Allow sleep, but not if externally powered

For example, if you set P15=3 then the *DT80* will be allowed to go to sleep, even if the logger is externally powered or Ethernet/USB is connected.

Forced Sleep Mode

The *DT80* provides some protection against gradual power failure (e.g. the internal battery becoming discharged). If it detects that the supply voltage is becoming critically low (terminal voltage less than about 5.5V), the *DT80* will automatically close all store files and force the unit into sleep mode. The *DT80* will remain asleep until the power supply recovers to an adequate level. During this time schedules will <u>not</u> execute.

Once power is restored, a hard reset will occur.

An entry will be added to the event log (P274) any time that the DT80 enters forced sleep mode.

Part O - Sensors & Channels

Overview

This section describes how to use the *DT80*'s analog, digital and serial inputs to measure many different physical quantities. The focus here is on the <u>measurement</u> process – connecting up a sensor and successfully reading it.

The following topics are covered for each sensor type:

- an overview of how a measurement is made
- wiring configurations how to physically connect to the *DT80*'s input terminals. For reference, each wiring configuration presented here is given a number, e.g. "V1" for voltage wiring #1.
- the applicable *DT80* **channel types** and **channel options** that is, how to program the *DT80* to read the particular sensor or measure the particular quantity.

This section also includes some general information about how the *DT80*'s analog measurement system works, and how to get the best out of it.

What Can Be Measured?

Analog channel types:

- voltage
- current and current loops
- resistance
- ratiometric resistance (bridges)
- temperature thermocouples, thermistors, RTDs and IC sensors
- frequency
- strain gauges bridges, vibrating wire, Carlson sensors
- logic state

Digital channel types:

- · digital inputs
- digital outputs
- pulse counters standard and high speed
- · phase encoder (quadrature) inputs

Serial channel types:

- SDI-12
- · generic serial sensors

Analog Channels

For detailed specifications, see Analog Inputs (P383).

About the Analog Input Terminals

Each of the DT80's analog inputs has four terminals: * (Excite), + (Plus), - (Minus) and # (Return).

Any analog measurement involves at least two terminals: a signal terminal and a return terminal. At the core of most measurements is a voltage measurement between these two terminals.

To specify which terminals to use, the **channel type** (V, TK, BGI etc.) is prefixed by an **input number** (1, 2, 3 etc.) and a **terminal specifier**.

The terminal specifier can be either:

nothing: measure between + and – terminals,

- *: measure between * and # terminals,
- + : measure between + and # terminals,
- : measure between and # terminals, or
- #: measure between # and AGND/EXT# terminals

For example, the command 3+V causes the DT80 to measure the voltage between the + and # terminals on analog input 3, while 1R means measure the voltage between + and - on analog input 1 (which will then be used to calculate the unknown resistance, provided it is connected as shown in the wiring diagrams).

A particular channel type will not necessarily support all of the above terminal specifiers. For example, the # specifier is only available for current-based channel types.

Voltage

Voltage (difference in electrical potential) is the fundamental quantity that is measured during any analog measurement.

The DT80 measures a voltage by:

- connecting the required input terminals to the instrumentation amplifier by closing the appropriate input relays and selecting input attenuators if required;
- 2. converting the amplified signal to a frequency using a precision Voltage Controlled Oscillator (VCO);
- 3. digitally measuring the frequency and calculating the resultant voltage reading;
- 4. possibly repeating steps 2 and 3 using a different amplifier gain setting if required.

Note Because <u>all</u> analog measurements (including current, resistance, thermocouple, etc.) are fundamentally voltage measurements, much of the information in this section is applicable to them, too.

Channel Types

The following channel types will directly return a voltage value:

Channel Type	Description	Units
V	voltage, attenuators disabled by default (max input 3V)	mV
HV	voltage, attenuators enabled by default (max input 30V)	V

For example, to measure the voltage between the * and # terminals on analog input 2 you would include the channel definition 2*V in your *DT80* program (or, to make a single "immediate" measurement, simply send 2*V to the *DT80*'s command interface, e.g. by typing it into the *DeTransfer* send window).

Channel Options

The following channel options are commonly used when measuring voltages:

- GL30MV, GL300MV, GL3V and GL30V (gain lock) allow the DT80's input gain to be locked on a particular range. See Gain Ranges and Attenuators below.
- A (attenuator) and NA (no attenuator; default) allow the *DT80*'s 10:1 input attenuators to be switched in or out. See *Gain Ranges and Attenuators* below.
- **ES***n* (extra samples) specifies that *n* additional measurements should be taken and the result averaged. This can help with very noisy signals.
- a **channel factor** (a floating point number) can be specified as a simple scaling factor. The measured voltage will be multiplied by this factor before being returned. For more advanced scaling options, see *Manipulating Data* (P61).

Gain Ranges and Attenuators

The *DT80*'s instrumentation amplifier has three switchable gain settings. These give three basic voltage measurement ranges (30mV, 300mV and 3V full scale).

The analog inputs also include switchable 10:1 attenuators, which effectively provide a fourth range (30V).

By default the appropriate gain range is selected automatically. The first time a channel is measured, the *DT80* will select the highest input range (3V if attenuators are not enabled, 30V if they are). If the reading is close to zero then up to two additional measurements will be made on progressively lower input ranges.

For subsequent measurements of the same channel, the *DT80* will initially use the same input range as was used previously. If the reading is overrange or close to zero then the input range will be adjusted up or down respectively and the measurement repeated.

The auto-ranging process may therefore cause the time taken to sample a channel to be increased on occasion. To avoid this, the gain can be locked on a particular setting, using the **GL**x channel options.

Note that auto-ranging does <u>not</u> affect the attenuator setting. Each channel definition command specifies (either implicitly or explicitly) whether the attenuators should be on or off.

The following table summarises all possible gain/attenuator options

Channel definition	Attenuators	Input range	Units
1V	off	auto 30mV, 300mV, 3V	mV
1V(GL30MV)	off	30mV	mV
1V(GL300MV)	off	300mV	mV
1V(GL3V)	off	3V	mV
1V(GL30V)	error		
1V(A)	on	auto 300mV, 3V, 30V	mV
1V(A,GL30MV)	error		
1V(A,GL300MV)	on	300mV	mV
1V(A,GL3V)	on	3V	mV
1V(A,GL30V)	on	30V	mV
1HV	on	auto 300mV, 3V, 30V	V
1HV(GL30MV)	error		
1HV(GL300MV)	on	300mV	V
1HV(GL3V)	on	3V	V
1HV(GL30V)	on	30V	V
1HV(NA)	off	auto 30mV, 300mV, 3V	V
1HV(NA,GL30MV)	off	30mV	V
1HV(NA,GL300MV)	off	300mV	V
1HV(NA,GL3V)	off	3V	V
1HV(NA,GL30V)	error		

Warning Maximum input voltage on any analog input is ±30V dc, relative to the AGND/EXT# terminal. If this is exceeded then permanent damage may occur.

Input Configurations

By definition, a voltage is a measurement <u>between two points</u>. Multiple separate voltage measurements can share a common reference point, or each measurement can have an independent reference point.

The reference point, be it shared or unshared, need not be at ground potential. All voltage measurements made by the *DT80* are therefore **differential** measurements – they measure only the <u>difference</u> in voltage between the two terminals.

Another way of looking at it is that the *DT80* will reject (ignore) the terminals' **common mode voltage** – that is, the voltage that is common to both terminals. So if a channel's + terminal is at 7V (relative to the *DT80*'s analog ground) and the – terminal is at 5V then the **1V** channel will return a value of 2V. The common mode voltage (5V) has been rejected.

Important The DT80 can effectively remove the unwanted common mode component from the input signals provided that the common mode limits for each terminal is not exceeded (max. $\pm 3.5 \text{V}/35 \text{V}$ for attenuators off/on, relative to the DT80's analog ground). Note that because the DT80's analog ground is isolated, it can normally "float" up to match whatever common mode voltage is present on the sensor being measured, thereby keeping the common mode voltage seen by the DT80's amplifier within limits.

❖ Shared-Terminal Inputs

In a shared-terminal configuration, a sensor's "return" or "negative" wire is usually connected to the channel's # terminal, as shown in V1 - Shared-Terminal Voltage Inputs (P302). The remaining sensor wire (the "positive" or "signal") is connected to any of the channel's other three terminals.

Each of the DT80's analog inputs can therefore support up to three shared terminal voltage inputs.

For shared-terminal inputs, the channel number is given a suffix indicating the terminal to which the positive wire is connected. For example, the channel definition 1+V specifies a shared-terminal voltage input applied to channel 1 between the + and # terminals (and likewise 1*V and 1-V).

Independent Analog Inputs

An independent, or "unshared" input is one that connects to its own terminals and does not share any of those terminals with any other inputs. As shown in V2 – Independent Voltage Inputs (P302), each analog input can support up to two independent voltage inputs – one between the + and – terminals (1V) and one between * and # (1*V).

For the DT80 Series 2 and DT85, these two independent inputs (i.e. 1v and 1*v) operate identically. For the DT80/81 however, they have slightly different characteristics. In particular, referencing a measurement to the # terminal (i.e. the 1*v configuration) provides a better ground reference, so in most cases it is preferred. See *Input Termination* (P372) for more details.

Analog Input Isolation

The *DT80* uses relay multiplexers to switch input channels through to the instrumentation amplifier one at a time. All four terminals of each analog input channel remain disconnected from the *DT80*'s electronics, except when that channel is being measured. This means that each analog input channel is totally isolated from any other input channel.

What about the case where two independent inputs are connected to a single analog input channel?

For the DT80/81 Series 1, these two "independent" inputs are in fact not completely isolated from each other. This is because for these logger models, all four terminals for a given channel are switched together. So if you are measuring 1V (voltage between + and – input terminals), bear in mind that the * and # terminals will also be connected to the *DT80* circuitry.

This may cause problems if the two sensors have significantly different common mode voltages. If this is the case then they should be connected to separate input channels.

For the DT80 Series 2 and DT85, the two pairs of input terminals (+ - and * #) can be switched <u>independently</u>. This means that when doing a **1v** measurement, the * and # terminals remain isolated. Similarly, when doing a **1*v** measurement, the + and – terminals remain isolated. The upshot of this is that sensor V1 (*Figure 108*) could have 10V common mode voltage and sensor V2 could have -2V common mode and both would still be measured correctly. On a DT80/81, these two sensors would need to be connected to separate channels (e.g. **1v** and **2v**).

V1 - Shared-Terminal Voltage Inputs

In this configuration up to three separate voltage inputs can be connected to one analog input channel. The # terminal acts as a shared common. See Shared-Terminal Analog Inputs (P21)

Shielded cable may be helpful when the signal has a high output impedance or when noise pickup from other cables is a problem. Ensure that the shield is only connected to ground at one end of the cable, either to a **DGND** terminal or the earth point on the side of the *DT80* case.

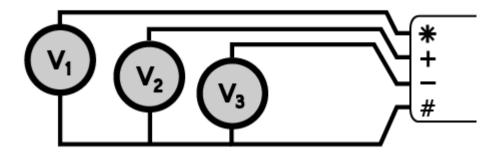


Figure 113: Wiring for shared-terminal voltage input

To measure	Use the command	
V1	1*V	
V2	1+V	
V3	1-V	

V2 - Independent Voltage Inputs

In this configuration each voltage measurement is independent of any other (no wires are shared). The trade-off is that at most two voltages can be measured per analog input channel.

For the DT80 Series 2 and DT85, the two measurements are completely isolated – while measuring V1, V2 is disconnected, and vice versa.

This is not the case, however, for the DT80/81, where both voltage sources will be connected to the logger electronics (and therefore referenced to the logger's analog ground) when either is being measured. This can cause measurement errors if the two inputs have significantly different common mode voltages. See *Input Switching* (P372).

As with shared terminal inputs, a cable shield may be helpful when the signal has a high output impedance or when noise pickup for other cables is a problem. Ensure that the shield is only connected to ground at one end of the cable, either to a **DGND** terminal or the earth point on the side of the *DT80* case.

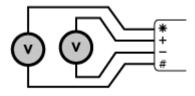


Figure 114: Wiring for independent voltage input.

To measure	Use the command
V1	1V
V2	1*V

Current

Current (rate of electrical charge movement) is measured by inserting a known **shunt** resistance into the circuit, and measuring the voltage across it. Using Ohm's Law, Current = Voltage / Resistance.

The I channel type returns the current value in milliamps (mA).

The DT80 incorporates an internal 100Ω shunt resistor between the # terminal and analog ground. Alternatively, an external shunt may be used. The value of the external shunt must be known and must be specified when the channel is defined.

For example, the channel definition 3#I will measure the current which enters at channel 3's # terminal, flows through the internal shunt, and returns via the AGND/EXT# terminal.

On the other hand, 2+I(51.2) will return the current flowing through a 51.2Ω shunt wired between the + and # terminals of channel 2.

Channel Options

The following channel options are commonly used when measuring currents:

- A (attenuator) specifies that the *DT80*'s input attenuator should be enabled, which allows voltages of up to 30V to be measured across the shunt resistors. Note that this option is not available if the internal shunt is used.
- the excitation options specify how the current source is powered: N (assume external power supply; default), V (enable internal 4.5V voltage source on * terminal) or E (assume external supply connected to EXT* terminal).
- **E** (external excitation) specifies that the power supply for the current sources is connected to the *DT80*'s **EXT*** terminal. This will then be automatically connected to each current source for the duration of a measurement, then disconnected.
- MDn (measurement delay) specifies that the DT80 should wait n ms (default 10ms) after selecting a channel before starting the actual measurement. This can be useful in conjunction with the E option, as it allows the sensor some time to stabilise after power is applied to it.
- the **channel factor** specifies the shunt resistance in ohms (default 100.0Ω)
- GLx, ESn, as for voltage measurements

The following sections describe some common wiring configurations for measuring current.

C1 - Shared-Terminal Current Inputs with External Shunts

In this configuration up to three separate current sources can be measured. This is done by measuring the voltages across the shunts in the shared terminal configuration; see $V1 - Shared-Terminal\ Voltage\ Inputs\ (P302)$.

To avoid cross-channel coupling, connect the bottom of the shunts with the minimum of shared resistance to the sense point.

The resistance of each shunt should be specified as the channel factor.

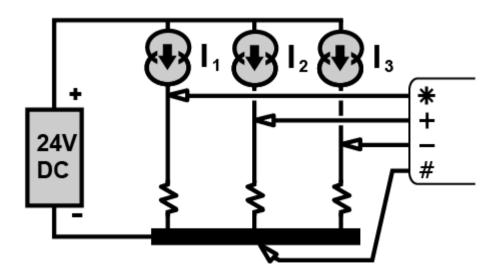


Figure 115: Wiring for shared-terminal current input using external shunt

To measure	Use the command
l1	1*I(R1)
12	1+I(<i>R</i> 2)
13	1-I(<i>R</i> 3)

C2 - Independent Current Inputs with External Shunts

In this configuration up to two separate current sources can be measured. This is done by measuring the voltages across the shunts in the independent terminal configuration; see $V2 - Independent\ Voltage\ Inputs\ (P302)$

The resistance of each shunt should be specified as the channel factor.

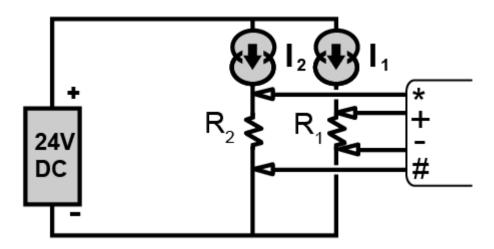


Figure 116: Wiring for independent-terminal current input using external shunts

To measure	Use the command
I 1	1I(R1)
12	1*I(R2)

C3 - Independent Current Input using the internal shunt

In this configuration the DT80's internal 100 Ω shunt resistor is used. The internal shunt resistor is connected between the channels # terminal and **AGND** (**EXT#** on DT80 Series 2/DT85).

Note that input attenuation is not available for # terminal measurements. This means that the maximum current that can be measured using the internal shunt is approximately 30mA. For higher currents, or situations where the common mode voltage relative to analog ground exceeds 3V, it will be necessary to use an external shunt.

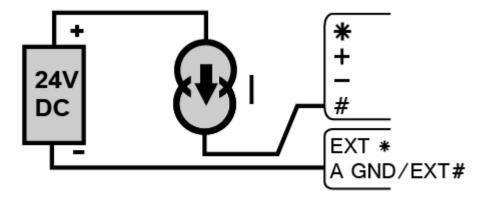


Figure 117: Wiring for Independent current input using internal shunt

To measure	Use the command
1	1#I

C4 - Independent Current using internal shunt and switched excitation

In this configuration the *DT80* switches a single excitation supply through to each channel as it is measured (this means that between measurements the current source will be unpowered).

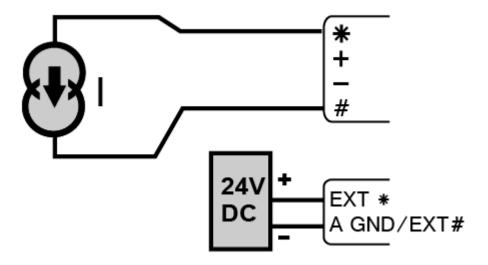


Figure 118: Wiring for independent current using internal shunt and external excitation

To measure	Use the command
1	1#I(E)

4-20mA Current Loops

Many different sensor types provide a 4-20mA current output, where the current is proportional to the quantity being measured.

The channel type for a 4-20mA current loop measurement is **L**; channel options are as for Current measurements; see *Current* (P303).

To read a current loop sensor, the *DT80* first measures the current. Any of the *Current* wiring configurations may be used. The measured current is then scaled so that the channel returns 0% for 4mA and 100% for 20mA.

For example, if a current loop sensor is connected as per C3 – Independent Current Input using the internal shunt(P304) then it would be read using 1#L.

A span is often applied to this value so that the final reported value is in the proper engineering units for the quantity being measured.

For example, if a pressure sensor with 4-20mA output operates over a range of 100-500kPa then BEGIN S1=100,500"kPa" RA2S 4#L(S1) END

will return a pressure reading in kPa every 2s. The loop would in this case be connected across the **4#** and **AGND/EXT#** terminals, making use of the internal shunt resistor.

One advantage of a current loop system is that a cable fault can be readily detected. An open circuit loop will give a negative reading, normally -25% (0mA), which can then be detected in an **ALARM** statement.

* Multiple Devices in One Loop

Multiple measurement devices can be connected in series in the one current loop. For example, a current loop might include both a *DT80* and a 4-20mA digital panel display module, in series. (There can only be one 4-20mA sensor in a given loop.)

In these situations care needs to be taken to ensure that the *DT80*'s common mode voltage limits are not exceeded, especially if the *DT80*'s is placed "above" the other devices in the loop. The *DT80*'s input attenuators may be enabled using the **A** channel option, which will increase the common mode limit to ±35V, relative to **AGND/EXT#**

Note If there are multiple devices in the loop then the loop should be continuously powered. This implies the use of an <u>external</u> shunt (*C1 – Shared-Terminal Current Inputs with External Shunts* (*P303*)), as the *DT80* normally <u>disconnects</u> the **EXT#** terminal between measurements.

Resistance

Resistance (degree of impediment to current flow) is measured by passing a known **excitation current** through the resistance and measuring the voltage across it. From Ohm's law, Resistance = Voltage / Current.

The $\bf R$ channel type returns the resistance value in ohms (Ω).

The *DT80* incorporates two precision current sources. When measuring a resistance, one or other of these sources is switched through to the * (Excite) terminal, which is then connected to the unknown resistance. (On Series 3 models, excitation can also be directed to the + or – terminals.)

By default, an accurately known current of approximately 200 μ A is generated by the *DT80*. This allows measurement of resistances up to about 10 $k\Omega$. For low resistances (up to 700 Ω), the **II** channel option can be used to select a higher excitation current (2.5mA), which will allow a more accurate reading.

One problem which occurs when measuring low resistance values is the fact that the wires used to connect the unknown resistance to the logger also have resistance. As shown in the wiring diagrams below, there are various ways to overcome this. These involve the use of separate wires to carry the excitation current and to sense the voltage.

For example, the channel 1R(4W) will perform a **four-wire** measurement. Excitation current flows out the * terminal, through the unknown R, and returns to the # terminal. Two separate **sense** wires connect the + and – terminals to the unknown R. Because the DT80 has a very high input impedance (> $10M\Omega$), negligible current will flow in these sense wires, resulting in a negligible voltage drop. The measured voltage will therefore be the voltage across the unknown R only, and will not include any voltage drop in the current-carrying excitation cables.

The downside of a four-wire measurement is that you need, well, four wires. The three and two wire configurations provide for reduced cable cost, at the expense of accuracy.

Channel Options

The following channel options are commonly used when measuring resistances:

- 3w (3 wire; default), 4w (4 wire) or 2w (2 wire; Series 3 only) specifies the type of resistance measurement (number of wires)
- I (200µA excitation; default) or II (2.5mA excitation) specifies the amount of current to be passed through the resistance.
- the **channel factor** specifies an offset adjustment (ohms) which is subtracted from the measured value. This can be used to compensate for lead resistance in 2-wire configurations.
- GLx, ESn, as for voltage measurements

R1 – 4-Wire Resistance Inputs

In this configuration the * and # terminals send an excitation current through the unknown resistance while the remaining terminals sense the voltage across it.

4-wire resistance methods are the most accurate, especially for low resistances.

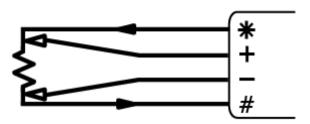


Figure 119: Wiring for 4-wire resistance input

To measure	Use the command
R	1R(4W)

R2 – 3-Wire Resistance Inputs

In this configuration the *DT80* effectively measures the voltage drop in the return lead and uses it to compensate for the voltage drop in both leads. This assumes that the excite and return lead resistances are equal.

See 3-Wire Compensation (P373) for more details.

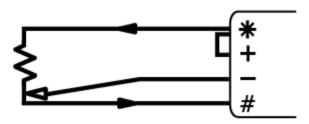


Figure 120: Wiring for 3-wire resistance input

To measure	Use the command
R	1R

R3 – 2-Wire Resistance Inputs

2-wire configurations are only recommended if the lead resistance is negligible compared to the resistance being measured.

You can, however, compensate for the lead resistance by inserting a resistor equal to the total lead resistance (excite lead resistance + return lead resistance) between the – and # terminals, in place of the link shown. This uses the *DT80*'s 3-wire compensation circuit to effectively subtract the measured voltage drop across the resistor from the reading.

Alternatively, the total lead resistance could be specified as the channel factor, e.g. if the total lead resistance is known to be 2.8 Ω then you would specify the channel as **1**R(2.8). (This assumes that the lead resistance remains fixed, which may not be the case if the temperature varies.)

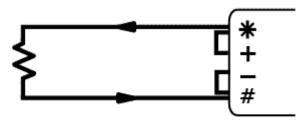


Figure 121: Wiring for 2-wire resistance input

To measure	Use the command	

R 1R

R4 – 2-Wire Independent Resistance Inputs

Note This configuration is not available on DT80/81 Series 1 loggers.

A 2-wire measurement can also be made by connecting the resistance to * and # only. This frees up the + and – terminals for a separate independent measurement. For example, vibrating wire strain gauges often incorporate a thermistor temperature sensor. This wiring configuration would allow the gauge to be connected to + and – and the thermistor to * and #.

Note that no lead resistance compensation is possible with this configuration (other than by using the channel factor).

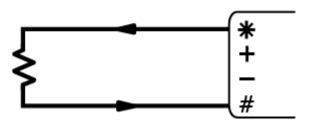


Figure 122: Wiring for 2-wire independent resistance input

To measure	Use the command
R	1*R

R5 – Series 3 2-Wire Resistance Inputs

Note These configurations are only available on Series 3 loggers.

Series 3 models can direct excitation to either the *, + or – terminal. This allows 2-wire resistance measurements to be made between the + and –, * and #, + and # or – and # terminals.

Use the 2W channel option to select these types of measurements.

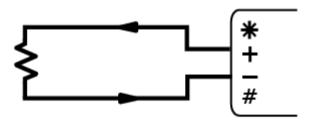


Figure 123: Wiring for 2-wire independent resistance input (Series 3 only)

To measure	Use the command	
R	1R(2W)	

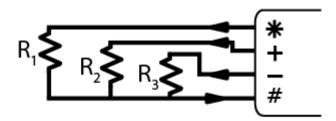


Figure 124: Wiring for 2-wire shared terminal resistance inputs (Series 3 only)

To measure	Use the command	
R1	1*R(2W)	
R2	1+R(2W)	
R3	1-R(2W)	

Note For these 2-wire configurations, the excitation is fixed at 200µA (I). The II channel option is invalid.

These measurements can be useful for detecting open circuit sensors. For example, the following will force an invalid reading to be logged if a vibrating wire strain gauge is detected as open circuit:

```
1FW(=1CV,W)
IF(1R(2W)>5000){1CV=99999}
1CV("freq")
```

R6 - High Resistance Input with Parallel Resistor

Resistance measurements are limited to a maximum of about $10k\Omega$. This can be extended by wiring a known resistor in parallel with the resistance being measured. This will, however, reduce the resolution of low resistance measurements.

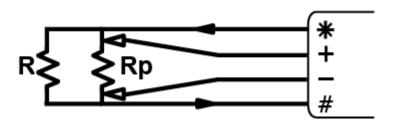


Figure 125: Wiring for 4-wire resistance input, using a parallel resistor

To measure	Use the command
R	1R(4W,W)
	$CALC("R\sim ohm") = (Rp*\&1R)/(Rp-\&1R)$

As shown above, we first read the combined resistance, then calculate the value of *R* using an expression that references the combined resistance measurement (£1R). *Rp* represents the value of the parallel resistor in ohms.

As well as the 4-wire configuration shown here, a parallel resistor can also be used with a 3-wire or 2-wire resistance measurement.

In all cases, the parallel resistor (Rp) should be located <u>near the sensor</u> (R), as shown above, so that the lead resistances can be correctly compensated for.

If it is not practical to locate the resistor near the sensor then it can be located at the logger end of the cable. In this configuration the best accuracy will be obtained by connecting the sense inputs (+ and -) across Rp (if its resistance is significantly less than R). If Rp is greater than R then the sense inputs should instead be connected across R, although in this case the effect of cable resistance is likely to be negligible, given that both R and Rp are high resistances.

Calculating Parallel Resistor Value

The required value of the parallel resistor Rp is given by:

$$R_p = \frac{10000 \times R_{\text{max}}}{R_{\text{max}} - 10000}$$

where R_{max} is the maximum resistance required to be measured.

For example, to measure up to $100 \text{ k}\Omega$ a parallel resistor of about $10\text{k}\Omega$ would be suitable.

Bridges

Because of its sensitivity, the **Wheatstone bridge** circuit is commonly used for the measurement of <u>small changes in electrical resistance</u>. Applications include load cells, pressure sensors and strain gauges.

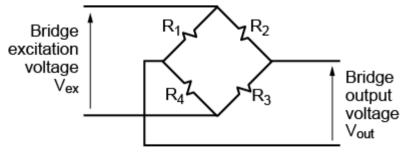


Figure 126: Wheatstone bridge

Bridges are designed such that under quiescent conditions the ratios R1/R4 and R2/R3 are equal, resulting in a zero output voltage, V_{out} . A small change to one or the resistances will then cause a corresponding change to V_{out} , which can then be measured accurately using the DT80's sensitive 30mV range.

When one of the four resistors in a bridge is active (that is, sensitive to the quantity being measured) the circuit is called a **quarter bridge**, and the remaining three resistors are called **bridge completion resistors**. Similarly, **half** and **full** bridges imply two and four active gauges. All completion resistors should be close-tolerance precision resistors.

The DT80 returns all bridge measurements in a ratiometric form with units of parts per million (ppm):

$$B_{out} = \frac{V_{out}}{V_{ex}} \cdot 10^6 \text{ ppm}$$

where:

- V_{out} is the measured bridge output voltage
- V_{ex} is the excitation voltage

For a bridge measurement to be accurate, both of these voltages must be known accurately, and any lead or connector resistances must be compensated for.

Channel Types

The DT80 supports two bridge channel types, which differ by the way in which the excitation voltage Vex is determined.

For a **BGV** channel, V_{ex} is <u>measured</u> at the bridge; for **BGI**, the bridge is excited using a known current and then V_{ex} is calculated from the known current and arm resistance values.

The **BGI** channel type supports two different wiring variants: a true bridge configuration and a 3-wire "simulated bridge" which has many of the properties of a bridge.

Channel Types	Description
BGV	Voltage-excited Wheatstone bridge
BGI(4W)	Current-excited Wheatstone bridge
BGI(3W)	Current-excited simulated bridge

For a voltage-excited bridge, two separate measurements are therefore required – one to measure V_{ex} and one to measure V_{out} . To provide the maximum flexibility in wiring, this is done using two separate channels (one \mathbf{v} , one \mathbf{BGV}), which are linked using the special \mathbf{BR} channel option, as described below.

For a current-excited bridge, the nominal arm resistance is specified, and the DT80 uses this, along with the known excitation current, to calculate $V_{\rm ex}$.

Channel Options - BGV

The following channel options are applicable when using **BGV** channels

- the excitation options specify how the bridge is powered: **v** (use internal 4.5V voltage source; default), **E** (external supply connected to **EXT*** terminal) or **n** (external supply).
- GLx, ESn, as for voltage measurements
- the **channel factor** specifies an offset in ppm, which will be subtracted from the reading. This can be used to "zero" the output.
- the BR (bridge reference) option must be specified for the voltage (V) channel used to measure V_{ex}. This tells the *DT80* to use the measured voltage as V_{ex} for a subsequent BGV channel in the same schedule.

Channel Options - BGI

The following channel options are applicable when using **BGI** channels

- the excitation options specify how the bridge is excited: **II** (use 2.5mA precision current source; default) or **I** (use 200µA source).
- the wiring options specify the type of bridge: 3W (simulated bridge; default) or 4W (true bridge)
- the **channel factor** specifies the arm resistance, in ohms (default is 350. All arms are assumed to have equal nominal resistance.

The following sections describe the various bridge wiring configurations.

B1 - 6-Wire BGV Inputs

In this configuration the bridge excitation is supplied by an external supply. This power supply can be either:

- a standard supply, max 3V. This allows the *DT80* to measure the actual excitation voltage using the * and # terminals (1*V), as shown in the wiring diagram.
- a standard supply in the range 3-6V. This is too large to directly measure using the * and # terminals, so instead we use the bridge as a 2:1 voltage divider. That is, we measure the voltage between the + and # terminals (1+V), then scale the result by 2 to give the actual excitation voltage.
- a precision 5.00V supply. In this case the *DT80* does <u>not</u> measure V_{ex} it <u>assumes</u> that it is exactly 5.00V. The power supply should be located close to the bridge to avoid voltage drop due to cable resistance.

Note Using the **HV** channel type to measure the bridge excitation voltage is <u>not</u> recommended. This channel type is normally not sufficiently accurate for bridge applications.

Assuming a non-precision power supply, two channel definitions will be required.

- The first (1*V) measures the voltage between the * and # terminals, and includes the BR (bridge reference) option which indicates that its value is to be used as the excitation voltage for subsequent bridge channels in the same schedule. It is also usually made a working channel (w) because it is merely an intermediate measurement.
 - If a 3-6V supply is used then the appropriate channel definition would instead be 1+V(2,BR,W): measure between + and #, scale by 2 then use as bridge reference.
 - If a 5.00V precision supply is used then this channel is not required.
- The second (1BGV) measures the bridge output voltage between the + and terminals. The N (no excitation) channel option is specified because in this configuration the excitation is provided externally.

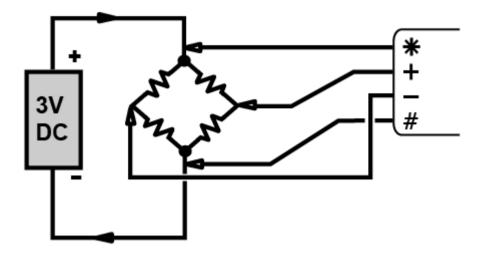


Figure 127: Wiring for 6-wire bridge using external voltage excitation

To measure	Use the command	
bridge output (3V supply)	1*V(BR,W)	1BGV(N)
bridge output (6V supply)	1+V(2,BR,W)	1BGV(N)
bridge output (5.00V supply)		1BGV(N)

B2 - 4-Wire BGV Inputs

This configuration is similar to the 6-wire configuration except that the bridge excitation is supplied by the *DT80*'s internal voltage source (approx 4.5V). This supply is in the range 3-6V, so it requires that the excitation be measured using the + rather than the * terminal then scaled by 2.

Note also that the **V** channel option must be specified to tell the *DT80* to switch on voltage excitation while the voltage measurement is being taken. This option is the default for the **BGV** channel, so it need not be specified.

This configuration is <u>not</u> recommended if the lead lengths are long, because the return wire is carrying the excitation current and we cannot compensate for the voltage drop over the length of the return wire. This will lead to an inaccurate excitation voltage measurement, and hence an inaccurate bridge measurement.

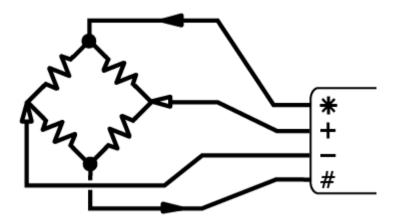


Figure 128: Wiring for 4 wire bridge input using internal excitation

To measure	Use the command		
bridge output	1+V(BR,2,V,W) 1BGV		

Note Using the **HV** channel type to measure the bridge excitation voltage is <u>not</u> recommended. This channel type is normally not sufficiently accurate for bridge applications.

B3 – Multiple BGV Half Bridge Inputs

In this configuration, three (or more) separate half bridges are wired in parallel so they share the same power supply and completion resistors (*Rc*). This allows three separate bridge measurements to be made per input channel (plus one channel to measure the excitation.)

The excitation voltage is measured in the same way as for the 6-wire configuration. That is, it is either

- measured directly, using * and # terminals, or
- measured using the completion resistors as a 2:1 voltage divider, or
- assumed to be 5.00V

Then the half bridge output voltages (relative to the junction between the completion resistors) are measured using separate analog inputs.

Note that the excitation voltage need only be measured once; it will then be used for all subsequent **BGV** channels in the same schedule.

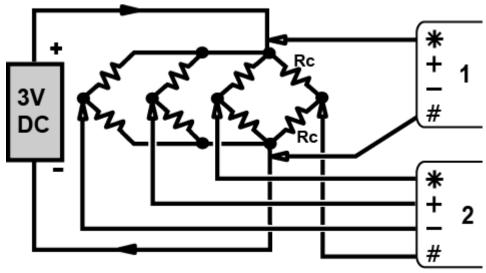


Figure 129: Wiring for multiple half bridges using shared external excitation

To measure	Use the command			
3 x bridge outputs (3V supply)	1*V(BR,W)	2*BGV(N)	2+BGV(N)	2-BGV(N)
3 x bridge outputs (6V supply)	1*V(2,BR,W)	2*BGV(N)	2+BGV(N)	2-BGV(N)
Connect 1* to Rc junction				
3 x bridge outputs (5.00V supply)		2*BGV(N)	2+BGV(N)	2-BGV(N)

B4 - 4-Wire BGI Inputs

A current excited bridge is the recommended configuration for 4 wire bridge measurement, especially for bridges that are distant from the *DT80*.

In this configuration the *DT80*'s precision current source provides the excitation. To calculate the excitation voltage, the *DT80* needs to know the arm resistance, R_a , which is specified as the channel factor. The default is 350 Ω .

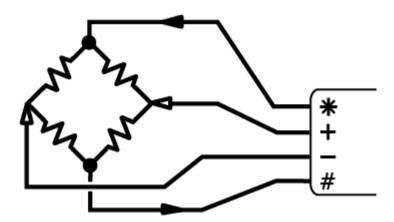


Figure 130: B2 Wiring for 4 wire bridge input using internal excitation

To measure	Use the command
bridge output	$1BGI(4W, R_a)$

B5 - 3-Wire BGI Input

In this configuration Rc may be either an active gauge (if the strain on it is in the opposite direction to that on Ra and of the same magnitude) or a completion resistor. For temperature compensation, Rc can also be a gauge which has the same temperature characteristics as Ra but is not under any strain.

The resistances of Rc and Ra should be equal, and must be specified as the channel factor (max. $5k\Omega$, default is 350Ω).

This configuration simulates a bridge by using the DT80's 3-wire compensation circuit to "compensate" for the voltage drop across Rc. The end result is that, like a bridge, the DT80 measures the <u>difference</u> between the voltages across the two arms.

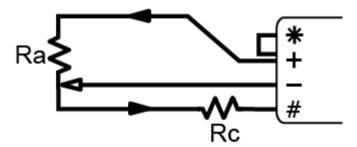


Figure 131: B3 Wiring for 3 wire bridge input using internal current excitation

To measure	Use the command
bridge output	1BGI (<i>R_a</i>)

Temperature – Thermocouples

Thermocouple Theory

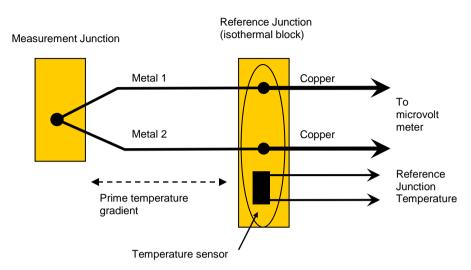


Figure 132: Thermocouple principle of operation

A thermocouple consists of two wires of dissimilar metals that are

- · electrically connected at one end (the measurement junction) and
- thermally connected at the other end (the reference, or "cold" junction).
- A small voltage is produced when the two junctions are at different temperatures. (The voltage is produced by the temperature gradient along the wires, not by the junctions.)

Making The Measurement Junction

The measurement junction can be made by welding, brazing, soldering or crimping the two wires together. Take care to ensure that the wire material is not contaminated where the temperature gradient is to occur.

The junction can be insulated, or left bare for a more rapid response. If left bare, ensure that the junction does not make intermittent contact with metal objects. This can introduce electrical noise.

Sometimes thermocouple measurement junctions are electrically connected (by welding, brazing, soldering or by contact) to the object being measured. This is only possible if the object is grounded to the *DT80*'s analog ground terminal **AGND/EXT#**, or if the voltage on the object relative to the *DT80*'s analog ground is within the *DT80*'s common mode limits.

* Reference Junction Compensation

Conventionally, the reference junction is held at 0°C, and thermocouple responses are determined with a 0°C reference. This is inconvenient in most situations and so, in practice, the reference junction is allowed to follow to ambient temperature. Then this non-zero reference junction temperature must be compensated for by measuring the reference temperature with another temperature sensor. The *DT80* does this compensation automatically when a thermocouple channel type is selected.

❖ Isothermal Block

Generally the reference junctions and the associated temperature sensor are held at the same temperature by a physical arrangement that ensures good thermal conductivity between the junctions. This structure is called an "isothermal block". It is advisable to insulate the isothermal block from rapid ambient temperature changes.

Channel Types

The DT80 supports all commonly-recognized thermocouple types:

Туре	Positive	Negative	Range
В	Pt, 30%Rh	Pt, 6%Rh	+50 - +1820 °C
C	W, 5%Re	W, 26% Re	0 - +2320 °C
D	W, 3%Re	W, 25%Re	0 - +2320 °C
E	Ni, 10%Cr	Cu, 45%Ni	-270 - +1000 °C
G	W	W, 26% Re	0 - +2320 °C
J	Fe	Cu, 45% Ni	-210 - +1200 °C
K	Ni, 10%Cr	Ni,2%Mn, 2%Al	-270 - +1372 °C

N	Ni, 14%Cr, 1%Si	Ni, 4%Si, 0.1%Mg	-270 - +1300 °C
R	Pt, 13%Rh	Pt	-50 - +1768 °C
S	Pt, 10%Rh	Pt	-50 - +1768 °C
T	Cu	Cu, 45%Ni	-270 - +400 °C

Each type has characteristics (sensitivity, stability, temperature range, robustness and cost) that make it appropriate for particular applications.

The DT80's thermocouple linearisation data are based on the ITS90 International Temperature Scale.

Channel Options

The applicable channel options for thermocouples are as follows

- GLx, ESn, as for voltage measurements
- the channel factor specifies a scaling factor, as for voltage channels
- If an external isothermal block is used then the **TR** (temperature reference) and/or **TZ** (electrical zero reference) options should be specified for the channels used to measure reference junction temperature and reference junction electrical zero. See *Isothermal Block Support* (P316) below.

Using Thermocouples with the DT80

Thermocouples are wired to the DT80 as for any other voltage input, see Voltage (P300). Be sure to connect the thermocouple the right way around – for K type thermocouples the <u>red</u> wire is normally <u>negative</u> and would therefore be wired to the # or – terminal.

The channel type is a $\mathbf{T}t$ where t is the thermocouple type. So to measure a K-type thermocouple you would use the $\mathbf{T}K$ channel type, e.g. $\mathbf{4}\mathbf{T}K$ for a thermocouple wired to channel 4's + and – terminals, or $\mathbf{4}\mathbf{-T}K$ if the thermocouple is wired between – and #.

Using the thermocouple channel type reads the channel as a voltage and automatically applies reference junction compensation and linearization.

By default, the *DT80* uses an internal temperature sensor to measure the reference junction temperature. You can check the reading of this sensor using the **REFT** channel type.

Each CEM20 channel expansion module includes its own temperature sensor, which is used for any thermocouple measurements made using that CEM20. This sensor can be read using the nREFT channel type, where n is the CEM number (1-15).

Isothermal Block Support

For higher accuracy measurements, the *DT80* also supports the use of an external **isothermal block**. In this case the isothermal block's temperature sensor is measured by a separate *DT80* channel. This channel uses the **TR** channel option to identify it as the temperature reference – its reading will then be used as the reference for all subsequent thermocouple measurements in that schedule.

For example:

```
RA10S 5AD590(TR) 1..4TT
```

In this example four T-type thermocouples are measured. Their reference junctions are enclosed in an isothermal block, along with an AD590 temperature sensor, which is connected to analog channel 5.

If the isothermal block is already compensated (i.e. it is held at 0°C) then it is not necessary to measure its temperature. Instead, use **11SV(TR)** as reference channel (system variable 11SV always returns 0.0).

To further enhance accuracy, you can use another *DT80* channel to measure the electrical "zero" at the isothermal block in order to compensate for any voltage offsets between the logger and the reference junctions. This is done by running a separate pair of wires (similar to those used for the thermocouple channels) from the *DT80* to the isothermal block, at which point they are shorted together. A voltage channel is then used to measure the offset voltage and the **TZ** channel option is specified. This will cause all subsequent thermocouple channels in the same schedule to use this value as their zero, rather then the *DT80*'s internal zero. For example:

```
RA10S 5AD590(TR) 6V(TZ) 1..4TT
```

Note If a TR/TZ channel is used, it must precede the thermocouple channel(s) to which it applies, and be in the same sampling schedule. If a statistical option (e.g. AV, MX) is applied to a thermocouple channel then the sampling schedule is the statistical schedule, so the reference channel must be sampled in the statistical schedule too. This can be achieved by applying a statistical option to the reference channel, e.g.

RS1S

```
RA1M 5PT385(TR,AV,W) 1..2TE(AV) 3TK
```

In this example, the PT385 will be read once a second, and will be used as the cold junction reference for the two subsequent TE thermocouple measurements. The average thermocouple readings will then be reported once a minute. The third thermocouple (3TK) is not sampled in the statistical schedule, and will use the default internal temperature reference.

Accuracy — Thermocouple Techniques

The accuracy of temperature measurement with thermocouples depends on

- the reference junction isothermal characteristics
- the reference temperature sensor accuracy
- induced electrical noise
- the quality of the thermocouple wire
- drift in the wire characteristics, especially at high temperatures
- the basic measurement accuracy of the DT80
- the linearization accuracy of the DT80.

* Reference Junction Error

The most significant source of error is the reference junction. The *DT80* must not be exposed to non-uniform heating because a single reference temperature sensor is used to measure the temperature of the terminals of all channels. If a temperature gradient occurs along the terminals, errors of the magnitude of the temperature difference occur.

For the DT80/81, the reference temperature sensor is positioned behind analog channels 2 and 4, and behind channel 10 on the DT85. Therefore, when precise temperature measurements are required, attach thermocouples here for the least temperature differential from the *DT80*'s reference temperature.

❖ Linearization Error

The DT80's linearization errors are much lower (< 0.1°C over the full range) than other error sources.

Temperature – Thermistors

Thermistors are devices that change their electrical resistance with temperature. They measure temperatures from –80°C up to 250°C, and are sensitive but highly nonlinear.

Thermistors may be connected using any of the resistance wiring configurations, i.e. in 2-wire, 3-wire or 4-wire configuration. See *Resistance* (P305)

Channel Types

The DT80 has channel types for many 2-wire YSI (Yellow Springs Instruments) thermistors and, for other thermistor types, the DT80 supports thermistor scaling — see *Thermistor Scaling* (P62).

Channel Type	R (ohms) at 25°C	YSI Thermistor	Max. Temp °C	Min. Temp °C (without Rp)
YS01	100	44001A, 44101A	100	– 75
YS02	300	44002A, 44102A	100	- 50
YS03	1000	44003A, 44103A	100	-25
		44035	100	
YS04	2252	44004, 44104	150	- 5
		44033	75	
		45004, 46004	200	
		46033, 46043		
		44901	90	
		44902	70	
YS05	3000	44005, 44105	150	0
		44030	75	
		45005, 46005	200	
		46030, 46040		
		44903	90	
		44904	70	
YS07	5000	44007, 44107	150	10
		44034	75	
		45007, 46007	250	
		46034, 46044		
		44905	90	
		44906	70	
YS17	6000	44017, 44117	150	15
		45017	250	
		46017	200	
		46037, 46047		
YS16	10k	44016, 44116	150	25
		44036	75	
		46036	200	
YS06	10k	44006, 44106	150	25
		44031	75	
		45006	250	
		46006	200	
		46031, 46041		
		44907	90	
		44908	70	

Channel Options

The following channel options are useful with thermistors (YSnn channel type):

- 3W, 4W can be used to select the wiring configuration, as with any resistance measurement
- I, II can be used to set the excitation. For thermistors the I (200µA) option should normally be used, to minimise any self-heating effects which may occur with higher excitation currents.
- the **channel factor** is the value of an optional parallel resistor, *Rp*, which can be used to extend the temperature range, as described below.

Reading Low Temperatures with Thermistors

Most thermistors increase in resistance as the measured temperature decreases (i.e. they have a negative temperature coefficient). They tend to be quite non linear and increase in resistance rapidly as the temperature falls into the lower part of the sensing range.

The DT80 has an upper limit of $10k\Omega$ for resistance measurement which can limit the usable sensing range of thermistors. To overcome this you can use a parallel resistor to scale the output of the thermistor back into the measurement range of the logger, as described in R6 – High Resistance Input with Parallel Resistor (P309)

For **YS**nn thermistors, the value of the parallel resistor can be specified as the channel factor and the *DT80* will automatically scale the measured value appropriately. For example, a **YS**06 thermistor has a resistance of approximately $80k\Omega$ at -20° C, so to measure down to this temperature a parallel resistor of about $10k\Omega$ would be suitable. You would then read the channel using

1YS06(10000)

i.e. the channel factor indicates that a 10000Ω parallel resistor is being used.

If a custom thermistor scaling function is being used then the correction will need to be done using channel variables or references, as described in *R6 – High Resistance Input with Parallel Resistor* (P309).

Temperature – RTDs

Resistance Temperature Detectors are sensors generally made from a pure (or lightly doped) metal whose electrical resistance increases with temperature. Provided that the element is not mechanically stressed and is not contaminated by impurities, the devices are stable, reliable and accurate.

Channel Types

The DT80 supports four RTD types:

Channel Type	Metal	Default 0°C ohms	Alpha	Standard
PT385	Platinum	100	0.003850	DIN43760 (European)
PT392	Platinum	100	0.003916	JIS C1604 (American)
NI	Nickel	1000	0.005001	
CU	Copper	100	0.00390	

The alpha is defined by:

$$\alpha = \frac{R_{100} - R_0}{100R_0} \quad \text{O/O/°C}$$

where R_0 is the resistance at 0°C and R_{100} is the resistance at 100°C.

The 0°C resistance is assumed to be 100Ω for platinum (PT100), and 1000Ω for nickel types. Other values can be specified as a channel option.

Channel Options

The following channel options are useful with RTD channel types:

- 3W, 4W can be used to select the wiring configuration, as with any resistance measurement
- I, II can be used to set the excitation. For the Platinum and Copper RTDs, the II (2.5mA) option (which is the
 default) should normally be used, to provide good measurement resolution for the relatively low resistance value being
 measured. If self-heating is a concern, the I (200μA) excitation option can also be used. For the higher resistance
 Nickel type, I (200μA) is the default.
- the channel factor is the 0°C value of the RTD, e.g. 100 for a PT100 sensor. The default value for each type is shown in the table above.

For example,

PT385(4W,50)

reads a 4-wire 50Ω (at 0°C) device.

Temperature – AD590 Series IC Sensors

AD590 series sensors are 2-terminal semiconductor devices which produce a <u>current</u> that is proportional to absolute temperature. This makes them useful with long lead lengths. Supply voltage is typically 4-30V.

Channel Types

The following channel types are supported. All operate identically.

Channel Type	Description	Range
AD590	1μA / K	-55 - +105 °C
AD592	1µA / K	-25 - +105 °C
TMP17	1μA / K	-40 - +105 °C

Channel Options

The following channel options are sometimes used when measuring AD590 series devices:

- the excitation options specify how the sensor is powered: **V** (use internal 4.5V voltage source; default), **E** (external supply connected to **EXT*** terminal) or **N** (external supply).
- MDn (measurement delay) specifies that the DT80 should wait n ms (default 10ms) after selecting a channel before starting the actual measurement. This can be useful in conjunction with the E or V option, as it allows the sensor some time to stabilise after power is applied to it.
- the **channel factor** specifies the shunt resistance in ohms (default 100.0Ω), as for current measurements
- GLx, ESn, as for voltage measurements

Calibration

The channel factor (shunt resistor value) can also be used as a calibration factor. For example, if the sensor reads 290.7K when the actual temperature is 289.5K (an error of +1.2K) then the required scaling factor would be 1 - (1.2 / 289.5) = 0.9959, which would then be multiplied by the nominal shunt resistance (100). So the correction would be applied as: 1AD590(99.59)

Note that if the *DT80*'s internal shunt is used (e.g. **1#AD590**), then you need to specify the shunt resistor's <u>nominal</u> resistance as the channel factor when doing the calibration measurement, i.e. **1#AD590(100)**. If this is not done then the *DT80* will use the <u>actual</u> shunt resistance (which it determines during its self calibration process), which will upset the above calculation because you won't know what to multiply the scaling factor by.

IC1 – 2-Wire AD590-Series Inputs

The wiring configuration shown below uses the *DT80*'s internal voltage excitation to power the sensor, and the internal shunt resistor to measure the output current.

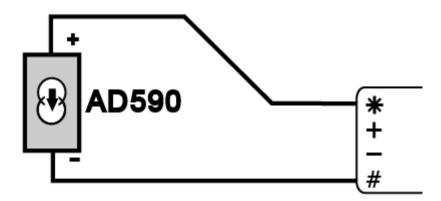


Figure 133: Wiring for AD590 series input using internal shunt

To measure	Use the command
temperature	1#AD590

Other Wiring Options

External shunts and/or external power supplies (as per the wiring configurations for current) can also be used to allow more sensors to be measured per channel.

For example, the configuration shown in C1 – Shared-Terminal Current Inputs with External Shunts (P303) could be used to allow three AD590s to be measured on the one channel. Note that in this case the \mathbb{N} channel option would be required, in order to disable the default voltage excitation output on the * terminal, i.e.

To measure temperature	Use the command
l1	1*AD590(N,R1)
12	1+AD590(N,R2)
13	1-AD590(N,R3)

Alternatively, separately connected shunts could be used, as shown in *C2 – Independent Current Inputs with External Shunts* (P304). That is:

	To measure temperature	Use the command
Ī	l1	1AD590(N,R1)
Ī	12	1*AD590(N, R2)

Temperature – LM35 Series IC Sensors

LM35 series sensors are 3-terminal semiconductor devices which produce a <u>voltage</u> output that is proportional to temperature. Supply voltage is typically 4-30V.

Channel Types

The following channel types are supported:

Channel Types	Description	Range
LM34	10mV/°F	-50 - +300 °F
LM35	10mV/°C	-55 - +150 °C
LM45	10mV/°C	-20 - +100 °C
LM50	10mV/°C + 500mV	-40 - +125 °C
LM60	6.25mV/°C + 424mV	-40 - +125 °C
TMP35	10mV/°C	-40 - +125 °C
TMP36	10mV/°C + 500mV	-40 - +125 °C
TMP37	20mV/°C	-40 - +125 °C

The devices with a voltage offset (LM50, LM60 and TMP36) allow negative temperatures to be read without additional components.

Channel Options

The following channel options are sometimes used when measuring LM35 series devices:

- the excitation options specify how the sensor is powered: **v** (use internal 4.5V voltage source; default), **E** (external supply connected to **EXT*** terminal) or **N** (external supply).
- MDn (measurement delay) specifies that the DT80 should wait n ms (default 10ms) after selecting a channel before starting the actual measurement. This can be useful in conjunction with the **E** or **V** option, as it allows the sensor some time to stabilise after power is applied to it.
- the channel factor specifies an offset adjustment, in °C
- GLx, ESn, as for voltage measurements

Calibration

For LM35 series sensors, the channel factor is an <u>offset</u> correction, in $^{\circ}$ C. So if the sensor reads 25.4 $^{\circ}$ C when the actual temperature is 25.0 $^{\circ}$ C (an error of +0.4 $^{\circ}$ C) then the channel factor would simply be specified as:

4+LM35(0.4)

IC2 - LM35-Series Inputs

In this wiring configuration the sensor is powered by the *DT80*'s 4.5V voltage excitation. This single-ended supply means that the sensor's output voltage will not be able to go below about 100mV. For devices with no offset voltage (e.g. LM35) this restricts the minimum usable temperature to 10°C (for LM35).

Accuracy can be improved by replacing the link wire between the # and – terminals with a wire from the – terminal of the logger to the – terminal of the sensor. This will compensate for voltage drops due to cable resistance, similar to a 4-wire resistance measurement.

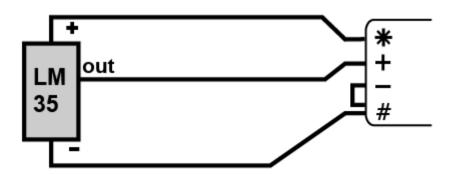


Figure 134: L2 Wiring for LM35 series input – restricted temperature range

To measure	Use the command	
temperature	1LM35	

IC3 – LM35-Series Inputs – full temperature range

This wiring configuration biases the negative terminal of the device to allow negative temperatures to be read. Refer to the manufacturer's data sheet for more details.

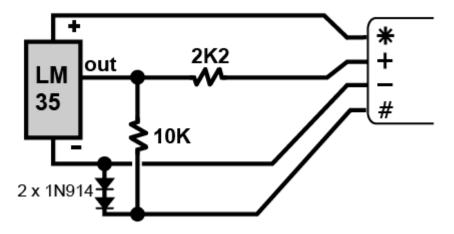


Figure 135: Wiring for LM35 series input - full temperature range

To measure	Use the command
temperature	1LM35

Other Wiring Options

Shared input configurations and/or external power supplies (as per the wiring configurations for Voltage) can also be used to allow more sensors to be measured per channel.

For example, the configuration shown in $V1-Shared-Terminal\ Voltage\ Inputs\ (P302)\$ could be used to allow three externally powered LM35s to be measured on the one channel. That is, an external 4-30V dc supply powers the three sensors' + and – terminals, with the – terminals also connected to the DT80's # terminal. The three out terminals would then connect to the DT80's *, + and – terminals. These sensors could then be read using 1*LM35(N), 1+LM35(N) and 1-LM35(N) respectively. Note that in this case the N channel option is required in order to disable the default voltage excitation output on the * terminal.

Temperature – LM135 Series IC Sensors

LM135 series sensors are 2-terminal zener diode based sensors which produce a <u>voltage</u> output that is proportional to absolute temperature. Operating current is typically 0.5 – 5mA.

Channel Types

The following channel types are supported:

Channel Types	Description	Range
LM135	10mV / K	-55 - +150 °C
LM235	10mV / K	-40 - +125 °C
LM335	10mV / K	-40 - +100 °C

Channel Options

The following channel options are sometimes used when measuring LM35 series devices:

- the excitation options specify how the sensor is powered: **v** (use internal 4.5V voltage source; default), **E** (external supply connected to **EXT*** terminal) or **N** (external supply).
- MDn (measurement delay) specifies that the DT80 should wait n ms (default 10ms) after selecting a channel before starting the actual measurement. This can be useful in conjunction with the E or V option, as it allows the sensor some time to stabilise after power is applied to it.
- GLx, ESn, as for voltage measurements
- the **channel factor** specifies a voltage divider value.

Note A 2:1 voltage divider is normally used to ensure that the output of the sensor stays within the *DT80*'s 3V input range. The <u>default channel factor is therefore 2.0</u> for these channel types. If a different voltage divider ratio is used then an appropriate channel factor must be specified, e.g. if there is no divider then specify **1LM335(1)**.

Calibration

For LM135 series sensors, the channel factor specifies a voltage divider ratio, which can be used to correct a slope error based on a single point calibration. For example, suppose an LM135 is connected using a 2:1 voltage divider as shown in the wiring diagram. If the channel then reads 301.0K when the actual temperature is 302.4K (an error of -1.4K) then the required scaling factor would be 2 - (-1.4 / 302.4) = 2.0046, which would be applied as:

2LM135(2.0046)

Most LM135 series devices also provide an ADJ pin which allows the connection of an optional external trimpot.

IC4 – 4-Wire LM135-Series Inputs

In this wiring configuration the *DT80*'s 4.5V voltage excitation is used to power the sensor (via an internal current limiting resistor). The output voltage then feeds a 2:1 voltage divider and is measured using the *DT80*'s + and – inputs.

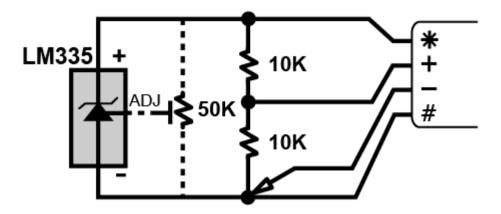


Figure 136: Wiring for LM135 series input

To measure	Use the command
temperature	1LM335

Humidity Sensors

Relative humidity is commonly measured by the "wet bulb depression" method. Two temperature sensors are required, one to measure air temperature and the other the cooling effect of a wetted surface. Usually a temperature sensor is encased in a wick extending into a reservoir of distilled water. The temperature difference between the two sensors is the wet bulb depression.

The choice of temperature sensors is critical if reasonable accuracy is required at high relative humidity where the wet bulb depression is small. If platinum RTDs are used they should have good accuracy or matching (0.2°C).

Good accuracy can also be achieved by use of a temperature difference sensor such as a thermocouple or thermopile. Measure the dry bulb with a standard grade temperature sensor and subtract the difference sensor reading to obtain the wet bulb temperature.

The sensors are normally placed within a radiation screen to prevent radiant heat affecting the readings. This is particularly important for outdoor applications.

❖ Example — Humidity Measurement

The following program reads two RTDs and calculates the relative humidity with an accuracy of a few percent for temperature above 5°C and over most of the relative humidity range (the algorithm assumes that the sensors are ventilated but not aspirated).

```
BEGIN"STICKY"
Y1=6.1,0.44,0.014,2.71E-4,2.73E-6,2.75E-8 'SVP polynomial RA5S

1PT385("Dry bulb",4W)
2PT385("Wet bulb",4W)
3CV(Y1,W)=&"Dry bulb"
4CV(Y1,W)=&"Wet bulb"
5CV("RH%",FF1)=(4CV-0.8*(1CV-2CV))/3CV
END
```

Frequency

The frequency of an analog input signal can be measured using the F channel type, which returns a value in Hz.

Any of the Voltage wiring configurations may be used (P300).

Note that the default threshold point is 0V, so the input signal must have zero crossings in order to be measured. If this is not the case (e.g. for a logic signal), the 2V channel option can be used to change the threshold point to +2.5V.

Channel Options

Useful channel options for **F** channels are:

- the **channel factor** this is the sample period (gate time) in ms (default is 30ms)
- 2V this option will offset input signal by -2.5V. This effectively changes the threshold point from 0V to approx. +2.5V, which is useful for TTL level inputs
- GLx, ESn, as for voltage measurements

Note For DT80/81 Series 1 loggers, the **2V** channel option is <u>not</u> supported for differential measurements (measurements between the + and – terminals, e.g. **1F**)

Note For frequency measurements, the maximum gain range (30mV full scale) is not available. The **GL30MV** option is therefore not valid for this channel type.

The range of frequencies that can be measured depends on the configured sample period (channel factor). For the default setting of 30ms, this range is approximately 33Hz – 20kHz. If the input frequency is too low to be measured, UnderRange will be returned.

To measure lower frequencies, the sample period should be increased. For example **3F(1000)**

will measure down to 1Hz (upper limit is still 20kHz), while 3F(10000)

will allow frequencies down to 0.1Hz to be resolved.

The drawback to selecting a long sample period is that the measurement will take a long time to complete. This may delay the execution of other schedules.

Period Measurement

The period of a signal can be measured by taking the reciprocal of a frequency measurement, e.g.:

will return the period, in seconds, of an TTL-level logic signal connected between **3+** and **3#**. Given the 1000ms sample period, the maximum period that can be returned will be approximately 1.0s. The **F1** option applies intrinsic function #1 (1/x).

Strain Gauges - Bridge

Bridge Wiring Configurations

Strain gauges change resistance when stretched or compressed. They are commonly wired in a **bridge** configuration, because bridges are well suited to measuring small changes in resistance; see *Bridges* (P309).

Each of the arms of the bridge can be either:

- an active element: a strain gauge which is subjected to the forces acting on the structure
- a temperature compensation element: a strain gauge which is not stressed but which has similar temperature
 coefficient to the active gauge. This is used to cancel out any changes to the active gauge's resistance due to
 temperature effects.
- a completion resistor: a precision resistor whose resistance is equal to the nominal (at rest) strain gauge resistance.

A **full bridge** has four active gauges, typically two on one side of a structure (in tension) and two on the other (in compression). A **half bridge** has two active gauges; the other two arms are temperature compensation gauges or completion resistors. Finally a **quarter bridge** has only one active gauge.

Calculating Strain

The strain-to-resistance relationship is

$$strain = \frac{\Delta L}{L} = \frac{1}{G} \cdot \frac{\Delta R}{R}$$

where:

- L is the original length
- ΔL is the length change
- R is the original gauge resistance
- ΔR is the gauge resistance change
- **G** is the gauge factor, a measure of the sensitivity of the gauge (typical foil gauges have a gauge factor of 2.0, which means that if they are stretched by 1% their resistance changes by 2%)

Strain is a dimensionless quantity, as it is a ratio of length to length. Strain is often expressed in ppm form (i.e. the length ratio is multiplied by 1,000,000), in which case it has the units of **µStrain** (microstrain).

To convert the DT80's ppm bridge readings to strain, use the formula:

$$strain = \frac{4}{G \cdot N} B_{out}$$
 µStrain

where

- **B**_{out} is the *DT80*'s bridge channel (**BGV** or **BGI**) result (ppm)
- **G** is the gauge factor
- N is the number of active gauges in the bridge

The conversion can be done in the DT80 by applying a polynomial as a channel option (see Polynomials (P62)):

```
Y1=0, k"uStrain" ' Polynomial definition
3BGV(Y1) ' Bridge channel
```

where k = 4 / GN

For the 3-wire BGI "simulated bridge" configuration (see B5-3-Wire BGI Input (P314)) the formula to convert ppm reading to strain is slightly different:

$$strain = \frac{2}{G \cdot N} B_{out}$$
 µStrain

Strain Gauges - Vibrating Wire

DT80G/85G GeoLogger only

Vibrating wire strain gauges (VWSGs) are widely used for measuring strain in geotechnical applications. A gauge consists of a tensioned steel wire whose resonant frequency changes as deflections causes the wire's tension to change.

The DT80G/85G GeoLoggers include special hardware to support VW gauges. This works by generating a short electrical pulse to "pluck" the gauge, then measuring the resulting frequency as it resonates. The strain experienced by the gauge is proportional to the square of the resonant frequency minus the square of the "at rest" resonant frequency.

The **FW** channel type is used to measure the frequency of a VWSG. This operates in a similar way to the regular frequency channel type (**F**), except that the defaults for some options are different.

Channel Options

The following channel options are relevant for the FW channel type:

- the channel factor this is the sample period (gate time) in ms (default is <u>200ms</u>)
- MD (measurement delay) is important, as described below (default is 350ms)

Note that channel options relating to the *DT80*'s instrumentation amplifier, e.g. **GL**x (gain lock) and **A** (attenuators), are <u>not</u> relevant for **FW** channels because much of the normal input circuitry is bypassed when performing a VWSG measurement.

VS1 – Vibrating Wire Strain Gauge and Thermistor

VW gauges can be connected to the *DT80* as for any other voltage input. For example, up to three gauges could be connected to one channel using the configuration shown in *V1 – Shared-Terminal Voltage Inputs* (P302)

Often the gauge will include an integral thermistor, to allow temperature corrections to be made. In this case it is often convenient to read both the thermistor and the gauge using a single *DT80* analog channel, as shown below.

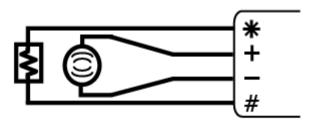


Figure 137: Wiring for vibrating wire strain gauge with thermistor

To measure	Use the command
strain	1FW
temperature	1*YS01 (for example)

Measurement Timing

When an FW channel is evaluated, the measurement process is as follows:

- 1. The pluck circuit begins charging. The MD timer starts here also.
- After about 100ms, the pluck circuit releases its energy in the form of a narrow high voltage pulse. Inside the sensor this causes the wire to start vibrating. The resonant frequency will typically be in the range 500-5000Hz.

- 3. Once the pluck is complete (about 0.2ms), the *DT80* disconnects the pluck circuit and begins listening to the sensor. Inside the sensor the wire's vibrations are sensed and a corresponding electrical signal is generated.
- 4. Over the next 100-200ms the *DT80*'s phase locked loop (PLL) locks on to the fundamental frequency and filters out noise and harmonics. During this time the amplitude of the signal gradually decays as wire's vibrations decay.
- 5. Once the MD timer expires the DT80 will begin measuring the frequency of the filtered signal.
- 6. Once the required sample period (gate time) has elapsed, the DT80 reports the measured frequency value.

It is important that the measurement delay is set such that the incoming signal is stable and of adequate amplitude for the duration of the measurement period. The default value is suitable for most gauges, but in some cases it may need adjustment, as discussed in *Measurement Delay and Sample Period* (P326).

Troubleshooting

Listening to the Gauge

The DT80G/85G GeoLoggers provide a headphone output socket which can be useful in diagnosing problems, given that the sensor's vibration falls within the audible frequency range (500-5000Hz).

To check a gauge, connect headphones or speakers, then enter the following:

P21=1 this keeps the DT80's analog section powered after the end of the measurement

P62=1 this maintains the multiplexer settings after the end of the measurement

1FW this samples the VWSG connected to, in this case, channel 1 + and – terminals.

Each time you send the FW command you should hear a clear "ping" sound which decays over a period of a few seconds. If not:

- If there is no sound or only random noise, double check that you entered the correct channel number. Check all
 connections. Check the resistance of the gauge by connecting it to the * and # terminals then entering 1*R several
 times. These 2-wire resistance measurements should return stable values. If not then a cable or gauge fault is
 indicated.
- If a ping can be heard but it is faint or buried in random noise, then the cable is too long or is "leaky", or the gauge sensitivity is too low.
- If the ping is not clean and pure, then the gauge is possibly faulty. The gauge may have been mechanically damaged during installation.
- If you can hear a low frequency hum, then noise pick is a problem. If the gauge is placed near a transformer, electric motor, high current power cables, etc, then relocate or reorient the gauge for minimum pickup. Ensure that the cable is shielded to prevent capacitive pickup. (Connect the shield to DGND or the *DT80* chassis earth point.)

Be sure to reset the P21 and P62 settings when finished.

* Measurement Delay and Sample Period

If a strong and clear signal is heard, but the frequency measurements are unstable (variations of 10-20Hz or more) then there may be strong harmonics present in the gauge's vibration. Because harmonics usually decay faster than the fundamental, it will often help to increase the MD setting. This will mean that the actual frequency measurement phase starts later, at which point the amplitude of the harmonics should be less. If the measurement delay is increased too much, however, the overall signal amplitude may decay below the noise level.

If the signal is clear but decays rapidly then the default $\[mathbb{MD}\]$ setting may in fact be too long – by the time the measurement completes the signal has decayed to nothing.

Some trial and error may be required to find optimal settings. The recommended procedure is as follows. For each step perform several measurements in order to gauge the stability of the readings.

- 1. Start with minimum values for measurement delay and sample period, e.g. 1FW(MD150,30)
- 2. Increase the MD setting in, say, 20ms steps until stable readings are obtained, then go one step further.
- 3. Further improvement can usually be obtained by progressively increasing the sample period so that the frequency is measured over a longer time interval. If this is increased too far however then the signal amplitude will descend into the nose and readings will get rapidly worse.

Converting Frequency to Strain

As mentioned above, the strain experienced by a VWSG is proportional to the change in the square of the resonant frequency. That is:

$$strain = G(f^2 - f_0^2)$$

where:

- **G** is the gauge factor (supplied by the manufacturer)
- f is the measured frequency
- f₀ is the zero or "at rest" frequency

It is therefore necessary to take a zero reading, after installation of the gauge. This value should be recorded; it can then be used in a *DT80* program in order to return strain, e.g.

BEGIN

```
RA1M

1FW("freq",W)

CALC("strain")=G*(&freq^2-f_0^2)

read the frequency

calculate the strain, given gauge factor G and zero frequency f_0
```

Temperature Correction

As the temperature of the VWSG changes, the steel wire will expand or contract. Its change in length is proportional to the change in temperature. A temperature change will therefore cause an addition or reduction to the measured strain. That is:

$$strain = G(f^2 - f_0^2) + C(T - T_0)$$

where:

- C is the temperature correction factor (supplied by the manufacturer; this is basically the coefficient of thermal expansion for the grade of steel used for the wire)
- T is the current temperature
- T₀ is the temperature at which the zero frequency measurement was taken

So if the gauge incorporates a **YS04** thermistor and is wired as per *VS1 – Vibrating Wire Strain Gauge and Thermistor* (P325) then a typical program might be:

```
RA1M

1FW("freq",W) read the frequency

1*YS04("temp") read the temperature

CALC("strain")=G*(&freq^2-f_0^2)+C*(&temp-T_0) calculate the strain and apply temperature correction
```

Strain Gauges - Carlson Meter

A Carlson meter consists of two tensioned steel wires (connected in series) whose resistance changes as they are strained. The wires are arranged so that a given strain causes the resistance of one wire to increase and the other to decrease. The strain is then proportional to the ratio of the two resistances.

The resistance labelled R1 in the wiring diagrams is the **expansion** wire (its resistance increases as the gauge is stretched), while R2 is the **compression** wire (its resistance increases as the gauge is compressed). Thus when the gauge is stretched, the ratio R1/R2 will increase, resulting in a positive strain reading. Conversely, compression will cause a decrease in ratio R1/R2 and a negative strain reading.

The wire resistances are also temperature dependent. The temperature is proportional to the total resistance, i.e. the <u>sum</u> of the two resistances.

A Carlson stress meter uses the same principle as a strain meter but is designed to indicate **stress** (force per unit area, unit MPa) rather than **strain** (displacement). Stress and strain proportional to each other according to the modulus of elasticity of the material.

Carlson meters are supplied in 3, 4, 5 or 6 wire configurations. The extra wires allow the logger to properly compensate for the cable resistance, which is often an important issue given that meters typically have a total resistance in the range $50-100\Omega$. Standard wire colours are normally (although not universally) used, as shown in the wiring diagrams.

Due to their low resistance, Carlson meters should normally be measured using the high (2.5mA) excitation setting (II channel option).

CS1 - 5 Wire Carlson Meter

The 5-wire configuration allows the *DT80* to perform a 4-wire measurement on each resistance. It can therefore fully compensate for cable resistance, including unequal cable resistances. It does, however, require two analog input channels per sensor.

Sometimes a sixth wire is included – an additional sense wire connected to the junction between the resistors. This can either be ignored or it can be connected to the + input of channel 2 in place of the link shown.

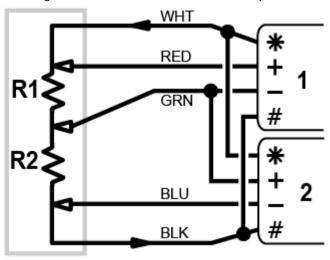


Figure 138: Wiring for 5-wire Carlson Sensor

To measure	Use the command	
R1	1R(4W,II)	
R2	2R(4W,II)	

CS2 – 4 Wire Carlson Sensor

With a 4-wire configuration, the *DT80* is able to compensate for cable resistance, provided that the resistance is equal for all four wires. This is achieved by taking three separate resistance measurements (M1, M2 and M3) which include R1, R2 and the cable resistance (Rc) in various combinations.

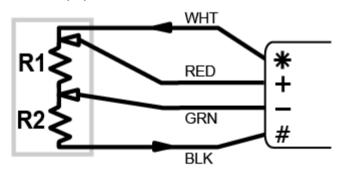


Figure 139: Wiring for 4-wire Carlson Sensor

To measure	Use the command
M1 (R1 + R2 + 2Rc)	1*R(II)
M2 (R1)	1R(4W,II)
M3 (R1 + R2 + Rc)	1+R(II)

Using these three measurements and a little algebra we can eliminate Rc and calculate the actual resistance values:

$$R_1 = M_2$$

 $R_2 = 2M_3 - M_1 - M_2$

For example, the following *DT80* program will calculate the required resistances:

```
BEGIN
RA1M
1*R("M1",II,W)
1R("M2",4W,II,W)
1+R("M3",II,W)
CALC("R1~Ohm")=&M2
```

CALC("R2~Ohm")=2*&M3-&M1-&M2 END

CS3 - 3 Wire Carlson Sensor

With this configuration the *DT80* is not able to take three <u>independent</u> measurements, so automatic lead resistance compensation is not possible.

This configuration will therefore require manual correction for cable resistance (Rc). This can be applied as the channel factor (which, for resistance, is an offset adjustment in ohms). The Rc value may be supplied by the manufacturer, or it can be measured manually (at a typical working temperature).

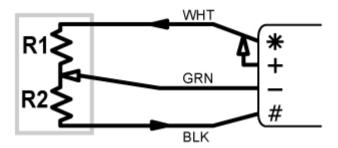


Figure 140: Wiring for 3-wire Carlson Sensor

To measure	Use the command	
R1	1R(4W,II,Rc)	
R2	1-R(II, Rc)	

Calculating Temperature and Strain

* Temperature

The temperature is given by:

$$T = ((R_1 + R_2) - b)a$$

where:

- T is the temperature (°C)
- R_1 and R_2 are the measured resistance values (Ω)
- **b** is the temperature offset: total resistance at 0°C (Ω) (supplied by manufacturer)
- a is the temperature factor: change in temperature per unit change in total resistance (°C/Ω) (supplied by
 manufacturer). In some cases different factors may be supplied for different temperature ranges, e.g. one for above
 0°C and one for below.

This temperature can then be used to correct the stress or strain calculation.

Strain and Stress

In general terms, strain (or stress) is proportional to the change in the ratio R1/R2 relative to some base value, less a correction for expansion due to temperature.

The precise form of the equation for calculating stress/strain will depend on the application and the actual data supplied by the Carlson meter manufacturer. The formula will normally be similar to:

$$strain = G\left(\frac{R_1}{R_2} - Z\right) - CT$$

where:

- *G* is the calibration factor: change in indicated strain per unit change in resistance ratio (supplied by manufacturer). This constant is typically specified as με/0.01%, i.e. microstrain per 0.01% ratio change. For a stress meter the calibration factor units will be different, e.g. kPa/0.01%.
- R₁ and R₂ are the measured resistance values
- **Z** is the "zero" resistance ratio. A value of "R1/R2 at 0°C" may be supplied by manufacturer, or an initial measurement of R1/R2 can be made soon after installation, which will form the zero point for subsequent strain values.
- **C** is the temperature correction factor: change in indicated strain per unit change in temperature (may be supplied by manufacturer) This constant is typically specified as με/°C, i.e. microstrain per °C.
- T is the temperature, as calculated above.

❖ Example

The following example shows how the *DT80* might be used to calculate a strain value. It will most likely need to be adapted to suit the type of sensor and the application. In this case a 5-wire sensor is used, with the manufacturer supplied parameters as shown.

```
BEGIN
' Manufacturer data
b = 68.22 \text{ ohm}
' a = 4.86 degC/ohm
' G = 5.8962 ue/0.01%
z = 1.0137
' C = 10.56 ue/degC
RA12H
 1R(ES5,4W)
                      measure R1, take 5 extra samples to reduce noise
 2R(ES5,4W)
                      measure R2, take 5 extra samples to reduce noise
 CALC("Temp~degC")=((&1R+&2R)-68.22)*4.86
                                                         calculate temperature if required
 CALC("Strain~ue") = 58962*(&1R/&2R-1.0137)-10.56*Temp
                                                                 calculate strain
END
```

So in this case if the measured resistances were R1=36.44 and R2=35.56 then the calculated temperature would be 18.4°C and the strain +457 μ E.

Analog Logic State Inputs

For reading logic states, the *DT80*'s digital inputs (see *Digital Channels* (P332)) are the best option. If there are insufficient digital inputs then the analog inputs can also function as digital inputs, using the **AS** channel type.

The AS channel type detects an input voltage relative to a threshold:

- When the input is above the threshold, 1 is returned.
- When the input is below the threshold, 0 is returned.

Any of the Voltage wiring configurations may be used.

The default threshold is 2500mV, but the channel factor can be used to set any value in mV.

Input attenuators are enabled by default for the AS channel type, allowing input voltages up to 30V.

For example:

```
1AS(1750)
```

configures analog channel 1 as an analog state input with a threshold of 1.75V.

Digital Channels

The DT80 provides:

- 4 bidirectional digital I/O channels (1D-4D) with open drain output driver and pull-up resistor (3 channels 1D-3D for DT81/82E);
- 4 bidirectional digital I/O channels (**5D-8D**) with tri-stateable output driver and weak pull-down resistor (SDI-12 compatible) (1 channel **4D** for DT81/82E, none for DT82I);
- 1 voltage free latching relay contact output (RELAY)
- 1 LED output (Attn)
- 4 hardware counter inputs (1C-4C) which can be used as independent counter channels or as two quadrature (phase encoder) inputs (one only phase encoder input on DT81). Channels 1C and 2C are low threshold capable.

For detailed specifications, see Digital Inputs and Outputs (P384).

About the Digital I/O Channels

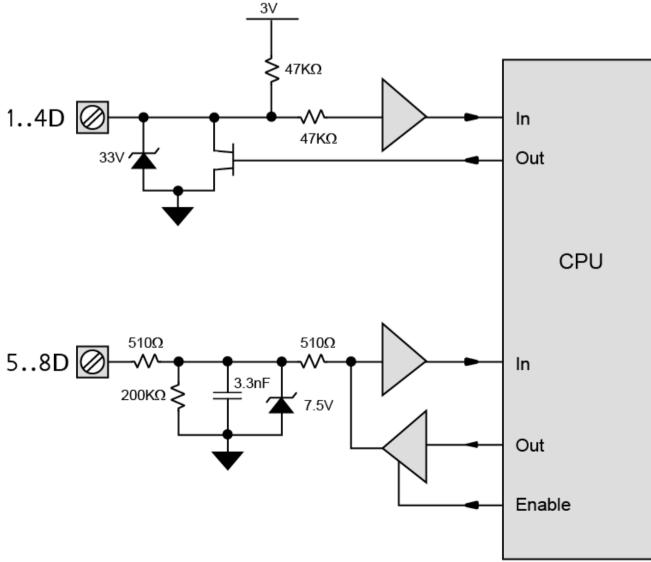


Figure 141 Digital Circuit (DT80 channel numbers shown)

Figure 135 shows a simplified circuit diagram for the DT80's eight digital I/O channels. As can be seen, the channels can be divided into two groups, **1D-4D** and **5D-8D** (**1D-3D** and **4D** for DT81/82E). While these two groups have different hardware characteristics (discussed below), all eight channels are accessed and used in much the same way.

Each of the digital channels is bidirectional: it can be used as either:

- a digital input (for monitoring the state of a relay or logic signal), or
- a digital output (for driving a relay or other control device)

Warning Beware of conflicts when using the *DT80*'s bi-directional digital channels (**1D** to **8D**). For example, if a device such as a PLC is actively driving one of these channels and you program the *DT80* to also drive the same channel as an output (for example, **1DSO=0**), then a conflict exists. This has the potential to damage the digital channel or the driving source. We recommend placing a series resistor between the digital channel and the signal source to limit the current that can be driven into the channel. When choosing the resistor's value and power rating, be sure to consider the source's output voltage, drive current and operating frequency.

Digital Inputs

The DT80's 8 digital I/O terminals (4 for DT81/82E) can be read individually, or can be read as 4 or 8 bit words.

The following channel types are used to read the states of digital inputs:

Channel Type	Valid Channel Numbers	Description
DS	1-8 (DT80/85)	Digital State: returns the state of digital input; 0=low, 1=high
	1-4 (DT81/82)	
DN	1-5 (DT80/85) 1 (DT81/82)	Digital Nybble : returns the state of four consecutive digital inputs starting at the specified input as a 4-bit number (0-15). The specified input will form the least significant bit of the result.
DB	1	Digital Byte : returns the state of all eight digital inputs as an 8-bit number (0-255). Input 1D is the least significant bit.

For example, if channel 3DN returns the value 13 (binary 1101) then this indicates that input 3D (lsb) is high, 4D is low, 5D is high and 6D (msb) is high

Channel Options

The following channel options are applicable to digital input channel types:

• **channel factor**: for the multi-bit channel types (**DN**, **DB**), the channel factor is a bitmask which specifies which digital inputs to read. The default values for **DN** and **DB** are 15 and 255 respectively (i.e. read all bits)

For example, 2DN (7) (bitmask = 0111 binary) will return the state of inputs 2D, 3D and 4D in bits 0 (lsb), 1 and 2 respectively. For input 5D the mask bit is zero so it is not read and bit 3 (msb) of the returned value will always be zero. 5D can then be used as an output if desired, e.g.

2DN(7) simultaneously read inputs 2D,3D,4D 5DSO=1 drive 5D as an output

Connecting to Digital Inputs

The two groups of digital input channels have different electrical characteristics. In particular:

- Inputs 1D-4D (1D-3D for DT81/82E) include a 47k pull-up resistor. The default state (if nothing is connected) is therefore high. This in turn means that channels 1..4DS will return 1 if the inputs are not connected.
- Inputs **5D-8D** (**4D** for DT81/82E, none for DT82I) include a 200k pull-down resistor. Their default state is therefore <u>low</u> (0). So if all 8 inputs are disconnected then **1DB** will return 15 (00001111).

Warning The *DT80*'s digital inputs are <u>not</u> reverse-polarity-protected. Therefore ensure signal polarity is correct — positive to numbered terminals, negative to **DGND** terminals — before connecting signals to the *DT80*'s digital inputs.

Warning Do not apply more than 30Vdc to inputs 1D-4D (1D-3D for DT81/82E), and do not apply more than 20Vdc to inputs 5D-8D (4D for DT81/82E).

DI1 - Relay Inputs

Voltage-free relay contact closures can easily be detected on channels **1D-4D** (**1D-3D** for DT81/82E) by wiring the relay contacts between the input pin and **DGND**, as shown below.

Channels **5D-8D** (**4D** for DT81/82E) are less suitable for relay contact inputs, but they can still be used, for example if the contacts are wired between the input pin and an external 3-20V dc supply (or one of the DT85/DT80 Series 2's power outputs, **12V** or **PWR OUT**).

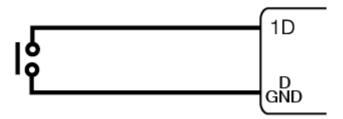


Figure 142: Wiring for reading contact closures on digital inputs

To measure	Use the command
state	1DS (0 = contacts closed, 1 = contacts open)

DI2 - Logic Inputs

Actively driven logic signals can be directly connected to all input channels, provided that the input levels are within the specified limits; see *Input Characteristics* (P385)

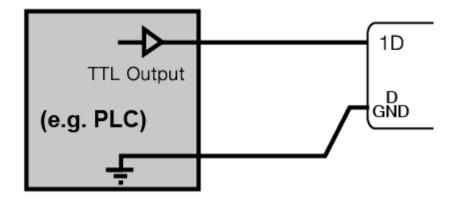


Figure 143: Wiring for reading TTL level signals on digital inputs

To measure	Use the command
state	1DS $(0 = low, 1 = high)$

Other Considerations

❖ Scan Rate

The digital input channels are scanned at 17ms intervals (60Hz), while the *DT80* is awake. This means that the minimum input pulse width is **17ms** – shorter pulses may not be recognised.

❖ Schedule Triggers

Digital input transitions can be used to trigger a report schedule, or a schedule can be configured to only run if a digital input is in a particular state.

See Trigger on External Event (P49) for more details.

Sleep Mode

Digital inputs are not scanned while the DT80 is asleep.

However, a high to low digital input transition can be used to wake the *DT80* by connecting the digital input in parallel with the **WK** (wake) terminal. The *DT80* can then be programmed so that each time an external pulse occurs the *DT80* will wake and run an event triggered schedule.

For example, if digital input 4 is also wired to the WK terminal then a typical schedule definition might be:

Note that the digital input must stay low until the *DT80* is fully awake. A short pulse (less than about 1-2 seconds) will still wake the logger, but the *DT80* may not "see" the high-to-low transition, in which case the edge-triggered schedule will not run.

Digital Outputs

The *DT80*'s 8 digital I/O terminals (4 for DT81/82) can also be used as outputs, either individually, or as 4 or 8 bit words. The following channel types are used to control the states of digital outputs:

Channel Type	Valid Channel Numbers	Description
DSO	1-8 (DT80/85)	Digital State Output: sets the state of digital output; 0=low, 1=high
	1-4 (DT81/82)	
DNO	1-5 (DT80/85)	Digital Nybble Output: sets the state of four consecutive digital outputs starting at
	1 (DT81/82)	the specified output.
DBO	1	Digital Byte Output: sets the state of all eight digital outputs.
RELAY	1	Relay Output: sets the state of the latching RELAY output: 0=open, 1=closed
WARN	1	LED output: sets the state of the Attn LED: 0=off, 1=on

For example:

7DSO=1 sets output 7D high

5DNO=5 (binary 0101) sets 8D low, 7D high, 6D low and 5D high

1DB=255 (binary 11111111) sets all outputs high

1RELAY=1 closes RELAY output contacts

Channel Options

The following channel options are applicable to digital output channel types:

- **channel factor**: for the multi-bit channel types (DN0, DB0), the channel factor is a <u>bitmask</u> which specifies which digital outputs to alter. The default values for DN0 and DB0 are 15 and 255 respectively (i.e. set all bits)
- **channel factor**: for the single-bit types (DSO, RELAY, WARN) the channel factor is a <u>delay</u> value (ms). The *DT80* waits for the specified number of milliseconds after setting the output state. Default is 0, i.e. no delay. If the R option is specified then the default and minimum delay setting is 10ms.
- R (reset) After setting the output bit(s) to the specified state(s) and waiting for the delay time, the output(s) will then be set to the opposite state. In other words a pulse will be generated.
- PT (precise timing) see Delay Accuracy (P340)

For example:

2DNO=1CV

will output the lower 4 bits of 1CV on outputs 5D, 4D, 3D and 2D (all other outputs wil be unchanged), while 2DNO (7)=1CV

(bitmask = 0111 binary) will output just the the lower 3 bits of 1CV on outputs 4D, 3D and 2D. For digital output 4D the mask bit is 0 so its state will not be affected.

Digital Output Operation

All digital output channels are initialised to their default states on initial power-up or soft reset (**INIT**). Entering a new job does <u>not</u> initialise the digital outputs.

A hard reset (power loss or **HRESET**) will also normally re-initialise the digital output states. This behaviour can, however, be overridden by setting:

PROFILE STARTUP MAINTAIN OUTPUTS=YES

in which case digital outputs 1..8DSO and 1RELAY will be restored to their previous states following a hard reset.

The default states are summarised below:

Channel	Default state	Comments
14DSO (DT80/82I/85)	1	output pulled up (high), controlled load OFF
13DSO (DT81/82E)		
58DSO (DT80/85)	0	output driver disabled, pulled down (low)
4DSO (DT81/82E)		
1RELAY	0	contacts open
1WARN	0	LED off

Note that if one of the digital outputs or the latching relay is being used to control power to a modem (see *Powering the DT80's Modem* (P205)) then that output will not be reset during a soft reset (**INIT** command).

A digital output command, e.g. 1DSO(20,R)=1 is processed as follows:

- 1. First, the output (or outputs for DNO/DBO) is set to the specified state; if no state is specified (i.e. no =1 or =0 on the end) then nothing is done.
- 2. Then the *DT80* waits for the specified delay, if any. If a state was specified and the **R** option was also specified then the default delay is 10ms, otherwise 0ms.
- 3. Then, if ${\bf R}$ is specified, the output(s) is/are inverted.
- 4. Finally, the output value as at Step 2 is returned.

The current state of any digital output is thus returned when a digital output command is evaluated. For example, typing 2DSO will return the state to which the output was last set. This will not necessarily reflect the actual state of the 2D terminal (use 2DS to read the actual state). And if 2DSO(R) is entered then the state of 2D will be inverted and the original state will be returned.

Connecting to Digital Outputs

As noted above, the two groups of digital channels have different electrical characteristics. In particular:

- Outputs 1D-4D (1D-3D for DT81/82E) use an open-drain FET output driver. This can sink up to 100mA @ 30Vdc so it
 can drive a low voltage actuator or relay or LED directly. A 47k pull-up resistor (to approx. +4V) is also included,
 allowing logic devices to be driven.
- Outputs **5D-8D** (**4D** for DT81/82E, none for DT82I) are <u>not</u> suitable for directly driving loads such as relays or LEDs. Logic devices can however be driven. Note that each of these output drivers is tri-stateable.

When the open-drain outputs are used to directly drive loads, the load will be <u>on</u> when the output is in the <u>low</u> state. Thus if a load was wired up to output **1D** you would use **1DSO=0** to turn the load on and **1DSO=1** to turn it off.

The default state of the output drivers on second group of channels is <u>disabled</u> (tri-stated). This allows these channels to be used as inputs.

DO1 - Driving a Relay

Loads of up to 100mA @ 30V dc can be directly driven by the open-drain digital outputs **1D-4D** (**1D-3D** for DT81/82E). Note that inductive loads such as relays should include a reverse diode to limit transients, as shown below.

The power supply for the load can be an external supply, or you can use the power outputs provided on the DT85/DT80 Series 2 (12V or PWR OUT).

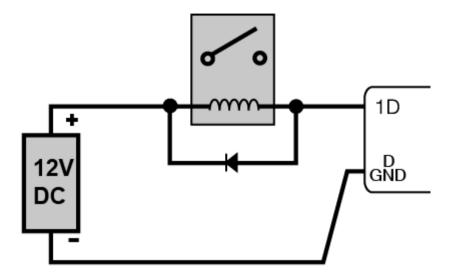


Figure 144: Wiring for driving an external relay

Action	Use the command
energise relay	1DS0=0
de-energise relay	1DSO=1

DO2 - Driving a LED

A LED indicator can also be directly driven by the open-drain digital outputs 1D-4D (1D-3D for DT81/82E).

The value of the current limiting resistor should be chosen to suit the supply voltage and LED characteristics. A value of $1k\Omega$ will set a LED current of about 10mA if a 12V supply is used.

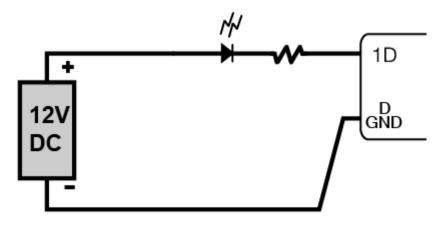


Figure 145: Wiring for driving an external LED

Action	Use the command
turn LED on	1DS0=0
turn LED off	1DSO=1

DO3 - Logic Outputs

Any of the digital outputs (1D-8D) can be used to drive a TTL-compatible logic input, as shown below

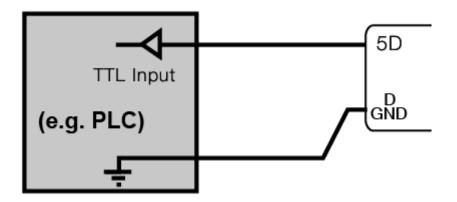


Figure 146: Wiring for driving external logic

Action	Use the command
set output high	5DS0=1
set output low	5DSO=0

DO4 - Driving a Relay Using 5D-8D

The active-drive digital outputs 5D-8D (4D for DT81/82E) cannot directly drive loads such as relays.

However, an external transistor can be used to increase the current sink capacity so that a relay (or LED) can be controlled by these outputs.

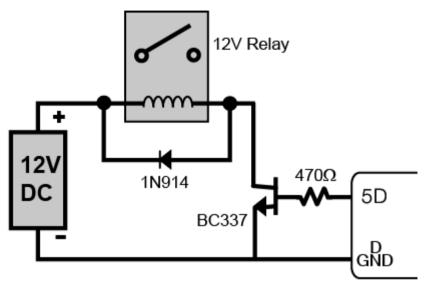


Figure 147: Wiring for driving an external relay using an external transistor

Action	Use the command
energise relay	1DS0=1
de-energise relay	1DSO=0

Note that the sense is opposite to that shown in $DO1 - Driving \ a \ Relay \ (P337) -$ the DT80 output needs to be driven high in order to turn on the NPN transistor shown.

DO5 - Latching Relay Output

The DT80's latching relay output can be used to directly switch loads of up to 1A @ 30V, as shown below.

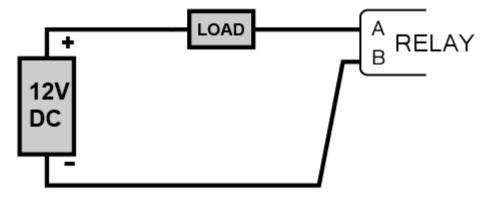


Figure 148: Wiring for controlling a load using relay output

Action	Use the command
turn load on	1RELAY=1
turn load off	1RELAY=0

Other Considerations

* Reading Digital Outputs

If you read the value of a digital output channel, e.g. by entering **1DSO**, then the value returned is the state to which the output was last set. This will not necessarily be the same as the state returned by **1DS**, which reflects the actual state on the **1D** terminal.

If an open-drain output (**1D-4D** for DT80) is set high (e.g. **1DSO=1**), the terminal is not driven by the *DT80* and is free to be pulled low by an external device. If this occurs then **1DSO** will still return 1, but **1DS** will return 0, the actual state of the input.

For the *DT80*'s active-drive outputs (**5D-8D** for DT80), things are slightly more complicated due to the fact that the output has three states: driving high, driving low, or disabled (tri-stated). The rule is that the output driver is switched on when the digital

output channel is set (e.g. 5DSO=0 or 5DSO=1) and it then stays on. If the digital input channel is subsequently read (e.g. 5DS), then the driver will be switched off (and it will stay off) to allow the terminal to be read as an input.

The active-drive outputs include a weak (200k) pull-down resistor. When the output driver is switched off, and in the absence of any external device driving the terminal, it will therefore normally read low (i.e. 5DS will return 0). Note, however, that the first time it is read after the output driver is switched off it may still read high (if the output had previously been set high), due to capacitive effects.

For example,

```
6DSO(R,100)=1 6DS(W) DELAY=500 6DS
```

will output a 100ms positive going pulse on **6D**, then tri-state the output, wait 500ms then read the state of **6D** (which is presumably now being driven by an external logic device).

❖ Sleep Mode

The states of all digital outputs are maintained while the *DT80* is asleep. Note also that the **RELAY** output uses a latching relay, so no extra current is required to hold it in the closed state.

Power Loss

If the *DT80* loses all power then all outputs will revert to their default state, including the **RELAY** output. If the **MAINTAIN_OUTPUTS** profile setting is enabled then the outputs will be restored to their former state when power is restored.

Alarm Digital Actions

One or two digital outputs can be configured to follow the state of an alarm. That is, when the alarm is inactive the output(s) are in their default state (1 for 1..4DSO, 0 for 5..8DSO, 1RELAY and 1WARN) and when the alarm is active the output(s) will be in their non-default state. Alarm Digital Action Channels (P82) for more information.

* Delay Accuracy

The actual pulse width generated by the Delay option for **DSO** will not necessarily be exactly as specified. For delays of 20ms or less it will be close (within 1ms). For longer delays the resolution is +/- 16ms however it is guaranteed that the duration will be <u>at least</u> the specified time.

The **PT** (precise timing) channel option may be specified to force a precise delay time, even if the duration is greater than 20ms. For example:

```
1DSO(PT,500,R)=0
```

will generate a 500ms +/- 1ms duration pulse. Note however that during this time <u>all</u> logger operations including communications, display updates and sampling will be suspended.

Note Performing long delays using the Delay option is not recommended as it can prevent the timely evaluation of other schedules. This is true regardless of whether the **PT** option is specified.

Counters – Low Speed

The digital input channels 1D-8D can also double as low speed counter inputs (up to 25Hz).

The C (counter) channel type returns the number of positive-going transitions seen on the specified digital input (1D-8D). For example the channel 3C will return the number of pulses seen on digital input 3D.

The counter value is a signed 32-bit integer.

Any of the digital input wiring configurations can be used. That is, either contact closures or logic pulses can be counted.

Channel Options

The following channel options are applicable to low speed counters:

- the **channel factor** specifies a counter "wrap value". The counter will reset to 0 (or "wrap around") when this value is reached. For example, if 8 pulses are received on input **4D** then channel **4C(3)** will count in the sequence 1, 2, 0, 1, 2, 0, 1, 2 so after 8 pulses the value 2 will be returned.
- R (reset): Counter will be cleared to 0 after returning its current value.

Using Low Speed Counters

❖ Scan Rate

The digital input channels are scanned at approx. 20ms intervals (50Hz). This means that for low speed counter channels:

- the minimum input pulse width is 20ms shorter pulses may not be recognised.
- the maximum input count frequency, assuming a 50% duty cycle, is 25Hz.

Use the high-speed counter channels (P341) for higher count frequencies.

Sleep Mode

Digital inputs are <u>not</u> scanned while the *DT80* is asleep so any transitions which occur during sleep will not be counted. Use the high-speed counter channels (P341) if you need the logger to continue to count pulses even while asleep.

❖ Schedule Triggers

Counter channels can be configured to trigger a schedule when the counter reaches its specified wrap value (at which point it resets to 0). See *Trigger on External Event* (P49) for more details. For example,

RA2C(10) 1TK

will measure a temperature on every 10th pulse received on digital input 2D.

Presetting Counters

The count value for a digital input channel can be preset using an expression, e.g.

RA1M 8C=1000 RB2S 8C

will reset the counter to 1000 once per minute. So if a 1Hz signal is now applied to input **8D** you would expect the values returned every 2s for channel **8C** to follow a sequence similar to:

1000, 1002, 1004 ... 1056, 1058, 1000, 1002 ...

❖ Setting Counter Wrap Value

Note that a counter's wrap value (channel factor) is applied when the channel is <u>defined</u> (i.e. when the job is entered), not when it is <u>evaluated</u>. Also, setting the wrap value has the side effect of resetting the count value to zero. This implies that:

- a particular counter's wrap value need only be specified <u>once</u> in the job. It does not need to be specified every time the
 counter is evaluated.
- If querying a counter using the immediate schedule (e.g. by periodically typing "1C"), do not specify a wrap value each time. Each time you evaluate an immediate channel you are also defining it, so the counter value will always be returned as zero if you specify a wrap value each time.

Counters - High Speed

The *DT80* provides four dedicated counter inputs, labeled **1C-4C** (7 counters **1C-7C** on DT85/85L Series 3). These provide for high speed pulse counting (100kHz typical) and can also function as phase encoder inputs.

The **HSC** (high speed counter) channel type is used to access these counters. For example, **2HSC** will return the number of positive transitions seen on the **2C** counter input.

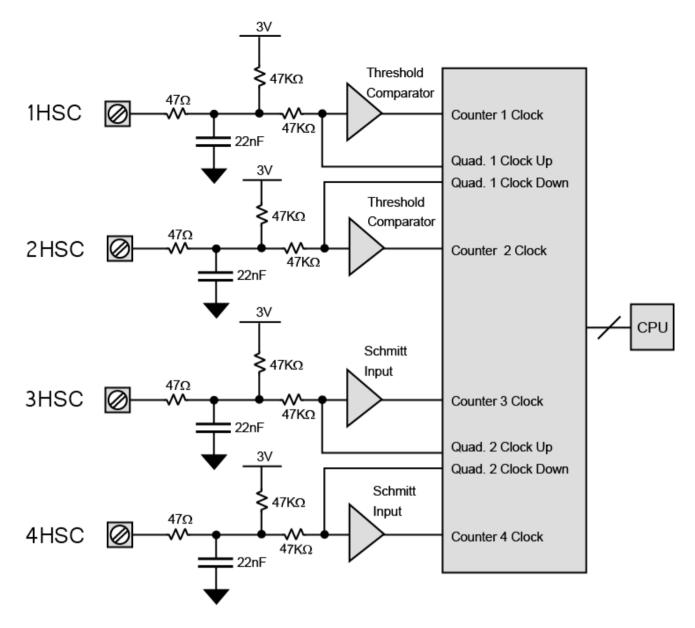


Figure 149 High Speed Counter Channels

Figure 143 shows a simplified circuit diagram for the DT80's hardware counter inputs. As can be seen, the channels can be divided into pairs of inputs, 1C-2C (counter channels 1HSC and 2HSC) and 3C-4C (3HSC and 4HSC); also 5C-6C on DT85/85L Series 3. Each pair can be used as either:

- two independent counter inputs, for pulse counting, or
- a single phase encoder (quadrature) input, for use with position sensors that provide phase encoded outputs ("A" and "B"). See *Phase Encoders* (P344)

Note that on the DT81, only the **3C-4C** inputs can be used with a phase encoder.

Channel Options

The following channel options are applicable to high speed counters:

- the **channel factor** specifies a counter "wrap value", as for the low speed counters. The counter will reset to 0 (or "wrap around") when this value is reached.
- R (reset): Counter will be cleared to 0 after returning its current value, as for the low speed counters.
- LT (low threshold): This option is only applicable to counter inputs 1C and 2C (i.e. counter channels 1HSC and 2HSC). It selects low level input thresholds ("low" threshold 2mV and "high" threshold 7mV), as opposed to regular (TTL-level) thresholds.

Connecting to Counter Inputs

Counter input channels 1C-2C and 3C-4C have different electrical characteristics. In particular:

- Inputs **1C-2C** include selectable TTL or low-level input thresholds. Low thresholds (selected by using the **LT** channel option) allow direct connection to sensors whose output is only a few mV, e.g. inductive-pickup flow sensors.
- Inputs 3C-4C (and 5C-7C) use a standard TTL level Schmitt trigger input.

❖ Relay Contact Inputs

Voltage-free relay or switch contact closures can be counted on high speed counter channels by wiring the relay contacts between the input terminal and **DGND** in the same way as for a digital input.

All inputs include low-pass filtering to assist in "debouncing" mechanical switch or relay inputs. For voltage-free contact inputs this limits the maximum count rate to approximately 500Hz.

Logic Inputs

Logic outputs from external equipment may also be directly connected to a counter input in the same way as for a digital input. For actively driven inputs such as these, the maximum count rate is typically around 100kHz.

Note, however, that the maximum count rate depends on the input amplitude. The following table indicates the typical maximum count rates possible for various input levels:

Input level (V p-p)	Max count rate
10	25 kHz
5	80 kHz
3	150 kHz
1	250 kHz

❖ Low Level Inputs

Inductive pickup sensors such as flow meters often have an output pulse amplitude of only a few millivolts. These can, however, be directly connected to inputs **1C** or **2C**. The **LT** channel option must be specified in order to set the *DT80*'s input threshold levels appropriately, e.g. **1HSC(LT)**.

Refer to the Specifications for more details on the counter input characteristics.

Special Count Modes

Counter input **3C** (i.e. channel **3HSC**) supports some special count modes. These are controlled by the P27 setting, as follows:

Setting	Description
P27=0	Normal (default setting) – 3HSC returns the number of pulses seen on the 3C input
P27=1	Gated 32kHz – 3HSC increments at 32768Hz while input 3C is low. This can be used for
	measuring pulse widths.
P27=2	Gated 3C – 3HSC returns the number of pulses seen on input 3C while input 4C is low.
	This can be used for measuring a short burst of pulses.
P27=3	Fixed 1024Hz - 3HSC continuously increments at 1024Hz. This can be used for general
	high resolution timing.

Counting While Asleep

The high-speed counter inputs continue to function while the DT80 is asleep.

However, it is important to note that each hardware counter is <u>16 bits</u> wide. (Count values are maintained and returned as 32-bit values, but the physical hardware counters attached to inputs **1C-4C** are 16-bit.) If more than 65536 pulses occur while the *DT80* is sleeping then the hardware counter will overflow, and this will cause an inaccurate count value to be returned when the *DT80* wakes.

It is therefore necessary to ensure that the *DT80* is programmed to wake often enough to ensure that the hardware counters can be read before they overflow.

For example, if the average counter input frequency is 100Hz then the *DT80* must be programmed to wake at least every 65536/100 seconds (about every 10 minutes). This can be done by including a 10-minute schedule in the job, e.g. RA10M 1HSC(W)

Most of the other comments made above regarding digital input counter channels apply equally to the high speed counter channels. For example, HSC channels can be preset to a particular starting value (e.g. 2HSC=1CV*10), HSC channels can trigger a schedule when they wrap, and so on.

Other Considerations

❖ Signal Edges

Counters increment on the <u>rising</u> edge of the count input signal.

For gated modes (P27=1 and P27=2), the gate signal is sampled on the falling edge of the count input signal.

❖ Schedule Triggers

High speed counter channels can be configured to trigger a schedule when the counter reaches its specified wrap value (at which point it resets to 0). See *Trigger on External Event* (P49) for more details. For example, RA2HSC(100) 1TK

will measure a temperature on every 100th pulse received on counter input 2C.

Presetting Counters

The count value for a high speed counter channel can be preset using an expression, e.g.

RA1M 1HSC=1000 RB2S 1HSC

will reset the counter to 1000 once per minute. So if a 1Hz signal is now applied to input **1C** you would expect the values returned every 2s for channel **1C** to follow a sequence similar to:

1000, 1002, 1004 ... 1056, 1058, 1000, 1002 ...

❖ Setting Counter Wrap Value

Note that, as with low speed counters, a counter's wrap value (channel factor) is applied when the channel is <u>defined</u> (i.e. when the job is entered), not when it is <u>evaluated</u>. Also, setting the wrap value has the side effect of resetting the count value to zero. As discussed earlier, this implies that the wrap value should therefore normally only be specified <u>once</u> for each counter channel.

Phase Encoders

Not available on DT82E

A phase encoder is a device for measuring relative angular or linear position. As it rotates or moves, it outputs two streams of pulses ("A" and "B") whose phase relationship (A leading or B leading) indicates the direction of travel.

The *DT80*'s **PE** channel type decodes these pulses and returns a signed position value in counts. The count may be positive or negative depending on the direction of travel.

As mentioned in *Counters – High Speed* (P341), the *DT80*'s four high speed counter inputs are set up in pairs: **1C/2C** and **3C/4C**; also **5C/6C** on DT85/85L Series 3. Each pair can be used as <u>either</u> two independent counters, <u>or</u> a single phase encoder input. (For DT81, only the **3C/4C** pair can be used as a phase encoder input.)

Note that the "mode" of a counter channel pair (i.e. whether it operates as two counters or a single phase encoder channel) is set when the channel is *defined* (i.e. when the job is entered), not when it is *evaluated*. This implies that a particular counter input pair *cannot* be read as a phase encoder value at one point in a job, and as a pair of counters at another. In other words, if your job defines a channel **1PE** then it should *not* also define channels **1HSC** or **2HSC**, and vice versa.

The following table summarises the options for using phase encoder channels:

Model	Channel	"A" input	"B" input	Notes
DT80/82/85	1PE	1C	2C	Do not use 1HSC and 2HSC channels
	2PE	3C	4C	Do not use 3HSC and 4HSC channels
DT85/85L-3	3PE	5C	6C	Do not use 5HSC and 6HSC channels
DT81	1PE	3C	4C	Do not use 3HSC and 4HSC channels

Channel Options

The following channel options are applicable to PE channel types:

- the channel factor is not used for phase encoder channels.
- R (reset): Position value will be cleared to 0 after returning its current value.

Phase Encoder Operation

The following diagram illustrates how the reported **PE** position values relate to the phase encoder pulses received on the counter inputs. In particular, note that a pulse is counted on <u>each</u> edge of the A and B inputs. This is sometimes referred to as "x4" mode, because if the encoder speed is such that it generates a 100Hz pulse train on its A and B outputs then the *DT80*'s position count will increment at 400Hz.

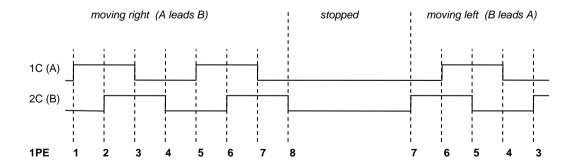


Figure 150: Relationship between phase encoder signals and reported position (1PE) value

P1 - Phase Encoder Inputs

The following diagram shows the connection of a phase encoder to the counter inputs on a DT80 or DT85. (For DT81 you would use the **3C** and **4C** inputs.)

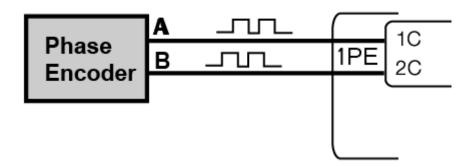


Figure 151: Wiring for reading a phase encoder (quadrature) signal

To measure	Use the command
position (in counts)	1PE

Other Considerations

❖ Sleep Mode

The high-speed counter inputs continue to function while the DT80 is asleep, so the phase encoder inputs will too.

As discussed in the High Speed Counter section (P343), it is important to ensure that the 16-bit hardware counters do not overflow during sleep. The *DT80* calculates the encoder position in software, by subtracting the count values read from the "up" and "down" hardware counters. This means that incorrect readings will result if there are more than 65536 pulses in either direction while the *DT80* is asleep.

Presetting Counters

The count value for a phase encoder channel can be preset using an expression, e.g.

RA3-E 1PE=0

will reset the encoder position to 0 when a button wired to digital input 3 is pressed.

Examples – Digital and Counters

❖ Pulse Train Output

The schedule command

RA2S 6DSO(500,R)=1

produces a pulse train from channel 6D which is HIGH for 0.5s and LOW for 1.5s.

Sensor Power Control

In the schedule command

```
RA20M D T 4DSO(1000)=0 1..4V 4DSO=1
```

digital state output 4 controls a relay that switches the power supply to a group of sensors. Every 20 minutes the sensors are powered up, the system waits one second while the sensors settle, the sensors are scanned, and the sensor power supply is turned off again.

* Manual Control

The polled schedule (see *Trigger on Poll Command* (P51)) can also be used to switch digital state output channels. For example, the command

```
RBX 3DSO(5500,R)=0
```

turns a load connected to channel 3D ON for 5.5 seconds when an XB poll command is received.

Frequency Measurement

The R channel option can be used to measure the frequency of an input signal, e.g.

```
RA1S 1HSC(R,RS)
```

will return the frequency in Hz of an input signal on channel 1C, while

```
RA10S 1HSC(R,RS)
```

will do the same thing but resolve down to 0.1Hz.

The RS option divides the channel value (number of pulses) by the time since the last sample, yielding a frequency.

This technique can also be used for the digital input channels (1D-8D), e.g.

```
RA1S 7C(R,RS)
```

will return the frequency in Hz of an input signal on channel 7D, in the range 1-30Hz.

SDI-12 Channel

Not available on DT821

About SDI-12

SDI-12 is a serial communications protocol for interfacing multiple microprocessor based sensors to a data logger. SDI-12 uses a shared three-wire "bus" – 12V power, data (0-5V signaling levels) and ground – and operates at a data rate of 1200 baud.

Each sensor connected to an SDI-12 bus is configured with a unique **address**, which is a single numeric or alphabetic character. The data logger specifies this address when it requests data from the sensor. This transmission will be received by all sensors, but only the one with the matching address will respond. If two sensors have the same address then they will both try to transmit at once, resulting in garbled communications.

The SDI-12 standard has undergone a number of revisions; at the time of writing the current version is 1.3. (1.0 was released in 1988, 1.2 in 1996 and 1.3 in 2000.) Not all sensors support the latest version. The *DT80* can determine which version of the standard a given sensor supports, and act appropriately.

Each SDI-12 message sent by the data logger is a short (up to 5 characters) plain ASCII string, terminated by a ! character. The response from the addressed sensor is also in ASCII format (up to 80 characters).

For more details see http://www.sdi-12.org.

SD1 - SDI-12 Sensor Inputs

The *DT80*'s tri-stateable digital I/O channels (**5D-8D** on DT80, **4D** on DT81/82E) can be used to control up to four SDI-12 buses. Up to ten SDI-12 sensors can be connected to each bus.

As shown below, an SDI-12 bus is connected to the DT80 as follows:

- The SDI-12 DATA line connects to one of the digital I/O terminals 5D 8D (4D for DT81/82E)
- The SDI-12 GROUND line connects to the D GND terminal
- The SDI-12 **POWER** line may be connected to the *DT80*'s external power input terminal (+), or one of the power outputs on the DT85/DT80 Series 2 (**12V** or **PWR OUT**), or a separate 9.6-16V DC supply.

When connecting a sensor to the *DT80* for the first time, it's best to connect <u>only</u> that sensor, i.e. you should temporarily disconnect any other sensors on the same SDI-12 bus. This ensures there will be no address conflicts

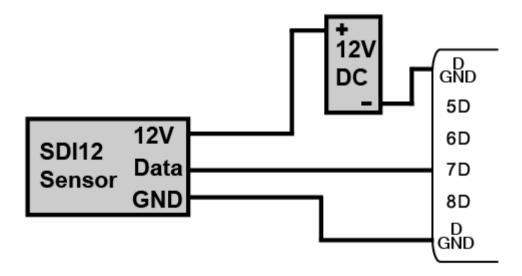


Figure 152: Wiring for an SDI-12 sensor. Up to 10 sensors can be connected in parallel to each digital channel.

To measure	Use the command
register #1 on SDI-12 device #0	7SDI12

Testing and Configuring an SDI-12 Device

SDI-12 Address

The first task is to determine the address of the sensor. All SDI-12 sensors are able to be set to one of at least ten different addresses. Depending on the sensor, this may be done by:

- changing a hardware setting, e.g. DIP switches
- sending an SDI-12 "change address" command (aAb!, where a is the current address and b is the new address)
- connecting the sensor to a PC serial port and using configuration software supplied by the sensor manufacturer. You
 may also need to use this configuration software to configure other aspects of the device for example the device's
 SDI-12 interface may be disabled by default, so you would need to enable it using the configuration software.

Consult the sensor's documentation to determine how to set its address. Note that all SDI-12 sensors are factory set to address 0. If you are only connecting one sensor to the SDI-12 bus then you can leave it set to this value.

Using SDI12SEND

The *DT80*'s **SDI12SEND** command allows you to manually send SDI-12 commands to the sensor for testing and configuration purposes. The format of this command is as follows:

```
SDI12SEND channel "string"
```

where:

- channel is the digital I/O channel (5 8) (4 for DT81/82E)
- string is a valid SDI-12 command string to send to the device. All commands start with the sensor address (0-9, A-Z or a-z) and end with a ! character.

If there is a reply from the device then it will be displayed, assuming the /M (enable messages) and /h (free format) switches are set.

For example, the all command (a = address) should result in the sensor returning an identification string, e.g. SDI12SEND 5 "0I!"

```
5SDI12: 0I!012SENTEK XEPI 1165FA14F000800
```

In this example a sensor with address **0** is connected to digital channel **5D**. The output of the **SDI12SEND** command shows the complete transaction: the first few characters (up to the !) are the command string that was sent, the rest are the response from the sensor. In this case, the response indicates:

- 0 the sensor's address
- 12 the version of SDI-12 supported by the sensor (1.2)
- SENTEK the sensor manufacturer
- XEPT the model name
- 116 the sensor firmware version
- 5FA14F000800 other sensor details, e.g. serial number

If a valid response is not received, an error message will be displayed, e.g.:

```
SDI12SEND 5 "3I!"
5SDI12: 3I! *no response
```

In this case the command was sent to the address 3, which is the wrong address. This error may also indicate a wiring problem, or perhaps the SDI-12 interface on the device has not been enabled.

Errors such as "*framing error", possibly in conjunction with a garbled looking message, generally indicate an address conflict (more than one device with the same address is connected) although it may also indicate an electrical noise issue.

Reading Data from SDI-12 Devices

Measurement Modes

SDI-12 sensors can operate in one of two different modes:

- Measure on demand is the traditional SDI-12 method, which all sensors support. The sensor is idle (typically in a low power mode) until it is woken by the data logger sending it a measurement request. The sensor then takes the measurement and then, possibly several seconds later, returns the data.
- **Continuous measurement** is an alternative method, supported by some SDI-12 sensors. The sensor takes measurements at regular intervals, then when the data logger requests data it immediately replies with the last reading it took.

In Measure On Demand mode the *DT80* must send a request then <u>wait</u> until the measurement is ready, which may be immediate or it may take several seconds – depending on the sensor. During this time no other schedules will run, and no commands will be executed (similar to a **DELAY** channel).

Measure On Demand mode is most suitable in applications where the sensor is being polled infrequently. This mode minimises system power usage because the sensor only takes a measurement when it is requested to.

Continuous measurement mode is suited to applications where the logger needs to poll the sensor relatively often, or it is running other schedules which should not be delayed. Note that the sensor may need to be sent some special commands (either via SDI-12 or via a separate RS232 configuration interface) to enable continuous mode, set the measurement rate and so on.

Check the sensor's documentation to see whether continuous measurement mode is supported. If it is, your first decision is whether you want to use it.

Registers

Most SDI-12 devices can measure a number of different quantities. For example, a device might have 4 temperature sensors plus 8 moisture sensors, i.e. it can measure 12 distinct quantities.

In *DT80* parlance, each individual data item (quantity that can be measured) is termed a **register**. An SDI-12 device <u>may</u> then divide its particular set of registers into a number of groups, or **register sets**. For example the abovementioned device might define register set #2 as the 4 temperature sensors, and register set #3 as the 8 moisture sensors.

The measurement process then proceeds as follows:

- 1. The *DT80* sends a request message (aCr!) to the SDI-12 device, specifying the register set (r) of interest only one register set can be requested at a time. (If r is 0 then it is omitted, i.e. aC! is sent.)
- 2. The sensor will now measure and update all of the registers in the specified set.
- 3. After the required time interval, the DT80 sends a second message (aD0!) to request the actual data values.
- 4. The sensor replies immediately, sending some or all of the register values.
- 5. If not all register values were sent, the DT80 may send further aDn! message(s) to request the remainder.

In Continuous Measurement mode the process is considerably simpler:

- 1. The DT80 sends a message (aRr!) to request the most recent data values for register set r.
- 2. The sensor replies immediately, sending all of the register values.

The SDI12 Channel Type

The *DT80*'s **SDI12 channel type** allows you to read a data value from an SDI-12 device in much the same way as you would read a voltage using the **V** channel type – without worrying about the technicalities of the SDI-12 protocol. There are four of these channels available, **5..8SDI12**, corresponding to the four SDI-12 compatible digital I/O channels (**5D – 8D**).

When an **SDI12** channel is used, you need to specify additional information via channel options. The following channel options apply:

Option	Function
AD"a"	Address: specifies the SDI-12 address of the sensor to read (0-9, A-Z or a-z). If not
	specified, 0 is assumed. The quotation marks are optional for addresses 0-9.
Rnnn	Register: specifies the particular register to return. If the sensor defines more than one register set then the hundreds/digit specifies the register set. If the hundreds digit is zero or not specified then the sensor's default register set (register set #0) is assumed. The tens and units digits specify the register number within the register set: 1 for the first data item in the set, 2 for the second, and so on. If this option is not specified, 001 is assumed (which would be suitable for a sensor that only returned one value)
	Note that R2 is equivalent to R002 (not R200).
CM	Continuous Measurement : If this option is present then the <i>DT80</i> will use Continuous Measurement Mode. The sensor is assumed to have been configured to take continuous measurements.
VERnn	Version : This option can be used to force the <i>DT80</i> to only use commands supported by SDI-12 Version <i>n.n.</i> Valid settings are VER10 (Version 1.0) through VER13 (Version 1.3). This is normally only required if a sensor misrepresents the protocol version that it supports in its response to the <i>aI!</i> command. See also <i>Versions</i> (<i>P349</i>).

Rnnn Settings

Some sample settings for the **R**nnn channel option are shown below:

Option	Data Value (Register) to Read
(none)	First data value in default register set (register set #0)
R001 (or R1)	First data value in default register set (register set #0)
R019 (or R19)	19 th data value in default register set (register set #0)
R100	not valid
R101	First data value in register set #1
R344	44 th data value in register set #3

For example, suppose a particular SDI-12 device measures 9 different quantities in one go (i.e. it has 9 registers in its default register set). These 9 values would then be returned to the data logger using an exchange of messages similar to the following (underlined text is sent by the data logger, the remainder is returned by the sensor):

```
<u>0D0!</u>0+005.7541+068.0368+017.6721+054.3521+052.0475+016.2069+017.1182+016.8696

<u>0D1!</u>0+019.1727
```

These 9 register values can then be accessed using **5SDI12(R1)** through **5SDI12(R9)**. So if you were interested in the third value in the list you would use:

```
5SDI12(R3)
5SDI12 17.7
```

As can be seen, the third value returned by the sensor (+017.6721) is the return value of the channel.

Example

Measure on Demand

In this example, the documentation for a hypothetical SDI-12 weather station states: "Send the aC1! (or aM1!) command to measure (1) internal temperature (degC), (2) external temperature, (3) humidity (%RH) and (4) pressure (hPa). Send the aC2! (or aM2!) command to measure (1) wind speed (km/h), (2) max gust and (3) direction (degrees)." The device is connected to the DT80 using digital I/O 7D, and has been configured with an SDI-12 address of 3.

In this case the device has two register sets (#1 and #2), one with four registers (measured quantities), one with three. The following *DT80* job will read and log external temperature, pressure and wind speed every two minutes:

```
BEGIN"CLOUDY"

RA2M 7SDI12(AD3,R102,"Ext temp~degC")

7SDI12(AD3,R104,"Pressure~hPa")

7SDI12(AD3,R201,"Wind speed~km/h")

LOGON
END
```

Note If your sensor supports both the *aMn*! and the newer *aCn*! SDI-12 commands (most modern sensors will) then be sure to refer to the section on the *aCn*! command in the sensor documentation when determining which register numbers to use. These two SDI-12 commands do much the same thing but the ordering of the returned data values may be different. The *DT80* always uses the *aCn*! command in preference to *aMn*!.

Continuous Measurements

The weather station documentation goes on to say "To enable continuous measurement mode (sampling every *t* seconds), use the *a***XC**=*t*! command; to disable use *a***XC**D!. [SDI-12 "X" commands are often used to implement device specific functions such as this.] Use *a***R1**! and *a***R2**! to return the most recent values of int temp/ext temp/RH/pressure and wind speed/qust/direction respectively."

The following job does the same thing as the previous example, but this time continuous measurement mode is used:

Other Considerations

Execution Time

In Measure on Demand mode, SDI12 channels may take a significant amount of time to execute – often 10 seconds or more, depending on the sensor. During this time no other schedules or commands are executed.

Note however that the *DT80* will only request a measurement of a given register set <u>once</u> per schedule. So the following schedule:

```
RA1M 5SDI12(R1) 5SDI12(R3) 5SDI12(R201) 5SDI12(R4) would execute as follows:
```

- 1. *DT80* requests a measurement of register set #0 (0C!), then waits until it is ready.
- 2. DT80 reads values for registers 1, 3 and 4, which are all part of register set #0. It will probably be given values for other registers (e.g. register 2), which it will discard because they are not referenced in the job
- 3. DT80 can now evaluate (i.e. return/log values for) the first two channels.
- 4. DT80 requests a measurement of register set #2 (OC2!), then waits until it is ready.
- 5. DT80 reads value for register 1 (in register set #2) and discards any other values that it receives.
- 6. DT80 can now evaluate the last two channels.

Notice that the DT80 waits for the sensor on two occasions, once for each register set.

Versions

The *DT80* automatically determines the version of the SDI-12 specification that a given sensor supports, and tailors the types of messages it sends accordingly. For example:

• Error check codes (CRCs) are used on data messages, but only if the sensor supports SDI-12 Version 1.3 or later.

Continuous Measurement mode is only available if the sensor supports SDI-12 Version 1.2 or later.

Unfortunately some sensors do not fully implement the SDI-12 version that they claim to support. In these situations the VER*nn* option can be used to force the *DT80* to assume a particular SDI-12 version.

Troubleshooting

There are two main areas where difficulties may arise when setting up an SDI-12 system

- the DT80 cannot communicate properly with the sensor
- the sensor does not support the request you are making of it

These will be discussed in the sections below.

Diagnostic Messages

When troubleshooting an SDI-12 connection, it can often be helpful to see the actual SDI-12 messages. The *DT80* provides a special parameter setting for this purpose:

```
P56=2
```

If this parameter setting were used with the weather station example described above (Measure on Demand mode), you might see something like:

```
7SDI12: [8] 3C1!300704
7SDI12: [25] 3D0!3+22.91+42.40+21.0+1013.9
Ext temp 42.4 degC
Pressure 1013.9 hPa
7SDI12: [8] 3C2!300603
7SDI12: [18] 3D0!3+4.29+31.43+012
Wind speed 4.3 km/h
```

which shows the measurement request message (3C1! or 3C2!) and response, followed by the data retrieval message (3D0!) and response, for each register set.

Set P56=0 to turn off these messages.

Communications Problems

If the sensor does not reply at all to a request, the DT80 will output an error message, e.g.:

```
8SDI12(R3)
dataTaker 80 E80 - Serial device not responding (8SDI12:AD0:R3)
8SDI12 NotYetSet
```

Note also that the value returned by the channel is the special "NotYetSet" error value (see Data Errors (P407))

The main things to check here are:

- cabling (Is the sensor powered?)
- correct SDI12 channel number (In the above example the SDI-12 data wire should be connected to digital input 8D.)
- correct SDI-12 address (In the above example the device should have been configured for address 0.)

This error message may also indicate an **address conflict** – a response was received from the sensor but it was garbled because two or more sensors tried to both transmit at the same time, which will occur if they are both configured to use the same address.

Try connecting only one sensor at a time and verifying the address of each sensor. For most sensors you can use the following command:

```
SDI12SEND 8 "?!" 8SDI12: ?!1
```

In this case the sensor has responded, stating that it has been set to address 1.

Communications may also be affected by electrical noise or poor cable connections. If the sensor supports it, the *DT80* will request that it include an error checking code (CRC) with each data record, which the *DT80* will then check. Any corruption of these messages will then result in an error message such as:

```
dataTaker 80 E81 - Serial device invalid response (8SDI12:AD0:R1)
8SDI12 NotYetSet
```

Unsupported Functions

The other error message that you may see is:

```
5SDI12(R207)
dataTaker 80 E82 - Serial device data not available (5SDI12:AD0:R207)
5SDI12 NotYetSet
```

In this case the sensor has indicated that the requested register does not exist. The sensor either does not support register set #2 (i.e. the aC21 command), or that register set returns fewer than 7 values.

This error may also occur if you have requested continuous mode operation (using the CM channel option) but the sensor does not support continuous mode, or continuous mode has not been enabled on the sensor.

Double check the sensor documentation. It may help to turn on the diagnostic messages, e.g.:

```
P56=2 5SDI12(R207)

5SDI12: [8] 0C2!000000

dataTaker 80 E82 - Serial device data not available (5SDI12:AD0:R207)

5SDI12 NotYetSet
```

In this case the sensor has returned 00000 in response to the *DT80*'s request, indicating that no data values are available in register set #2.

Generic Serial Channel

The *DT80*'s Serial Channel can be used to connect to serial input and/or output devices such as a serial sensor, GPS terminal, printer, barcode reader, display panel, PLC, or even to another *DT80*.

A serial channel

- · can transmit programmable 'prompt' or 'poll' messages to serial devices and interpret their replies
- can respond to asynchronous incoming serial messages.
- can operate using the dedicated **serial sensor port** (terminal block connection on front panel, or the **host RS232 port** (DE9 connector on side panel), or the **USB port**.
- may be included in schedules in the same way as any other *DT80* channel. The channel name **1SERIAL** is used for the serial sensor port, **2SERIAL** for the host port and **3SERIAL** for the USB port.

Connecting to and Configuring the Serial Port

Serial Sensor Port

(not applicable to DT81/82E)

The serial sensor port is the one most commonly used for defining generic serial channels. It supports RS232, RS422 and RS485 connections.

The default function of this port is **SERIAL** so in that sense it is ready to use as a generic serial channel. You may, however, need to configure the baud rate or other serial parameters to suit the device to which you are connecting.

For more details on setting up the port and the possible wiring configurations, see Serial Sensor Port (P199).

Host RS232 Port

(not applicable to DT8xM)

The host RS232 port can also be used for controlling serial sensors.

Before a generic serial channel can be defined on this port, the port function must be set to **SERIAL**, as follows: **PROFILE HOST PORT FUNCTION=SERIAL**

As with the serial sensor port, you may need to change the configured baud rate or other settings.

For more details on setting up the port and the possible wiring configurations, see Host RS-232 Port (P197).

USB Port

(not applicable to DT82)

The USB port may be used in generic serial mode if you need to communicate with a PC application using a custom serial protocol. As with the host port, this requires the port function to be set:

PROFILE USB_PORT FUNCTION=SERIAL

For more details, see USB Port (P188).

Serial Channel Commands

SERIAL Channel Type

Data flow into and out of the a serial channel is controlled by the Serial Channel commands. These commands provide for

- formatting and management of output strings and prompts to be sent to the connected serial device.
- · interpretation and parsing of input strings received from the connected device into channel variables
- general management of the Serial Channel

The general form of a Serial Channel command is:

```
nSERIAL ("control_string", options)
```

where:

- n is the serial port number (1 for the serial sensor port, 2 for the host port, 3 for the USB port).
- control_string is a string of commands that specify the required output and input actions of the Serial Channel. See The Control String (P352).
- options are any other channel options that may be required

Note that **SERIAL** is actually a <u>channel type</u>, in the same way that **V** (voltage) is a channel type. It can appear in schedules and it has channel options, like any other channel type. The <u>control_string</u> is a special channel option which applies only to the **SERIAL** channel type.

Note An error message will be returned if you attempt to define an *n*SERIAL channel and the selected port's function has not been set to SERIAL in the *DT80* profile.

Channel Options

Most of the standard channel options (*Table 4: DT80 Channel Options* (*P44*)) may be used with the serial channel, e.g. **W** (working channel), = nCV (assign to CV), and so on.

For the **SERIAL** channel type, the **channel factor** is the maximum time to wait for serial data to be received. Default is 10s. This value is a floating point number, so a value of 0.1 will set the timeout to 100ms.

If the standard "UserName~UserUnits" channel option is specified, it must come <u>after</u> the control string in the list of serial channel options.

Channel Return Value

Depending on the control string, the return value of a SERIAL channel may be either:

- a data value, interpreted from the data returned by the sensor, or
- a status code, indicating whether the commands in the control string were performed successfully.

See Return Value (P357) for more details.

Serial Channel Operation

The Control String

The "control_string" is always enclosed by quotation marks. It can be broken into two parts:

- Output actions commands, prompts or text strings that are to be sent from the *DT80* to the device connected to
 the serial channel. The various output actions available are detailed in the section *Control String Output Actions*(P354). All output actions are enclosed by {}.
- Input actions commands to manage the *DT80*'s Serial Channel and to interpret the information coming back from the serial device into the Serial Channel. The various input actions available are detailed in the section *Control String Input Actions* (P356). Input actions are not enclosed by {}.

The general form of the "control_string" is

- any combination of output actions enclosed by {}, and/or
- any combination of input actions.

There may be any number of blocks of output actions and input actions, as shown in the following example Serial Channel commands:

```
1SERIAL("{ output actions}", options)
1SERIAL("input actions", options)
1SERIAL("{ output actions} input actions", options)
1SERIAL("{ output} input{ output} input", options)
```

The "control_string" is always executed in order left to right, giving you complete control over the sequence of actions.

Where a bi-directional dialog occurs between the *DT80* and serial device, the output actions and input actions can be included in the same Serial Channel command as shown above, or in separate Serial Channel commands as follows:

```
BEGIN
RA1M
    1SERIAL("{output actions}", options)
    1SERIAL("input actions", options)
END
```

This latter approach simplifies the appearance of the program steps for supervising the Serial Channel, particularly if there are a number of data points to be prompted and interpreted or parsed in each access. Note however that each instance of **SERIAL** uses up one channel table entry (see *channel table* (P409))

Serial Data Transmission and Reception

If a job contains one or more **SERIAL** channel definitions then the selected serial ports (host and/or serial sensor) are activated. Data may then be received from a connected serial device <u>at any time</u> whilst the job is loaded. As data is received, it is stored in an area of memory called the serial channel **receive buffer**. A separate receive buffer is maintained for each serial port.

When a **SERIAL** channel is evaluated (i.e. when the schedule of which it is part executes), the *DT80* processes the control string from left to right. <u>Output actions</u> involve data being sent from the *DT80*, so they are performed there and then, as they are encountered in the control string. If the data cannot be sent (e.g. due to flow control) within the timeout period (10 seconds by default) then evaluation of the **SERIAL** channel will be terminated and its status code set to **21** (transmit timeout).

When the *DT80* finds an <u>input</u> action in the control string it will read any previously received data from the receive buffer and attempt to match it against the format specified in the input action. If no data is present in the receive buffer at the time that the input action is processed then the *DT80* will <u>wait</u> up to 10 seconds (this timeout is configurable) for more data to arrive. Then:

- If the incoming data matches that required by the input action then the *DT80* will move on to the next input action in the string. If the end of the control string is reached then the **SERIAL** channel will return and set its status code to **0** (success).
- If the timeout expires while the *DT80* is waiting for more data then evaluation of the **SERIAL** channel will be terminated and its status code set to **20** (receive timeout).
- If the timeout expires while the *DT80* is waiting for a particular CTS state (i.e. \c0 or \c1 input action (P354)) then evaluation of the SERIAL channel will be terminated and its status code set to 5 (CTS timeout).
- If data is received which violates the input action specification then evaluation of the SERIAL channel will be terminated and its status code set to 29 (Scan Error).

Once the **SERIAL** channel has completed and set either a success or failure status code, the *DT80* will then move on to evaluating the next channel (if any) in the schedule.

Depending on how the input actions are specified, the return value of the channel may be either the status code or a scanned data value. See *Return Value* (P357).

The following sections describe in detail the various output and input actions that can be specified in a control string.

Control String – Output Actions

The table below lists the ways in which prompts and text strings can be sent from the *DT80* to the device connected to the Serial Channel. These commands must be enclosed by {} in the control string.

What to output	Output Action syntax	Description		
Text	text	A sequence of characters to be sent .		
		Non-printable characters may be specified using \nnn (where		
	e.g. abc\009def\013,	nnn is the ASCII code, 1-255). *char notation may also be used		
	GETVAL^M^J	for control characters (ASCII 1-31), see ASCII-Decimal Tables		
		(P394).		
Break character	\b [<i>n</i>] or	Transmit a "break" (set the Tx line to logic-0 state) for <i>n</i> or <i>n</i> CV		
	\b[<i>n</i> CV]	character periods		
Control signal	\r1	Set RTS (to a value >+3.5V) - RS232 only		
	\r0	Clear RTS (to a value <-3.5V) - RS232 only		
(Wait)	\ w [<i>n</i>] or	Delay for <i>n</i> or <i>n</i> CV milliseconds. Actual delay time will be		
	\w[nCV]	approximately 2ms or 2 character times, whichever is longer.		
reserved	\% or \{ or \}	Output a %, { or } character. (%% may also be used to output a		
characters	•	single % character.)		
CV value	%{flag}{width}. {precision}type[nCV]	-		
		numeric format (see below). Note that {}		
	e.g. %d[2CV] or %9.3f[7CV] or	%06d[1CV] signifies "optional"		
string value	%{flag}{width}. {precision}s[n\$]	Output the value of string variable n\$		
	e.g. %s[1\$] or %-9.9s[2\$]			

Numeric Formats

This table describes the possible values for *type* – that is, the different ways in which a CV value can be converted into a string of characters.

Туре	Description	Example, assumes 1CV = 74.36
f	floating point	1SERIAL("{%f[1CV]}") → 74.36
е	floating point, exponential format	1SERIAL("$\{ e[1CV] \}$") $\rightarrow 7.436e01$
E	floating point, exponential format	1SERIAL("{%E[1CV]}") → 7.436E01
g	f or e format depending on value	1SERIAL("{%g[1CV]}") → 74.36
G	f or F format depending on value	1SERIAL("{%G[1CV]}") → 74.36
d	integer	$1SERIAL("{%d[1CV]}") \rightarrow 74$
x	hexadecimal integer	1SERIAL(" $\{$ %x[1CV] $\}$ ") \rightarrow 4a
X	hexadecimal integer	$1SERIAL("{%X[1CV]}") \rightarrow 4A$
0	octal integer	1SERIAL("{%o[1CV]}") → 112
C	single character	1SERIAL(" ${ c[1CV]}$ ") $\rightarrow J$

Note that

- The %c conversion outputs the value of *n*CV as a single 8-bit character. Only the lower 8 bits of the integer portion of *n*CV are output. So in the above example the character value 74 (ASCII "J") will be sent.
- The %g and %G conversions select exponential notation if the exponent is less than -4, or greater than or equal to the specified

Width, Precision and Flag

The various conversion types described above can be further qualified using the optional *width*, *precision* and *flag* specifiers. These allow you to control exactly how the transmitted data will be formatted.

❖ Field Width

The *width* value specifies the **minimum output field width** – that is, the minimum number of characters that will be output. If the converted value requires fewer characters than the specified field width, then space or zero characters are used to pad the field to the specified width. If the converted value results in *more* characters than the specified field width, then all characters will still be output. The *width* parameter is not applicable for the %c conversion type.

The *precision* value means different things depending on the conversion type:

Туре	precision term specifies:	Default
d, x, X, o (integer)	minimum number of digits to print (leading zeroes will be added if necessary)	no minimum
e, E, f (floating point)	number of digits to the right of decimal point	6 digits
g, G (mixed)	number of significant digits shown	6 digits
c (single character)	not applicable	
s (string)	maximum number of characters from the string to print	no maximum

* Variable Width & Precision

The width and precision values are normally specified as numeric constants (e.g. %9.2f), but they can also be specified as an asterisk (*), in which case the value of a CV is used instead.

Output Action syntax and example	Description
%{flag}*.{precision}type[wCV,nCV]	output the value of nCV in the specified numeric format, with the width parameter set to the value of wCV
e.g. %*d[1CV,4CV] or %-*.2f[1CV,3CV]	
%{flag}*.*[wCV,pCV,nCV]	as above, but also set the $precision$ parameter to the value of $p{\sf CV}$
e.g. %*.*g[1CV,4CV,5CV]	

❖ Flag Character

Finally, the *flag* character allows some further options:

Flag	Applicable conversion types	Description
-	d, x, X, o, e, E, f, g, G, s	left justify (if spaces need to be added to make up the minimum field width, add them <i>after</i> the number rather than before)
+	d, x, X, o, e, E, f, g, G	prefix value with + character, if it is positive
(space)	d, x, X, o, e, E, f, g, G	prefix value with space character, if it is positive
0 (zero)	d, x, X, o, e, E, f, g, G	pad the field with leading zero characters (rather than spaces) if required to make up the minimum field width
#	x, X, o	prefix value with 0x, 0x or 0, respectively
#	e, E, f	always include a decimal point
#	g, G	do not truncate any trailing zeroes after the decimal point

❖ Examples

Examples assume 1CV = 12345.67, 1\$ = "pumpkin"		
1SERIAL("{%f[1CV]}")	\rightarrow	"12345.67"
1SERIAL("{%10f[1CV]}")	\rightarrow	" 12345.67"
1SERIAL("{%10.1f[1CV]}")	\rightarrow	" 12345.7"
1SERIAL("{%-10.1f[1CV]}")	\rightarrow	"12345.7"
1SERIAL("{%010.1f[1CV]}")	\rightarrow	"00012345.7"
1SERIAL("{%10.10d[1CV]}")	\rightarrow	"0000012345"
1SERIAL("{%10.4g[1CV]}")	\rightarrow	" 1.235e04"
1SERIAL("{%#10.0f[1CV]}")	\rightarrow	" 12346."
1SERIAL("{%s[1\$]}")	\rightarrow	"pumpkin"
1SERIAL("{%10s[1\$]}")	\rightarrow	" pumpkin"
1SERIAL("{%10.4s[1\$]}")	\rightarrow	" pump"

Control String – Input Actions

The table below lists the commands available to interpret the information coming back into the Serial Channel from the serial device. Input actions are <u>not</u> enclosed by {} in the control string.

Expected data	Input Action syntax	Description	
Characters	text	discard all incoming of particular character is and starts looking for the serial device is 3c including the second discarded. Non-printable character is the ASCII code, 1-2 control characters (ASCII)	the input action string, the <i>DT80</i> will read and haracters from the serial device until that seen. It then discards the matching character the next character in the input action text. ut action string is abc and the input data from 3aabaAAc123 then all characters up to and c' will match, i.e. they will be read and ers may be specified using \nnn (where nnn 55). \cdot char notation may also be used for SCII 1-31), see ASCII-Decimal Tables (P394). { or } character, use \% or \{ or \}
Control signal state	\c1[n] or \c1[nCV]		illiseconds for CTS input to be set (high) –
	\c0[n] or \c0[nCV]	wait up to <i>n</i> or <i>n</i> CV mi RS232 only	lliseconds for CTS input to be cleared (low) -
(Wait)	\w[n] or \w[nCV]		lliseconds. Actual delay time will be 2 character times, whichever is longer.
(Erase receive buffer)	\e	Clear all previously re	ceived characters from the receive buffer
Fixed text string	\m[text] or \m[n\$]		oming characters until the exact string text (or then discard the matching string
Numeric data %{width}type{[nCV]} Interpret the received format and store the		format and store the re	data according to the specified numeric esult into <i>n</i> CV. If the [<i>n</i> CV] is not specified, ned as the return value of the channel. Note
	e.g. %d[2CV], %9f	that {} signifies "option	
String data	%{width} type[n \$]	Interpret the received and store the result in	data according to the specified string format to <i>n</i> \$
	e.g. % 6s[5\$]		
Data to skip	%*{width} type	format but do not store	data according to the specified numeric/string e the result. In other words, skip over this data
	e.g. %*6s , %*f	value.	
One of a set of strings	%{width} type[' str1','str2',	.,nCV{=m}]	If the incoming string matches <i>str1</i> then set <i>n</i> CV=0
	e.g. %9s['goose','moose'	,23CV=2]	If the incoming string matches $str2$ then set $nCV=1$ If the incoming string matches $str3$ then set $nCV=2$ (etc.) If a default value (= m) is specified and the incoming string matches none of the strings then set $nCV=m$

Numeric and String Formats

These tables describe the possible values for *type* – that is, the different ways in which the incoming string of characters can be interpreted.

Туре	Description	Example, assumes input data string is 123 . 456
f	floating point	1SERIAL ("%f[1CV]") \rightarrow 1CV = 123.456 (nothing left in receive buffer)
d	decimal integer	1SERIAL ("%d[1CV]") \rightarrow 1CV = 123 (.456 left in receive buffer)
x	hexadecimal integer	1SERIAL (" $*x[1CV]$ ") \rightarrow 1CV = 291 (.456 left in receive buffer)
0	octal integer	1SERIAL ("%o[1CV]") \rightarrow 1CV = 73 (.456 left in receive buffer)
i	decimal/hex/octal integer	1SERIAL ("%i[1CV]") \rightarrow 1CV = 123 (.456 left in receive buffer)
C	character	1SERIAL ("%c[1CV]") \rightarrow 1CV = 49 (23.456 left in receive buffer)
b	binary (no conversion)	1SERIAL("%b[1CV]") \rightarrow 1CV = 49 (23.456 left in receive buffer)

Туре	Description	Example, assumes input data string is aaba cxyab.
S	string (↓ terminated)	1SERIAL("%s[1\$]") → 1\$ = "aaba cxyab" (nothing left in receive buffer)
S	string (whitespace terminated)	1SERIAL("%S[1\$]") \rightarrow 1\$ = "aaba" (cxyab \downarrow left in receive buffer)
[chars]	string containing only specified chars	1SERIAL("%[abc][1\$]") \rightarrow 1\$ = "aaba c" (xyab \rightarrow left in receive buffer)
[~chars]	string <u>not</u> containing specified chars	1SERIAL("%[~bc][1\$]") \rightarrow 1\$ = "aa" (ba cxyab \downarrow left in receive buffer)

- Conversions which may be terminated by whitespace(P417) (%f, %d, %x, %o, %i and %S) will skip over any leading whitespace, e.g. %d will match input strings of "123", " 123" and " \013\013\010 123".
- The %i conversion assumes that the value is hexadecimal if it starts with 0x or 0x, octal if it starts with 0 (zero), otherwise decimal.
- The %f conversion will accept numbers in standard (e.g. -12.39904) or exponential (e.g. -1.239904e01) format.
- The %c and %b conversions treat the characters as 8-bit binary values. So the character "1" (ASCII 49) will result in the value 49 being stored in the CV.

Return Value

The return value of a SERIAL channel may be either a status code or a data value:

- If all numeric input conversions in the control string include a [nCV] specification then the SERIAL channel will return the status code 0 (success), 20 (receive timeout), 21 (transmit timeout), 5 (CTS timeout) or 29 (scan error); see Serial Data Transmission and Reception (P353)
- If one or more numeric input conversions in the control string <u>do not</u> include a [ncv] specification then the **SERIAL** channel will return the result of the rightmost conversion. If any part of the channel's evaluation fail (i.e. the channel's status code is non zero) then the returned value will be the special "Not Yet Set" error value.

The following example will attempt to read a floating point value from the serial sensor and return the value read RA2+E 1SERIAL("%f")

```
1SERIAL 27.9

1SERIAL 31.2

dataTaker 80 E89 - Serial sensor receive time out 1SERIAL NotYetSet
```

Compare this with the following example, which instead assigns the value to a CV:

```
RA2+E 1SERIAL("%f[1CV]") 1CV
1SERIAL 0 State
1CV 27.9

1SERIAL 0 State
1CV 31.2

dataTaker 80 E89 - Serial sensor receive time out
1SERIAL 20 State
1CV 31.2
```

For many applications the form where the SERIAL channel returns the actual value scanned provides a simpler solution.

Width

The optional *width* value specifies the <u>maximum</u> number of characters to read for conversion. For example, with the above example's input data: **1SERIAL("%2d[1CV]")** will result in 1CV = 12 (3.456 left in receive buffer). The default for most of the conversions (except **%c** and **%b**) is to keep reading characters <u>until an invalid character is read</u>. (That's why the integer conversions in the above example stop when the "." character is seen.)

The default *width* value for %c and %b is 1; with this setting the two conversions behave identically. However, if *width* is specified then:

- for %c, only the last character is read; preceding characters are skipped
- for %b, the specified number of characters are treated as a multi-byte binary word, in "big-endian" (most significant byte first) format. Note that due to the limited precision of CVs, the maximum practical width value is 3 (24 bits).

For example:

Example assumes input data is 123.456
1SERIAL ("%1c[1CV]") \rightarrow 1CV = 49 (23.456 left in receive buffer)
1SERIAL ("%2c[1CV]") \rightarrow 1CV = 50 (3.456 left in receive buffer)
1SERIAL ("%3c[1CV]") \rightarrow 1CV = 51 (.456 left in receive buffer)
1SERIAL ("%1b[1CV]") \rightarrow 1CV = 49 (23.456 left in receive buffer)
1SERIAL ("%2b[1CV]") \rightarrow 1CV = 12594 (49*256 + 50) (3.456 left in receive buffer)
1SERIAL ("%3b[1CV]") \rightarrow 1CV = 3223859 (49*65536 + 50*256 + 51) (.456 left in receive buffer)

Important If width is not specified then the incoming data must be terminated by a non-matching character, otherwise the serial channel will continue to wait for more characters to be read, eventually returning a timeout.

For example, if the control string is **1SERIAL("%d")**:

Input data	Result
"abc"	Scan Error (return NotYetSet; abc left in receive buffer)
"123"	Receive Timeout (return NotYetSet, nothing left in receive buffer)
"123 "	return 123 (" " left in receive buffer)
"123abc"	return 123 (abc left in receive buffer)

Control String – Example

The control string in the Serial Channel command

1SERIAL("\e{WN\013}%d[1CV],%f[2CV]{C\013}\w[2000]")

specifies the following output and input actions for supervising electronic weighing scales connected to the serial sensor port of a *DT80*:

Input/Output action	Description
\e	An <u>input</u> action.
	\e erases any extraneous characters that may have been sent by the scales at
	some earlier time.
{WN\013}	An <u>output</u> action.
	Sends the "Weigh Now" command (WN) to the scales. The WN command is
	terminated by a carriage return (\013). (See your serial device's manual for
	details of its command set.)
%d[1CV],%f[2CV]	Three input actions.
	These scales return two comma-separated values: a batch number as an integer, and the weight as a floating-point value, followed by a carriage return.
	 %d[1CV] will interpret the first returned value as an integer batch number, and assign this to 1CV.
	 Skip the comma in the returned data string (,).
	 %f[2CV] will interpret the second returned value as a floating-point weight in kilograms, and assign this to 2CV.
{C\013}	An <u>output</u> action.
	These scales also have a Clear command (C), which instructs the scales to clear
	ready for the next weighing operation This output action sends the Clear
	command to the scales. The Clear command is terminated by a carriage return (\013).
\w[2000]	An input action.
	These scales do not respond to commands for 2s after a Clear operation. The \w[2000] action ensures that at least this time elapses following a Clear.

Important The *DeTransfer* program, which is often used to supervise the *DT80*, has a number of special commands that begin with a \ (backslash) character. These are interpreted by *DeTransfer* and not sent to the *DT80*. In order to send a \ character from *DeTransfer*, you need to enter a <u>double backslash</u> (\\\). For example, the above example would be entered into *DeTransfer* as follows:

```
1SERIAL("\e{WN\013}\d[1CV],\f[2CV]{C\013}\w[2000]")
```

This rule applies to DeTransfer only; it does not apply to the Command window in dEX.

Schedules

Executing Serial Channel Commands in Schedules

Like any other channel type, Serial Channel commands can be placed into scan schedules. For example

```
BEGIN
PS=RS485,9600
RA1M 1SERIAL("\e{01READ^M}%6f")
RB2-E 1SERIAL("\e{02READ^M}%12s[1$]",W) 1$
LOGON
END
```

This example will, once a minute, request then read a floating point value from device #1 on the multi-drop RS485 link connected to the serial channel. Also, every time digital input **2D** goes low, the serial channel will request then read a string value from device #2.

Notice that in the first schedule the scanned floating point value is the return value of the **SERIAL** channel, which will then be logged and returned. In the second schedule, the scanned string is assigned to string variable 1\$. The **SERIAL** channel will then return a status code – which in this example we are not concerned about so the **W** channel option is used to make the channel a working channel (not logged or returned).

Serial commands can also be used in the "immediate" schedule, i.e. executed immediately after they are entered. For example, sending

```
2SERIAL("{hello^M^J}")
```

will immediately transmit the indicated string on the host port (assuming it has been configured for serial channel operation).

Triggering Schedules

Sometimes the serial device connected to the Serial Channel returns data unsolicited, and so the program must be capable of responding to the device at any time. As discussed in *Trigger on External Event* (P49), any schedule (Ra) can be defined to trigger on the receipt of the specified string on the Serial Channel as follows:

```
RanSERIAL" text"
```

where a is the schedule identifier (A-K, X) and n is the serial channel port number (1 or 2)

The text string may also be blank:

```
Ranserial""
```

in which case any character received into the Serial Channel produces a trigger.

Whenever the Serial Channel produces a trigger by either of these methods, the receive buffer will contain the string that caused the trigger, ready to be processed by an *n***SERIAL** command.

In the following example a serial device transmits whitespace separated temperature readings at irregular intervals. The following job will read and log readings when they are received:

```
BEGIN
RA1SERIAL"" 1SERIAL("%f","SS Temp~degC")
LOGON
END
```

Note that the **1SERIAL**" *text*" schedule trigger does <u>not</u> consume (i.e. remove from the receive buffer) any received characters that did not match *text*. This means that there may be other characters in the receive buffer preceding the *text* string. An input action should therefore normally be included to discard any characters that do not match *text*. For example: RA1SERIAL"abc: " 1SERIAL("\m[abc:]%f")

```
which will read and discard characters until the exact string abc: is seen.
```

* Re-triggering

The DT80 checks any serial schedule triggers:

- on receipt of data on the serial sensor port, and
- following execution of any schedule containing an nSERIAL channel.

This means that if multiple messages are received in quick succession then all will be processed in turn. For example, suppose the following schedule is entered:

```
RA1SERIAL"x:" 1SERIAL("\m[x:]%d")
and then the following serial data string is received:
x:1298 x:1265 x:0772
```

```
Receipt of this data will trigger the A schedule, and the 1SERIAL channel will then parse the first value, leaving " x:1265 x:0772 " in the receive buffer. This string still matches the schedule trigger (i.e. it contains "x:"), so the A schedule will be immediately re-triggered.
```

Serial Sensor Direct Mode

It is sometimes necessary to interactively set up or test a serial sensor device. This can be done without disconnecting the device from the serial port using the *DT80*'s **serial sensor direct** mode.

The following command:

```
SSDIRECT n
```

causes the communications port on which the command was sent (host port, USB, TCP/IP) to enter SSDIRECT mode.

Whilst in this mode:

- all subsequent commands that you enter <u>on that port</u> will not be processed by the *DT80* and will instead be transmitted out the specified serial channel port the serial sensor port if n = 1 (which is the default), or the host port if n = 2, or the USB port if n = 3. The one exception is <u>ENDSSDIRECT</u>, which is used to cancel SSDIRECT mode.
- all data received from the specified serial channel port will be returned to the host PC via the comms port that is in SSDIRECT mode.
- all transmit data (i.e. output actions) generated by the evaluation of *n*SERIAL channels will be discarded.
- all normal output data from the logger (e.g. real time data, status and error messages, etc) will <u>not</u> be returned to the SSDIRECT-mode comms port. It <u>will</u> still be returned to any connected TCP/IP ports (see *Broadcasting Data* (P187)), or to another comms port if you make it the active comms port by sending a command to it.

Serial sensor direct mode remains in effect until the **ENDSSDIRECT** command is received. The **ENDSSDIRECT** command may be issued on the SSDIRECT-mode comms port, or on any other comms port.

Only one communications port can be in SSDIRECT mode at any one time. So if you send **SSDIRECT** via the USB port (thereby setting that port to SSDIRECT mode), then send another **SSDIRECT** command via a TCP/IP (Ethernet) connection, then an error message will be returned and the second **SSDIRECT** command will be ignored. In order to establish SSDIRECT mode on the TCP/IP connection it would be necessary to first send the **ENDSSDIRECT** command.

❖ Line Termination

By default, each line of text entered in SSDIRECT mode will be terminated by a single CR character when sent to the specified serial channel port. This behaviour can be changed by specifying a second parameter in the **SSDIRECT** command, which indicates the terminating string to add to the end of each line. For example:

```
• SSDIRECT 1 "^M" - terminate each line with a CR character (default)
```

- SSDIRECT 1 "^M^J" terminate each line with CR LF
- SSDIRECT 1 "" do not add any termination

Example

For example, if a *dataTaker CANgate* (CAN bus to ASCII gateway) was connected to the serial sensor port then the following dialog would be possible:

```
1V 9.22 mV
1V 10.09 mV
SSDIRECT
SSDIRECT mode active. Issue ENDSSDIRECT to quit
VERSION
dataTaker CANgate Version 1.24
SNOOPJ 2
EXT 18FEF000 FFFFFF0000F0CCFF PGN:65264 PRI:6 SA:0 DA:0
   18F0000F C07DFFFF0FFFFFF
                          PGN:61440 PRI:6 SA:15 DA:0
EXT
END SNOOP
ENDSSDIRECT
SSDIRECT mode deactivated.
1V 7.12 mV
```

In this example, the regular real time data returns for channel 1V are suspended when **SSDIRECT** is entered. The next two commands that were entered (**VERSION** and **SNOOPJ**) are *CANgate* commands, not *DT80* commands. The *DT80* passes them directly through to the *CANgate*. In each case, the *CANgate* returns some information, which the *DT80* then passes on to the host computer without modification.

When **ENDSSDIRECT** is entered the *DT80* returns to normal operation and the real time data returns resume.

Serial Interface Power Control

If the current job contains no **1SERIAL** commands then the serial channel interface is automatically switched off, which saves a small amount of power. If the current job <u>does</u> contain **1SERIAL** commands then serial channel will be continuously powered.

The **1SSPORT** channel type allows you to turn power to the interface on and off under program control e.g.

RA1H 1SSPORT=1 1SERIAL("\w[1000]{X}%d") 1SSPORT=0

will, once an hour, switch on the serial channel, poll and read an integer from a serial device, then switch off the serial channel.

Serial Channel Debugging Tools

P56 Debugging

Setting **P56=1** will cause the *DT80* to output a number of **diagnostic messages**, which are useful when setting up and testing a serial channel application – or trying to figure out why it doesn't appear to be working as expected.

The following information will be returned:

- · each string of output actions, and each individual input action, as they are processed
- (indented 1 space) actual transmitted data and other transmit operations e.g. breaks, delays as they are performed
- (indented 2 spaces) the state of the receive buffer each time something is added (i.e. received), each time something is removed (i.e. an input action matches) and the initial state these are denoted RxBuf+, RxBuf and RxBuf = respectively also any schedules that are triggered by received characters. The number after the +, or = character indicates the number of characters in the buffer.

Using the weighing machine example discussed earlier:

```
P56=1
```

```
RA1-E 1SERIAL("\e{WN\013}%d[1CV],%f[2CV]{C\013}\w[2000]")
1SERIAL:
         RxBuf=0[1
1SERIAL: InputAction: "\e"
1SERIAL: OutputActions: "WN\013"
1SERIAL: Tx [WN\013]
1SERIAL: InputAction: "%d[1CV]"
1SERIAL: RxBuf+12[0242,1.988\013\010]
1SERIAL: RxBuf-8[,1.988\013\010]
1SERIAL: InputAction: ","
1SERIAL: RxBuf-7[1.988\013\010]
1SERIAL: InputAction: "%f[2CV]"
1SERIAL: RxBuf-2[\013\010]
1SERIAL: OutputActions: "C\013"
1SERIAL: Tx [C\013]
1SERIAL: InputAction: "\w[2000]"
1SERIAL: Wait (2000ms)
1SERIAL 0 State
1SERIAL: RxBuf=2[\013\010]
1SERIAL: InputAction: "\e"
1SERIAL: RxBuf-0[]
1SERIAL: OutputActions: "WN\013"
1SERIAL: Tx [WN\013]
(etc.)
```

In this case you can see that the weighing machine returned the batch number, weight and terminating CR/LF in one 12-character burst ($\mathbb{R}\times\mathbb{B}\mathrm{uf}+12[0242,1.988\setminus013\setminus010]$). The various input actions then dissected this string, removing first the batch number, then the comma, then the weight. At the end of the process the CR/LF was still in the buffer, and it was still there when the next measurement cycle began ($\mathbb{R}\times\mathbb{B}\mathrm{uf}=2[\setminus013\setminus010]$). It was then cleared by the \e input action.

Serial Loopback

A useful technique for testing your parsing commands is to implement a serial loopback in the RS-232 mode. Simply connect the **Tx/Z** and **Rx/A** terminals together, and then send strings out of the Serial Channel by output actions. Because of the loopback, these strings appear in the receive buffer, which can then be parsed by your input actions. The strings you should send should contain data formatted in the same way that the real sensor would. In this way you are <u>simulating</u> the sensor for the purposes of verifying that your program can correctly interpret what it needs.

```
For example, if a loopback connection is used, the commands 

1SERIAL("\e{ABCD,1234\013}%4s[1$],%4d[1CV]") 1$ 1CV should store ABCD into 1$ and 1234 into 1CV.
```

Serial Channel Examples

* Reading Variable Width ASCII

In this example a sensor with an RS232 interface will, in response to a M followed by a CR, transmit an integer status code (which we ignore), followed by four whitespace-separated floating point pressure values. This job reads and logs these values every 5 minutes:

```
BEGIN"LUCY"
PS=RS232,9600
RA5M
   1SERIAL("{\eM^M}%*d%f[1CV]%f[2CV]%f[3CV]%f[4CV]",W)
   1..4CV("~kPa")
LOGON
END
```

* Reading Fixed Width ASCII

In this case a simple serial sensor continuously transmits a stream of records which consist of an A character followed by four 4-digit fixed point (2 decimal place) temperature values (2209 represents 22.09, for example).

This job samples the stream every 30 seconds and logs the values it reads.

```
BEGIN"SPOT"
PS=RS232,1200,7,E,1
RA30S
   1SERIAL("\eA%4d[1CV]%4d[2CV]%4d[3CV]%4d[4CV]",W)
   1..4CV(.01,"~degC",FF2)
LOGON
END
```

Notice that the receive buffer is cleared at the start of the control string. The **1SERIAL** channel will therefore <u>wait</u> until the next update from the sensor. An alternative strategy would be clear the buffer at the end, in which case the **1SERIAL** channel would immediately get what it needs from the buffer. However the data it reads will be the <u>first</u> record in the buffer and would therefore be up to 30s old.

❖ Reading Binary Data

In this example an even more simple sensor outputs 6 bytes of data in response to a digital signal going low. These are to be interpreted as two binary values. The first is a 16-bit integer sequence number, in big endian format (most significant byte first). The second value is a 32-bit voltage measurement, scaled such that 0x00000000 represents -17.0V and 0xFFFFFFF represents +17.0V. For historical reasons, this value happens to be returned in little-endian (least significant byte first) format

This job triggers a reading (by pulsing the 1D output low) every 5 seconds and reads and logs the received values.

```
BEGIN"RAMBUTAN"
PS=RS232,115200
S1=-17,17,0,4294967296"V"
RA5S
1DSO(100,R)=0
1CV(W)=-1
1SERIAL("%2b[1CV]%b[5CV]%b[6CV]%b[7CV]%b[8CV]",W)
1CV("Seq")
2CV(S1)=8CV*16777216+7CV*65536+6CV*256+5CV
LOGON
END
```

Note the following points about this job:

- In this case the sequence number can be read as a single binary number, using %2b, but the measured value must be read byte by byte and reassembled into a single value.
- A span (S1) is used to scale the reading into the correct range.
- 1CV is set to an error value (-1) before each attempt to read the serial channel. If the attempt fails (e.g. no data is forthcoming from the device) then 1CV will be unchanged, so the value -1 will be logged for the sequence number. This makes it easy to identify the reading as invalid.

Note CVs can only precisely store integers with absolute value less than 16,777,216 (24 bits) – above that they will be rounded. In the above example this is not a problem because the value is scaled and rounded anyway.

If, however, you need to recover all 32 bits exactly (for example if they represented 32 separate logic states) then you should read them using two 16 bit conversions and log each half separately, e.g.:

```
BEGIN"WHISTLE"

RA1+E

1..2CV(W)=-1

1SERIAL("%2b[1CV]%2b[2CV]",W)

1CV("MS 16 bits") 2CV("LS 16 bits")

LOGON
END
```

(This example assumes the data word is in big endian format.)

❖ Output to Serial Printer/Display

The serial channel can also be used to output selected channels to a serial printer or display. This job will measure two voltages once a minute and print the values to a serial printer:

```
BEGIN"SOUP"

RA1M

1V(W,=1CV) 2V(W,=2CV)

1SERIAL("{%9.3f[1CV] mV %9.3f[2CV] mV^M^J}",W)

END
```

Output to Another DT80

You can also connect a serial channel to the RS232 host port on a second DT80 (or other dataTaker model).

The following job will send commands to a second logger to read two immediate channels, then interpret its fixed format response, which will be similar to:

```
D,000043,"",2006/02/13,18:16:54,0.191528,0;*,0,22.2172,-12.2002;0063;F2F3

BEGIN"LAMBDA"

PS=RS232,57600

RA30S

1..2CV(W)=-999

1SERIAL("\e{/H/R 1*TK 1+TK^M}\m[,0;*,0,]%f[1CV],%f[2CV]",W)

1..2CV("~degC")

LOGON

END
```

In this case we first send /H/R to ensure that the other logger is in fixed format mode and has data returns enabled, then the three immediate channel definitions. When parsing the response, we look for the exact string ", 0; *, 0, " followed immediately by two comma separated floating point values.

❖ Schedule Triggering (1)

In this example a barcode reader transmits a packet consisting of an STX character (ASCII 01) followed by a 7 digit ASCII integer. Once a valid barcode packet is received, the job will measure three voltages and log these, along with the barcode.

```
BEGIN"ZAMBESI"
PS=RS232,9600
RA1SERIAL"\001"
1SERIAL("\001%7d") 'read and log barcode
1..3V 'log voltages
LOGON
END
```

❖ Schedule Triggering (2)

In this example a GPS unit produces an NMEA 183 data stream, e.g.: \$GPGLL, 4250.5589, S, 14718.5084, E, 092204.999, A*2D

This job will read and log the latitude degrees (positive for north), latitude minutes, longitude degrees (positive for east) and longitude minutes. Each read is triggered by the \$GPGLL header at the start of each transmission.

```
BEGIN
PS=RS232,38400
RA1SERIAL"$GPGLL"

1SERIAL(",%2d[1CV]%f[2CV],%c[3CV],%3d[4CV]%f[5CV],%c[6CV]",2,W)
IF(3CV><82.5,83.5){1CV=-1CV} 'S = ASCII 83
IF(6CV><86.5,87.5){4CV=-4CV} 'W = ASCII 87
1CV("Lat deg",FF0) 2CV("Lat mins",FF4)
4CV("Long deg",FF0) 5CV("Long mins",FF4)
END
```

Note Remember that if *DeTransfer* is used to send commands then <u>two</u> backslash characters must be sent each time a backslash is required. (see *Control String – Example* (P358))

Modbus Channel

Not available on DT81/82E

About Modbus

Modbus is a simple communications protocol which is widely used in **SCADA** (supervisory control and data acquisition) systems. Modbus provides an efficient and standardised way to transport digital states and data values between a remote terminal unit (**RTU**) or programmable logic controller (**PLC**) and a supervisory computer.

Servers and Clients

In a Modbus-based SCADA system, each RTU/PLC acts as a Modbus **server**, or **slave**. These servers/slaves listen for and reply to requests from a Modbus **client**, or **master** system.

As described in *Modbus Interface* (P176), the DT80 is capable of operating as a <u>Modbus server</u>; that is, it can act like an RTU or PLC device, and make data available when polled by a client system.

The *DT80* can also operate as a <u>Modbus client</u>, where it can read data from Modbus sensors in the same way that it reads data from SDI-12 or serial sensors.

The remainder of this section describes the operation of the DT80 as a Modbus client.

The MODBUS Channel Type

To read data from a Modbus device (or write control information to it), the **MODBUS** channel type is used. Each time a **MODBUS** channel is evaluated, the *DT80* will send a Modbus request to the device, retrieve the response, extract the required data and return it so that it can be displayed or logged in the usual way.

Modbus can operate using a broad range of communications media. These fall into two main categories:

- a serial connection, typically RS232, RS422 or RS485
- a TCP/IP network, which can use a variety of physical link types e.g. Ethernet, wireless, fibre-optic, serial (PPP)

As with the **SERIAL** and **SDI12** channel types, for Modbus channels the channel number refers to the physical *DT80* port to which the sensor is wired. That is:

- 1MODBUS is used to read sensors connected to the serial sensor port
- 2MODBUS is used to read sensors connected to the host RS232 port (not DT8xM)
- 3MODBUS is used to read sensors connected to the USB port (not DT821)
- 4MODBUS is used to read sensors connected to a TCP/IP network.

Connecting Serial Modbus Sensors

A serial Modbus network has <u>one</u> client (master) system – in this case, the *DT80* – connected to one or more server (slave) devices. Serial networks using the RS485 or RS422 standards support multi-drop, i.e. multiple slaves connected to one master. RS232 or USB can also be used for point-to-point connections (single master and single slave).

Slave devices on a serial Modbus network are identified by an 8-bit **slave address** (1-247). Every slave device on a particular serial network must have a unique address. (Slave addresses are not required on a TCP/IP Modbus network, because the slaves are identified by their IP address.)

The *DT80* can be connected to a serial Modbus network using either the serial sensor port, the host RS232 port, or the USB port.

Note that if a particular serial port is set up to read Modbus sensors then that port must be dedicated to that function. It cannot also be used for controlling generic serial devices or sending commands to the logger's command interface.

Serial Sensor Port

The serial sensor port is the one most commonly used for connecting serial Modbus sensors. It supports RS232, RS422 and RS485 connections. Note however that the serial sensor port is not available on the DT81/82E.

To configure the serial sensor port for Modbus master operation, set the following profile: PROFILE SERSEN PORT FUNCTION=MODBUS MASTER

If you try to define a **1MODBUS** channel without setting this profile then an error message will be returned.

For more details on setting up the port and the possible wiring configurations, see Serial Sensor Port (P199).

Host RS232 Port

The host RS232 port can also be used for controlling a Modbus sensor. This is configured in a similar way: PROFILE HOST_PORT FUNCTION=MODBUS_MASTER

Note that because RS232 is a point-to-point connection, only one Modbus device can be connected to this port.

As with the serial sensor port, you may need to change the configured baud rate or other settings. For more details on setting up the port and the possible wiring configurations, see *Host RS-232 Port* (P197).

USB Port

The USB port may also be used for polling a Modbus sensor. Such a "sensor" would generally be a PC-based system, as a stand-alone sensor would most likely have the wrong type of USB interface and would not be able to connect to the *DT80*'s USB port.

To configure the *DT80* USB port for Modbus master operation use: PROFILE USB_PORT FUNCTION=MODBUS_MASTER

For more details, see USB Port (P188).

Connecting Network Modbus Sensors

A network Modbus sensor communicates with a client system such as the *DT80* using a TCP/IP network. This network may use a variety of different physical link types, including Ethernet, serial links, wireless and optical fibre. Normally, the *DT80*'s Ethernet port is used to connect to a TCP/IP network, and in most cases the sensor will also connect using an Ethernet port.

In order to communicate over a TCP/IP network, all devices connected to that network are required to have a unique **IP** address. So in order for the *DT80* to be able to poll network Modbus sensors, the *DT80* must have an IP address and so must each sensor

See Ethernet Communications (P236) for more details about IP addresses and how to assign one to the DT80.

There are many different ways in which network Modbus sensors can be connected to the *DT80*. The simplest possible network is a single cross-over cable between the sensor and the *DT80*'s Ethernet port.

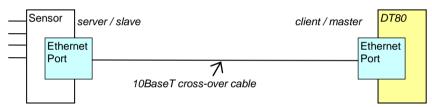


Figure 153: Direct Ethernet connection between DT80 and a network Modbus sensor

More typically, the *DT80*'s Ethernet port would be connected to an existing Ethernet network, which may have several Modbus devices attached. There may even be devices connected via the Internet.

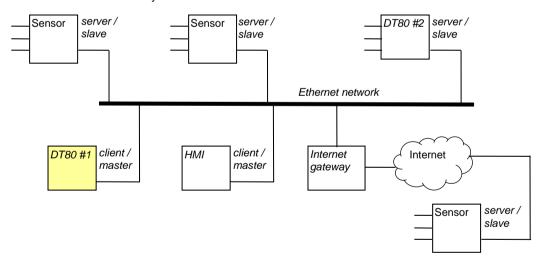


Figure 154: One possible Modbus network configuration

For example, Figure 148 shows one possible network configuration. In this example, three network Modbus sensor devices are used. Two are connected to the local Ethernet network, and one is remote, accessed via the Internet. DT80 #2 is also set up as a network Modbus sensor, as described in Modbus Interface (P176). All of these devices operate as Modbus server, or slave, devices.

DT80 #1 is set up as a Modbus client, or master, device. It has no physical sensors of its own connected (although it could have); its job here is to retrieve measurements from the four slave devices and log them. There also happens to be a Modbus HMI (Human-Machine Interface) device connected. This is also a client/master device, which, like DT80 #1, regularly scans the sensors. It then presents this data as a mimic display. Unlike a serial Modbus network, there is no problem having multiple master devices on a TCP/IP Modbus network.

There is no particular configuration required to enable the *DT80* to operate as a Modbus client. Unlike a serial Modbus network, with TCP/IP many different protocols can be used on the network at the same time so there is no need to set the

"function" of the Ethernet port. However, some configuration of the *DT80* may be required in order for the *DT80* to be able to "see" the various Modbus server devices. Depending on how the network is set up, you may need to set:

- DT80 IP address (PROFILE ETHERNET IP_ADDRESS=...)
- subnet mask (PROFILE ETHERNET SUBNET MASK=...)
- gateway address (PROFILE ETHERNET GATEWAY=...)
- DNS server address (PROFILE NETWORK DNS_SERVER_1=...)

You may also need to configure the Modbus sensor devices themselves.

Reading Data from Modbus Devices

Modbus Registers

As described in The Modbus Data Model (P177), a Modbus slave device makes available the following resources:

- an array of single bit coils (digital outputs), numbered from 0:00001 to 0:65536.
- an array of single bit discrete inputs (digital inputs), numbered 1:00001 to 1:65536
- an array of 16-bit input registers, numbered 3:00001 to 3:65536
- an array of 16-bit output registers (a.k.a holding registers), numbered 4:00001 to 4:65536

As can be seen, the first digit of the register number indicates the <u>type</u> of register – 0, 1, 3 or 4 for coil, discrete input, input register or output register respectively. This usage is, however, just a convention. This digit is <u>not</u> part of the actual address transmitted in the Modbus message.

The documentation for the slave device will describe the function of each register. Bear in mind, however, that there are a few different ways of specifying Modbus register numbers:

- 6-digit notation, as used in this manual. The first digit specifies the type of register, then there are five decimal digits to specify the register number (00001-65536). In this manual, a colon (:) is used to separate the register type and number. In reading Modbus device documentation you may also see an 'x' character used, or no separator at all.
- 5-digit notation. This is similar except that only four digits are used for the register number (0001-9999)
- protocol address. This is a decimal number 0-65535 or hexadecimal 0000-FFFF. The <u>type</u> of register would need to be indicated in the text accompanying the register listing.

For example, "3:00043", "3x00043", "30043" and "input register address 42 (002Ah)" are all different ways of referring to the same input register.

* Interpreting Register Values

The Modbus protocol is just a way of transporting 16-bit (or 1-bit) values from A to B. It is up to the master and slave devices to agree on how these values are to be interpreted.

By default, each register is normally taken to hold an independent signed integer value in the range -32768 to 32767. For many applications this range is quite adequate, especially if a fixed scaling factor is also applied (for example a device may return a temperature in tenths of a degree).

However, various schemes have been developed in order to allow higher precision values to be returned via Modbus. These involve joining adjacent registers together to allow 32-bit values to be returned. These 32-bit quantities may then be interpreted as long integers or floating point values.

The *DT80* provides options to support many of these methods. It should be stressed however that sending 32-bit quantities over Modbus is <u>not</u> standardised, so you will need to carefully match the *DT80*'s settings with the specific device that you wish to read.

Using the MODBUS Channel

To poll a Modbus slave device, you use the *n*MODBUS channel type. As mentioned above, the *n* specifies the physical *DT80* port: 1, 2 or 3 for a serial Modbus connection via the serial sensor port, host RS232 port or USB port respectively, or 4 for network Modbus over TCP/IP (generally using the Ethernet port).

To <u>read</u> a single value, you simply define a **MODBUS** channel and specify appropriate channel options, as described below. This definition is placed in a schedule, as you would for any other *DT80* channel type.

When the channel is executed, the *DT80* will send a "read" request to the specified device, wait for its response, do any requested scaling or statistics on the returned value, then log or return the final reading.

To <u>write</u> a value, an expression is specified, as you would when setting a channel variable. For example, <u>1MODBUS</u>(...)=1CV*2

will set the required register on the required Modbus slave device (as specified in the channel options) to the value of 1CV multiplied by 2.

Note If the value being written is outside the range of the target Modbus register then it will be set to the registers minimum or maximum value, e.g.

4MODBUS (AD"10.23.0.4",R4:7)=239999
4MODBUS 65535

MODBUS Channel Options

Channel options are used to specify

- which Modbus sensor to access, i.e. its network address
- which register(s) to access
- how to interpret the register value (signed or unsigned? 16 or 32 bit?)
- how to scale the result into the correct engineering units
- communications options such as timeouts

Of these, the first two (sensor address and register number) will normally always need to be specified. The remainder are optional and the default values will be appropriate for many applications.

Address (AD)

For serial Modbus (1/2/3MODBUS), the slave device address is specified using the ADn option, where n is the numeric slave address (1-247). Address 0 can also be used, which will broadcast a write command to all connected slave devices. Slave devices never reply to a broadcast request.

For network Modbus (4MODBUS), use AD" ip-addr", where ip-addr is either a numeric address (e.g. 192.168.11.160) or a symbolic address (e.g. myplc.llamas.org). The address can optionally be suffixed by a port number e.g. AD"192.168.1.2:5555" if the default port (502) is not suitable.

Note that symbolic addresses are resolved when the channel is defined (i.e. when the program is started), not when the channel is evaluated. Using slave devices with dynamically allocated IP addresses are therefore <u>not</u> recommended, as an error will result if the IP address changes during operation.

Register (R)

To specify the register number to read/write, use the Rtype: num channel option. That is, the register number is specified using the "6-digit" notation with a colon (:) separator between the register type (0/1/3/4) and the register number (1-65536).

For example, R3:27 specifies the device's 27th input register. (At the protocol level, the *DT80* would send a "read register" command and specify address 26, or 001A.)

A complete channel definition would therefore be something like:

```
1MODBUS(AD2,R3:27)
```

which will read register 1:00027 (input register #27) on the device with address 2 connected to the DT80 serial sensor port.

For 1-bit Modbus registers, i.e. coils (type 0) and discrete inputs (type 1), it is also possible to read/write up to 16 bits at once. This is done by adding an extra field onto the end of the **R** channel option to specify the number of consecutive 1-bit registers to pack into one value. The full syntax for this option is therefore **R**type: num: bits, where bits is a number between 1 and 16 (default 1). The : bits part is only valid if a 1-bit register type is specified, i.e. type is 0 or 1.

For example, R1:64 will read discrete input #64 and return its value (0 or 1). On the other hand, R1:64:8 will read discrete inputs #64 through #71 and return them as an 8-bit bitmask (0 to 255). Input #64 will be the least significant bit (bit 0), input #71 will be the most significant bit (bit 7).

Data Format (MBx, MEx)

Modbus registers contain 16 bit integer values. By using the following channel options, however, pairs of consecutive registers can be interpreted as containing a 32 bit integer or floating point value.

The following options specify how the DT80 should interpret the contents of a Modbus register, or pair of registers:

- MBI 16 bit signed integer (default)
- MBU 16 bit unsigned integer
- MBL 32 bit signed integer transferred using two consecutive 16 bit registers
- MBF 32 bit IEEE-754 floating point value transferred using two consecutive 16 bit registers
- MBLE 32 bit signed integer transferred using "Enron Modbus" protocol variant
- MBFE 32 bit floating point value transferred using "Enron Modbus" protocol variant

If MBL or MBF are selected, the following two options can be used to specify the order in which the two halves of the 32 bit value are stored:

- MES "straight endian" (default): the first register of the pair contains the upper 16 bits
- MER "reverse endian": the first register of the pair contains the lower 16 bits.

Communications (TO, RT)

Two options control how communications errors or timeouts are handled.

The **TO**n option specifies the timeout (n) in seconds for Modbus master requests (minimum=1, default=3)

The RTn option specifies the number of retries to perform following a Modbus master error or timeout (default=0)

Unit ID (MUID)

The $\mathtt{MUID}n$ option sets the Modbus "unit ID" field to n (0-255), and is only applicable for network connections ($\mathtt{4MODBUS}$). It is typically used where the connected Modbus device is acting as a gateway to a serial Modbus network. In this case the unit ID represents the address of the device on the serial network that you wish to access.

Scaling

The standard *DT80* scaling facilities such as spans, polynomials and the channel factor can be used to scale the slave device's measurement units into the desired units for logging.

For example, if a device register contains a temperature in tenths of a degree Celsius you could specify a scaling factor of 0.1 using the channel factor, e.g.

```
1MODBUS(AD1,R3:22,0.1,"Temp~degC")
```

If the device instead measured in tenths of a degree Fahrenheit, a span could be used to apply a scaling factor and an offset: \$1=0,100,320,2120"degC"

1MODBUS(AD1,R3:22,S1)

In this example the span (see *Spans (Sn) (P61)*) is specifying that we want to indicate a value of 0 (degrees C) when we read a value of 320 (tenths of a degree F) from the device, and a value of 100 when we read a value of 2120.

The SRn channel option can be used to apply a span in reverse. So if the above device also contained a setpoint register (also in tenths of a degree F), you could use the following to set the setpoint to 22.5 °C:

1MODBUS(AD1,R4:20,SR1)=22.5

Block Transfers

It is also possible to read a block of consecutive Modbus registers into a block of CVs. In this case the return value of the channel is the number of values transferred (which you would generally ignore by using the \mathbf{w} option to make the channel a working channel). The actual data values are written to the specified CVs.

To do a block read, specify a starting register number and a CV range. The extent of the CV range specifies the number of registers to read. For example

```
1MODBUS(AD1,R3:21,=1..5CV)
```

will read input registers #21-25 into 1CV-5CV.

To write a block of CVs to a block of registers, a CV range can be specified where the expression would normally be, e.g. 1MODBUS (AD1,R4:1) = 51..60CV

will set holding registers #1-10 to the values of 51CV-60CV.

In the following slightly convoluted example, the current values of 1CV-50CV can be copied to 101CV-150CV in one operation by telling the *DT80* to "poll itself"

```
4MODBUS(AD"127.0.0.1",R3:1,=101..150CV)
```

In this case the *DT80* will send a Modbus request to read input registers #1-50 to the Modbus slave at address 127.0.0.1. This address is a special "loopback" IP address, which will actually be received by the *DT80* itself. The *DT80* Modbus server will then process the request in the normal way. As indicated in the table in *Accessing DT80 Channels via Modbus* (P178), input registers #1-1000 are mapped onto 1CV-1000CV, so the *DT80* will reply to the request with the values of 1CV-50CV. The MODBUS channel will then process the reply and store the values into 101CV-150CV.

Note that in this example the CV values will be transferred using standard 16-bit Modbus registers, so an appropriate scaling factor should be applied using the **SETMODBUS** command if the CVs contain non-integer values.

Examples

Some further examples are given below.

- 1MODBUS (AD19, R3:100) read input register #100 from device with address 19 connected to serial sensor port
- 4MODBUS (AD"10.0.0.123",R3:100) as above, but read from a device with IP address 10.0.0.123
- 1MODBUS(AD1,R3:100,=10..19CV) read input registers #100-119 and save to 10..19CV
- 1MODBUS (AD1,R3:70,MBF) read input registers #70 and #71 and interpret as the high and low words respectively of a 32 bit IEEE-754 floating point value.
- **1MODBUS (AD1,R3:70,MBF,MER)** as above, except that register #70 contains the low word and #71 contains the high word (i.e. "little endian" format).
- 1MODBUS(AD1,R4:100)=235 write 235 to holding (output) register #100

- 1MODBUS (AD1,R3:1,0.1) read input register #1 and multiply by 0.1 (often used when the register contains a fixed point value, e.g. it measures in tenths of a degree)
- 1MODBUS (AD1, R3:21,S2) read input register #21 and apply scale and offset as specified in span S2.
- 1MODBUS (AD1,R4:100,SR2)=1..3CV write 1..3CV values to holding registers #100-102, after applying span S2 in reverse to each value
- **1MODBUS (AD1,R1:100:8)** read discrete inputs #100-107 and pack into a single 8-bit value with input #100 as the least significant bit.
- 1MODBUS (AD1, R0:100:16) = 0xFFFF set coils #100-115 to 1
- 1MODBUS (AD1, R0:100) = 4CV set coil #100 to 1 if 4CV is non-zero, 0 if 4CV is zero
- 1MODBUS (AD1, R1:100:16,=1..2CV) read discrete inputs #100-115 into 1CV, #116-131 into 2CV
- 1MODBUS (AD1,R3:100,MBF,=1..2CV) read input regs #100-101 as a floating point value and save to 1CV, read input regs #102-103 as a second floating point value and save to 2CV.

Troubleshooting

Setting **P56=4** will enable the output of diagnostic messages which allow you to see received and transmitted Modbus messages as they occur. This is described further in the Modbus slave section, *Troubleshooting* (P181).

The TCP/IP loopback facility, where you specify the address 127.0.0.1 in order to cause the *DT80* to send Modbus messages to itself, can be a handy way to test your *DT80* program without requiring the connection of a real Modbus sensor. For example, you can simulate a sensor's input registers by setting a range of CVs, then reading them using the MODBUS channel – as described in *Block Transfers* (P368) above.

If the *DT80* is unable to communicate with a Modbus sensor, an error message will be reported, such as 1MODBUS(AD5,R3:1)

```
dataTaker 85 E124 - Modbus transaction failed 1MODBUS NotYetSet
```

Check the following:

- Ensure the address specified in the AD channel option matches the Modbus device's configured serial or IP address
- Ensure that all Modbus devices on the network have unique addresses.
- If the *DT80* has a manually configured IP address and the sensor is not on the same local network segment then ensure that the *DT80*'s Ethernet gateway is set correctly, using **PROFILE ETHERNET GATEWAY**=*ip*-addr
- Ensure that the device actually supports the register number that you are trying to read. Make sure that you understand the convention that is used in the device's documentation for specifying register numbers.
- For serial Modbus, ensure that the serial port is set up correctly, using the appropriate profile settings. This includes
 port mode (RS485/422/232; serial sensor port only), port function (must be set to MODBUS_MASTER), baud rate and
 possibly other settings.
- For serial Modbus over RS422, ensure that the port is wired correctly with the *DT80* as the master.
- Ensure that there are no other Modbus master devices on the same serial network as the *DT80*. (For a TCP/IP network multiple Modbus master devices can be present.)
- If transactions are failing intermittently, electrical noise may be disrupting the network. If this cannot be rectified then it may help to use the **RT**n channel option to tell the *DT80* to retry failed transactions a few times.

If the MODBUS channel is reliably returning values, but the values seem to be wrong, then check the following:

- Make sure you have specified the correct register number. Be careful of "off by one" problems, as some device
 documentation specifies 0-based protocol addresses, rather than the 1-based register numbers used by the R
 channel option.
- Has any required scaling factor or span been applied correctly? Double check the device documentation.
- For 32-bit integer or floating point quantities be sure to specify the correct data format option, e.g. **MBF** if the device returns an IEEE-754 floating point value, or **MBL** for a long integer.
- For 32-bit quantities, it is also quite possible that your device may require the MBR option as both "straight" and
 "reversed" word ordering are widely used.

Technical Details & Troubleshooting

DT80 Analog Sub-System

This section provides some technical details on the internal operation on the *DT80*'s analog measurement sub-system. This will allow the interested user to better understand its characteristics.

A simplified block diagram of the DT80/81's analog sub-system is shown below. In this diagram the circle-X symbols indicate relay contacts which can connect or disconnect the indicated points.

Figure 155: DT80/81 Series 1 Analog Sub-System

The DT80 Series 2 and DT85's analog sub-system is slightly different:

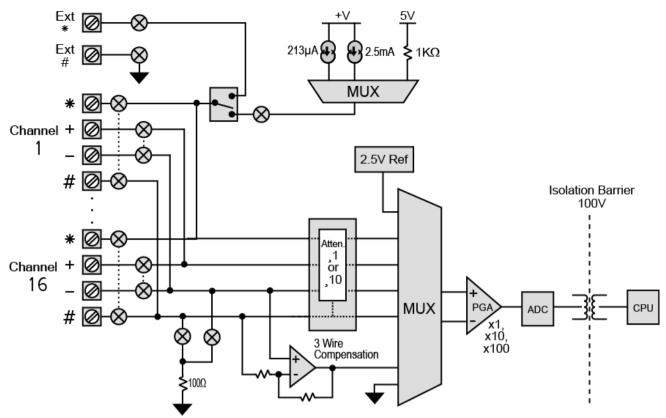


Figure 156: DT80 Series 2 and DT85 Analog Sub-System. Series 3 is the same, except that 213uA current source can also be switched through to the *, + or – terminal. This allows 2-wire resistance measurements on any terminal.

The following sections discuss the various points to note about these diagrams.

Ground Terminals

The *DT80*'s analog section is electrically isolated from the rest of the unit. There are therefore two separate ground references – **digital ground** and **analog ground**.

The DT80's front panel label further reinforces the separation of the analog and digital sections:

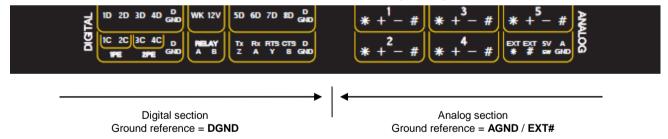


Figure 157: The DT80 has two ground systems

Isolating the analog and digital sections means that sensor-to-equipment ground loops (see *Ground Loops* (P374)) are unlikely to arise. To preserve the *DT80*'s isolation these grounds should not normally be connected together.

An isolated analog ground also means that the *DT80* can reject a large common mode voltage on the input being measured because its analog ground can "float" up to match the common mode voltage. This means that the common mode voltage seen by the *DT80*'s amplifier will be small.

❖ Digital Ground

The *DT80*'s digital ground is connected to the **DGND** terminals, as well as to the chassis earth point and the various "common" or "ground" terminals on the communications and power interfaces. Digital ground is the ground reference for:

- DC power input
- all communications links (including serial sensor port), if required
- digital and counter inputs and outputs
- DC power outputs 12V and PWR OUT (DT80 Series 2 and DT85 only)
- · cable shields

❖ Analog Ground

The DT80's analog ground is shown by a black triangle symbol in the block diagram.

Most analog measurements will not require any ground reference connection, as the measurement is taken relative to the channel's – or # terminal. The only case were a ground connection is required is when making current measurements using the *DT80*'s internal shunt resistor. In this configuration the current to be measured flows in the # terminal, through the shunt resistor and returns via the analog ground terminal to the external current source. Refer to the wiring diagrams, e.g. *C3* – *Independent Current Input using the internal shunt* (P304) for more details.

For the DT80/81, analog ground is permanently connected to the AGND terminals.

For the DT80 Series 2 and DT85, analog ground is connected to the **EXT#** terminals – but only when needed. That is, it is only connected during a measurement that uses the internal shunt resistor (e.g. 1#I), or that uses externally generated excitation (**E** channel option). Switching the analog ground connection in this way means that a channel which does not require an analog ground connection (e.g. a thermocouple) can be completely isolated from a channel which does (e.g. a current loop which uses the internal shunt). With the DT80/81, the thermocouple channel would not be completely isolated from the current loop channel because the thermocouple channel's # terminal would be connected (via the shunt resistor) to the **AGND** terminal and therefore to the ground of the current loop.

For Series 3 models, a permanent **AGND** terminal is provided as the return for the switched isolated 5V power output, **5V SW**.

Input Switching

As shown in the block diagrams, each input terminal is switched via relay contacts. While an analog channel is being measured, its terminals are switched through to the analog input multiplexer. All other channels have all four of their input terminals disconnected, so they are completely isolated from the channel being measured.

For the DT80/81, the dotted lines between each channel's four relay contacts indicate that the four relay contacts are always switched together, so all four are either all open or all closed.

For the DT80 Series 2 and DT85, it can be seen that the contacts are split into two independently controlled pairs – one for the + and – terminals and one for the * and # terminals. This means that if two independent differential inputs are connected to the one channel then the two measurements will be fully isolated. That is, when you measure between + and – (e.g. 1TK) the * and # terminals will be disconnected, and conversely when you measure between * and # (e.g. 1*TK) the + and – terminals will be disconnected. This isolation improves measurement accuracy in situations where the two inputs have different common mode voltages.

Input Termination

The *DT80*'s instrumentation amplifier has a very high input impedance. With such devices, it is necessary to provide a path to allow the device's inherent "bias current" to flow to ground. If this is not done then the inputs will "float", possibly causing significant inaccuracies.

For the DT80/81, when a measurement is made relative to the # terminal (e.g. 1+v), the 100Ω shunt resistor between the # terminal and AGND provides a ground path, thereby preventing any problems due to floating inputs. However, when a measurement is made between the + and – terminals (e.g. 1v), the shunt resistor will not be connected to the amplifier input. For such measurements, it is necessary to **terminate** the inputs. This input termination is provided by a pair of $1M\Omega$ resistors, as shown in the block diagram. These are automatically switched in whenever a voltage measurement is made using the + and – terminals (e.g. 1v, 1t etc.), or they can be switched in manually using the t (terminate) channel option.

The use of these termination resistors will decrease the input impedance of the DT80 to around $1M\Omega$. That is, it will increase the load on the voltage source being measured. This will generally only be a problem if the source has a very high output impedance.

Also note that the ground reference provided by the $1M\Omega$ termination resistors is not as effective as that provided by the 100Ω shunt resistor. For this reason, when performing an independent voltage measurement it is usually preferable to make the measurement relative to the # terminal rather than the – terminal; that is **1*V** rather than **1V**.

For the DT80 Series 2 and DT85, these termination resistors are not required, and the \mathbf{T} option will have no effect. This is because the 100Ω shunt resistor can be connected to either the – or the # terminal, as shown in the diagram. This resistor will therefore provide a ground path for all input configurations.

Attenuator

To extend the input voltage range, the *DT80* provides a switchable input attenuator. This is a resistive voltage divider which attenuates the input by approximately 10:1. The attenuator is enabled by default for the **HV** (high voltage) channel type, or it can be enabled manually using the **A** channel option.

As indicated in the diagrams, there is no attenuator on the # input. This means that input attenuation is <u>not</u> available for # terminal measurements (which would typically be current measurements using the internal shunt resistor, e.g. 1#I or 1#L).

Furthermore, the excitation switching arrangement on the DT80/81 means that attenuation cannot be used if the logger is supplying excitation from one of its internal sources. This restriction does not apply to the DT80 Series 2 and DT85.

Note that when the attenuator is used the DT80's input impedance will decrease to approximately $100k\Omega$.

Excitation

Some measurements require that the sensor be **excited** in order for a measurable output voltage to be produced. For example, to measure a resistance an excitation current is passed through the resistance and the resulting voltage drop is measured.

As shown in the block diagrams, there are some differences between the DT80/81 and the DT80 Series 2/DT85 in the way excitation is switched. These do not, however, affect the way that excitation is used from the user's point of view, other than the caveat mentioned above regarding attenuation.

❖ Internal Sources

If excitation is required, the *DT80* provides three internal excitation sources:

- precision current source, approx. 213µA. This is the default for the R (resistance), NI (RTD) and YSnn (thermistor) channel types, or can be selected manually using the I channel option.
- precision current source, approx. 2.5mA. This is the default for the BGI (bridge), PTnnn (RTD) and CU (RTD) channel types, or can be selected manually using the II channel option. This setting provides for more accurate measurements of low resistances, at the expense of a reduced measurement range.
- voltage source, approx 4.5V. This is the default for the **BGV** (bridge) and IC temperature sensor (e.g. **AD590**, **LM135** etc) channel types, or can be selected manually using the **V** channel option. This output has a 1kΩ output impedance, so the output voltage will drop if any significant current is drawn.

If one of these sources is selected, it will be switched through to the * terminal of the channel being measured. The excitation current returns via the channel's # terminal, then through the shunt resistor to analog ground. Note that the excitation is only connected to the channel's terminals for the duration of the measurement.

For Series 3 models, the 213µA current source may be connected to the + or – terminals, as well as the * terminal. This allows 2-wire resistance measurements to be performed between + and – or between # and any of the other three terminals.

* External Sources

Alternatively, an external excitation source may be provided. There are two options here:

- The source can be connected directly to the sensor. The *DT80* then measures the required voltage. As far as the *DT80* is concerned, it is just measuring a voltage; it is not concerned with providing excitation. The **N** (no excitation) channel option may therefore be used to indicate this configuration. For example, refer to the bridge wiring diagram: *B1 6-Wire BGV Inputs* (*P310*).
- A single source can be used to excite multiple channels. In this configuration the external supply is connected to the EXT* terminal, and the return to AGND (DT80/81) or EXT# (DT80 Series 2/DT85). The DT80 will then switch this source through to the * terminal of the channel being measured. The excitation current then returns via the channel's # terminal, through the internal shunt to analog ground, then back to the excitation supply via the AGND/EXT# terminal. If desired, the 12V power output on the DT85 and DT80 Series 2 can be connected to EXT* as an excitation source, see also Controlling 12V Power Output (P289).

Note that in the first case the sensor is continuously excited, while in the second it is only excited during an actual measurement (similar to internal excitation). Exciting a sensor only when needed is beneficial from a power consumption standpoint, and it will help minimise self-heating issue in sensors such as thermistors. In some cases, however, a sensor may require a certain warm up time. In this case the MD (measurement delay) channel option may be used to extend the measurement time)

Note also that external excitation cannot be used for channels such as **R** (resistance) or **BGI** (current excited bridge) where the *DT80* needs to accurately know the excitation current in order to calculate the quantity being measured. For these channel types one of the precision internal current sources must be used.

3-Wire Compensation

The 3-Wire Compensation circuit is used for 2 and 3 wire resistance measurements. It will therefore be used by default for any resistance measurement, unless the **4w** option is used to specify a 4-wire measurement.

In a 3-wire measurement, excitation current flows out of the * terminal, through the excite wire, through the resistance being measured, then back via the return wire to the # terminal. The measurement is then made between the + terminal (which is shorted to *) and, using a third "sense" wire, the negative end of the resistance being measured. This measurement will include the voltage drop across the excite wire, as well as that across the unknown resistance. See R2 - 3-Wire Resistance Inputs (P307).

The 3-wire compensation circuit works by measuring the voltage drop across the return wire (i.e. between the sense point and the # terminal), multiplying it by 2 (to account for the voltage drop in the excite wire, which is assumed to be equal to that in the return wire), then using this voltage to offset the negative input of the instrumentation amplifier. This will effectively subtract the cable's voltage drop, thereby compensating for the effect of the cable resistance.

For a 2-wire measurement there is no sense wire. The return wire connects to the – terminal, so the measurement now includes both the excite and the return resistance. This can then be manually compensated for by inserting a resistor equal to the total cable resistance between the – and # terminals. The excitation current will flow through this resistor, generating a voltage drop which will then offset the amplifier input in a similar way to a 3-wire measurement.

Calibration and Characterisation

There are two main sources of error in an electronic instrument such as the DT80:

- variations in component values or characteristics due to manufacturing tolerances
- · variations in component values or characteristics due to ambient temperature

During production, the actual values for certain circuit parameters are measured (using test equipment traceable to ISO standards) and then stored permanently into the DT80 memory. This process is known as **characterisation**. Once the *DT80* has been characterised, the firmware can correct for these variations. These stored values can be listed using the **CHARAC** command (See CHARAC Command (P275)).

Some circuit characteristics are, however, inherently temperature dependent. If the *DT80* is to return accurate readings over the full temperature range then these characteristics must be corrected for as well. This cannot be done in the factory; it must be done during operation, as the temperature goes up and down. This process is known as **calibration** (not to be confused with characterisation).

On power-up and at regular intervals during operation, the *DT80* measures the amplifier's internal "offset voltage". If it is found to have drifted by a specified amount (3µV by default, can be adjusted using parameter P0) then a **calibration cycle** is performed. This process takes approximately one second and involves the *DT80* measuring several different internal parameters, such as offset voltages (amplifier output with no input applied) for various input configurations, and the actual values of the *DT80*'s internal current sources. These readings are then used for all subsequent analog measurements, until the next calibration cycle occurs.

The **TEST** command will force a calibration cycle, and return the values of most of the measured calibration parameters.

To summarise: the DT80 has certain temperature-stable characteristics, whose absolute values are measured and recorded during manufacture. This process corrects for any differences between individual units. Using these characterised values, further measurements are taken during operation to correct for differences between the current temperature and the temperature at which the factory characterisation was performed.

❖ Analog Warm Up Time

By default (P21=0), the *DT80*'s analog section will be powered up 50ms prior to execution of a schedule containing analog channels, and then powered down once the schedule is complete. This minimises overall power consumption.

The 50ms delay allows some time for the analog power supply to stabilise. However, the analog circuits also exhibit a "warm up" characteristic. This means that readings may vary slightly during the first few minutes after the analog section is powered up, until the components' temperatures stabilise. This is not normally a concern because:

- · the automatic calibration process ensures that temperature related drift is compensated for
- in most systems all analog measurements in a schedule are completed within a second or so of each other so the differences in readings due to the analog warm up characteristic are negligible.

If power consumption is not a concern then the analog section can be kept powered all the time by setting **P21=1**. This will generally reduce the number of calibration cycles which occur due to analog warm up. Calibration cycles will, of course, still occur if the ambient temperature changes.

Grounds, Ground Loops and Isolation

Experience has shown that ground loops (sometimes called "earth loops") are the most common cause of measurement difficulties. Excessive electrical noise, unexpected offset voltages and erratic behaviour can all be caused by one or more ground loops in a measurement system.

Grounds are Not Always Ground

Electrical grounds in a measuring system can be an elusive cause of errors.

In the real world, points in a system that one could reasonably consider at ground potential are often at different and fluctuating AC or DC potentials. This is mainly due to earthed neutral returns in power systems, cathodic corrosion protection systems, thermocouple effects in metal structures, lightning strikes and solar storms. Whatever the cause, the result can be loss of measurement integrity.

Ground Loops

If grounds of different potential are connected by cabling used in the measuring system, ground currents flows — this is the infamous **ground loop**. The magnitude of the currents can be from milliAmperes to tens of Amperes, and in the case of a lightning strike, can be thousands of Amperes. Frequently, voltage drops along cables (caused by these current flows) are superimposed on the desired signal voltage.

A ground loop can arise when a measurement system has more than one path to ground. As *Figure 152* shows, this can be caused by

- connecting a sensor to a ground point that has a different potential to the ground of another sensor a
 sensor-to-sensor ground loop is likely to flow through the return wires of the two sensors
- connecting the DT80 to a ground point that has a different potential to the ground of one or more of the sensors or
 instruments connected to the DT80 inputs a sensor-to-equipment ground loop
- connecting the *DT80* to a ground point that has a different potential to the ground of the host computer an **equipment-to-computer** ground loop.

In these situations, conduction paths can occur from one ground point to another through the sensor and/or equipment and/or computer, making measurement errors inevitable (particularly if sensor wires are part of the conduction path).

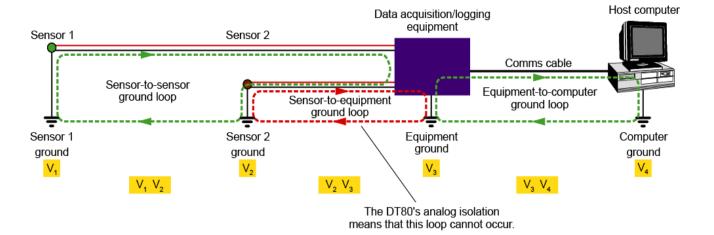


Figure 158: Some of the possible ground-loops in a measurement system

Avoiding Ground Loops

For each type of ground loop, the basic strategy is to break the ground loop.

!solation

The design of the *DT80* helps eliminate ground loops between the sensors and the *DT80*/computer, because the *DT80* provides over 100V of **isolation** between the **analog section** (which connects to analog sensors) and the **digital section** (which connects to digital devices and computers).

The ground point for the analog section is the internal **analog ground**, which is electrically isolated from the "system" ground (**DGND** terminal).

Furthermore, each analog channel is electrically isolated (to 100V) from other channels.

See Ground Terminals (P371) for more details.

Connecting Sensors

The following points should be considered:

- There should normally not be any external connection made between AGND/EXT# and DGND.
- The sensor's "return" wire should be grounded at one end only (the *DT80* end) of the sensor cable. Normally the return wire would be connected to the -, # or **AGND/EXT#** terminal on the *DT80*.
- There should be no connection to ground at the sensor itself, unless that connection is isolated from the sensor return wire. For example, if the sensor has its own power supply then the power supply should be isolated from ground (e.g. by using a transformer-isolated mains supply)
- Use an independent input configuration in preference to a shared configuration.

Noise Pickup

There are two main ways in which noise can be introduced into signal wiring: by capacitive coupling and by magnetic induction. There are different counter-measures for each.

Shield signal wiring to minimize capacitive noise pick-up. Signal wiring that is close to line voltage cable should always be shielded.

Shields should be connected to system ground (**DGND**) at the *DT80* end only.

Magnetic induction of noise from current-carrying cables or from electrical machines (especially motors and transformers) is a greater problem. Shielded cable is not an effective counter-measure. The only practical measures are to

- avoid magnetic fields
- use close-twisted conductors for the signal wiring.

Shielding in steel pipe can be effective, but is generally not economic or convenient.

❖ Noise Rejection

The *DT80* is designed to reject mains noise. For best noise rejection, set the *DT80*'s parameter 11 to your local mains frequency, 50Hz or 60Hz — see *P11* (P259).

To force the *DT80* to load this parameter setting every time it restarts use the following command PROFILE PARAMETERS P11=60 'for 60Hz line frequency

Self-Heating of Sensors

Sensors that need excitation power to be read are heated by power dissipation. This issue can be particularly acute with temperature sensors and some sensitive bridges. If self-heating is a problem, consider:

- selecting 200µA excitation (I channel option) in preference to 2.5mA excitation (the trade-off is a reduction in the range of resistances that can be measured).
- reducing measurement time, e.g. setting P11=200 will reduce the time spent exciting the sensor from the default 20ms to 5ms (the trade-off is a reduction in mains noise rejection).

Getting Optimal Speed from Your DT80

In applications where it is important to sample as rapidly as possible, the following guidelines may assist:

- Switch off data return and logging for channels you are not interested in.
- Set P21=1 so that the analog power supply is always on. This prevents the 50ms warm-up delay which can occur if there is any gap between schedule execution.
- Similarly, if any CEM20 units are in use then set P28=1 so that 12V output for powering the CEM is always on,
- Set P11 to a higher value, which will reduce the time over which an analog acquisition is integrated. For example, if P11 is changed from 50 to 500 then the sample time will be reduced from 20ms to 2ms. Be aware that this will cause a degradation in the *DT80*'s ability to reject noise.
- Reduce the channel's settling time, using the MDn channel option. The default is 10ms. It is not recommended to
 reduce this below 5ms because the DT80's relays need about this long to switch before a measurement can
 commence.
- Disable automatic calibrations using /k. Be aware that readings will now be subject to drift with temperature.
- Set P62=1, which will leave the *DT80*'s relays set when the schedule completes (normally they are set back to a quiescent state at the end of a schedule). If you are measuring a single voltage input then you will now be able to do repeated samples without changing the relay settings at all, which would then allow you to reduce the settling time to zero (i.e. MD0)

Part P - The CEM20

Figure 159: A CEM20 module (left), shown connected to a DT80

What is the CEM20?

The dataTaker CEM20 (Channel Expansion Module) is an analog multiplexer specially designed to work with DT80 series data loggers. Each CEM20 provides 20 additional analog channels. Up to five CEM20s can be connected to a DT80 and sixteen to a DT85, giving a total of 100 and 320 analog input channels respectively.

The CEM20 contains relay multiplexers which connect the selected channel through to one of the *DT80*'s analog inputs. In order to measure a sensor connected to a CEM20 input:

- 1. The *DT80* will first send a command to the appropriate CEM20, which will cause it to connect the required input through to its analog output terminals.
- 2. The CEM20's analog output terminals are wired to one of the *DT80*'s analog input channels, so the *DT80* will then simply perform a normal analog measurement on the appropriate channel.

Measuring a sensor connected to a CEM20 channel is therefore just like measuring one that is directly connected to the *DT80*. The main difference is that the measurement will take longer (typically about twice as long) due to the extra step involved.

Note The CEM20 is not supported on DT82E and DT82I models, nor on any Series 1 model.

Connecting CEM20s

As shown in the photograph above, there are two main connections to each CEM20, namely:

- a 4-wire power/control connection (the upper cable in the photograph). This cable connects to the *DT80*'s switched 12V power output in order to supply power to the CEM. The cable also contains two control signals, which are driven by two of the *DT80*'s digital outputs: **5D** and **6D**.
- an 4-wire analog connection. This connects the analog output of the CEM20 to one of the DT80's analog inputs. Each
 CEM20 connects to a separate analog input on the logger. (Thus for every CEM20 that you connect, you gain 20
 analog inputs but lose one analog input on the logger.)

The photograph shows a single CEM20. To connect a second CEM20:

- Each CEM20 includes a power/control <u>output</u> terminal block, located directly above the power/control input. This can be used to "daisy chain" the power and control signals to the next CEM20.
- The analog output of the second CEM20 then connects to the <u>second</u> analog input on the *DT80*, in the same way as the first CEM20, which connects to the first analog input.

The following diagram shows the required wiring in detail. In this case a DT80 is shown connected to two CEM20s. Several K-type thermocouples are also shown, connected to analog inputs on the CEM20s and on the logger itself. Using this "dual isolated" method of connecting thermocouples (as per $V2 - Independent \ Voltage \ Inputs \ (P302)$), up to 86 fully isolated thermocouples could be connected – 40 on each CEM20 (two per analog input) plus another 6 on the remaining 3 analog inputs (inputs 3, 4 and 5) on the DT80.

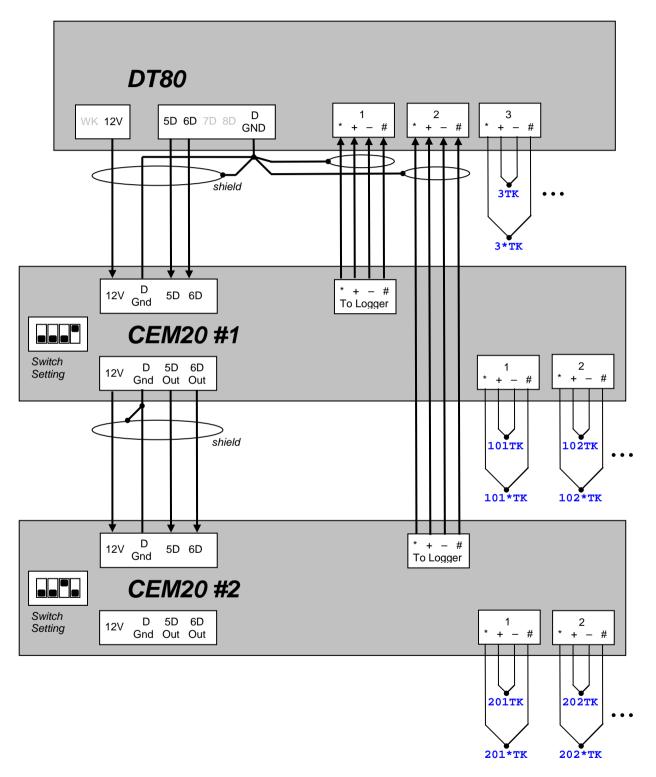


Figure 160: A DT80 connected to two CEM20s and set up to measure an array of thermocouples

Note the following points about the wiring diagram:

• Each CEM20 is supplied with two pre-wired connecting cables: a power/control cable and an analog cable. These are suitable for connecting the first CEM20 the logger. To connect the second and subsequent CEM20s, it will be necessary to replace the "5+2" terminal connector on one end of the power/control cable with a single 4-way terminal block to suit the output on the CEM20. It may also be necessary to extend the length of the analog cable.

- Shielded cable is recommended. The cable shield should be connected to DGND at <u>one end only</u>, as shown in the diagram. It is not necessary for everything to use the one DGND terminal shields may be connected to any of the DGND terminals on the logger, or to the earth point on the metal end plate.
- The maximum total cable length, from the DT80 to the last CEM20 in the chain, is 100 metres.
- In the diagram, the two CEM20s have been assigned addresses 1 and 2. However any addresses could have been chosen. The only rule is that a CEM20 with address *n* must have its analog output connected to analog input *n* on the *DT80*.

CEM20 Addresses

CEM20s are identified by their address, which is set using the 4-way DIP switch on the end plate of the CEM20.

Each CEM20 must be set to a unique address before installation.

A CEM20's address determines where its analog output should be connected and how its channels should be referenced. For example, a single CEM20 could be attached to a *DT80* and set to address 5. This CEM20 would then connect to analog input 5 on the *DT80*, and its channels would be referred to as **501**, **502** etc.

The following table shows the required switch settings for each CEM20

CEM20 Address	Switch 1	Switch 2	Switch 3	Switch 4
1	-	-	-	ON
2	-	-	ON	-
3	-	-	ON	ON
4	-	ON	-	-
5	-	ON	-	ON
6	-	ON	ON	-
7	-	ON	ON	ON
8	ON	-	-	-
9	ON	-	-	ON
10	ON	-	ON	-
11	ON	-	ON	ON
12	ON	ON	-	-
13	ON	ON	-	ON
14	ON	ON	ON	-
15	ON	ON	ON	ON
16	-	-	-	-

Powering the CEM20

The recommended method of powering the CEM20 is to use the switched 12V power output on the *DT80*, as shown in *Figure 154*. This output is capable of powering up to 15 CEM20 units.

By default, the *DT80*'s 12V output will only be switched on during execution of a schedule containing CEM20 channels. Other modes of operation are possible, however, and are selected using parameter P28, as described in *Controlling 12V Power Output* (P289). In particular:

- set P28=0 (default) to switch CEM20 power on and off as required. This minimises power usage.
- set P28=1 and P21=1 to keep the CEM20s and the DT80's analog measurement system powered up continuously.
 This will obviously use more power but will avoid the 50ms "warm up" delay that the DT80 inserts when switching on either or both of these power supplies.
- set P28=3 if the CEM20s are independently powered using an external power supply. The *DT80*'s 12V output may then be used to power other equipment if required and manually controlled using PWR12V=.

Note that if the CEM20s are externally powered then a regulated 12V ±5% supply is required.

Accessing CEM20 Channels

CEM20 channels are numbered in the same way as regular channels, but with the <u>CEM number as the hundreds digit</u>. Thus the first CEM20's channels are numbered from 101 to 120, the second from 201 to 220 and the sixteenth from 1601 to 1620. So to measure a thermocouple connected to the + and – terminals on first analog input channel on CEM20 #1 you would enter **101TK** – as shown on the wiring diagram.

Channel sequences (see Channel Number Sequence (P31) can cross CEM boundaries. For example,

RA1M 119..203V

is equivalent to

RA1M 119V 120V 201V 202V 203V.

Likewise, an array of 86 isolated thermocouples connected as per Figure 154 could be read using:

RA1M 3..220TK 3*..220*TK

CEM20 Temperature Reference

Each CEM20 includes a precision RTD temperature sensor. This is used to measure the reference junction temperature when thermocouple measurements are performed using the CEM20's analog inputs (see *Temperature – Thermocouples* (P315). This process is automatic and is part of the normal thermocouple measurement process.

A CEM20's internal temperature sensor can be read at any time (for testing purposes) using the nREFT channel, where n is the CEM number (1-16). So to read the current reference junction temperature for the first CEM20 you would enter **1REFT**. (To read the DT80's internal temperature sensor use the **REFT** channel – no channel number.)

Troubleshooting

In the event that invalid readings are obtained when reading CEM20 channels, the following troubleshooting procedure may be helpful.

The key diagnostic aid is the red **Sample** LED on the CEM20, which will flash when it is commanded to take a measurement. For example, if you measure input 7 on CEM20 #12 (e.g. by typing **1207V**), you should see the red **Sample** LED on CEM20 #12 flash, along with the blue **Sample** LED on the *DT80*. No other CEM20s should flash their LED.

❖ CEM20 Sample LED does not flash

If the appropriate CEM20's **Sample** LED does <u>not</u> flash when one of its inputs is measured then the most common explanations are:

- the CEM20 address switch is not set correctly. The CEM20 connected to analog input 1 on the *DT80* must be set to address 1 (switch setting: off, off, ON), the CEM20 connected to analog input 2 must be set to address 2 (switch setting: off, ON, off) and so on.
- the power/control cable to the CEM20 is not connected properly. Double check the wiring against the wiring diagram. Do not confuse the CEM20's power/control <u>input</u> (<u>lower</u> terminal block) and its power/control <u>output</u> (<u>upper</u> terminal block). Also, when connecting to a DT85, be sure that the 2-way terminal block on the cable is correctly plugged in to the 3-way terminal block on the DT85 (i.e. the wire should connect to the **12V** terminal).
- the CEM20 is not powered. If the CEM20 is powered from the *DT80*'s **12V** output then check that the P28 setting is correct; it should be set to 0, 1 or 2. If the CEM20 is powered externally then check that 12V ± 5% is present.
- there is a hardware or cabling problem with one of the "upstream" CEM20s. Try temporarily bypassing them by
 disconnecting the cable from CEM20 #1's power/control input and connecting it instead to the CEM20 in question.
 Then issue the same measurement command (it is not necessary to change the address of the CEM20). If this reading
 is satisfactory then it should be possible by a process of elimination to determine which CEM20 or power/control cable
 is faulty.
- you are using a Series 1 DT80. The CEM20 requires a Series 2 unit.

❖ CEM20 Sample LED flashes, but reading is invalid

Possible explanations are:

- faulty sensor. Check by plugging it into one of the DT80's analog inputs.
- the analog cable of the CEM20 is not connected properly. Double check against the wiring diagram; in particular check that it is plugged into the correct *DT80* channel (a CEM20 set to address *n* must connect to *DT80* analog input *n*)
- multiple CEM20s are being selected. Ensure that the Sample LED flashes on one and only one CEM20.
- electrical noise ensure that the cable shield is connected to a **DGND** terminal (as shown in the wiring diagram) or to the *DT80* chassis earth point.
- faulty analog input on CEM20 or DT80. Disconnect the CEM20 and connect a sensor directly to the DT80 analog input previously used by the CEM20. This should identify whether the CEM20 or DT80 is at fault.

It may also be helpful to try reading the internal temperature sensor on the CEM20 (e.g. type **12REFT** to read the current temperature of CEM20 #12). This will eliminate any external sensor issues.

Part Q - Security

Optional Security

Enabling Security

You can enable an optional security on the Logger that is based on user rights.

Once security is enabled it can only be turned off by a user with administrator rights.

The command to turn on is:

profile AUTHENTICATION ENABLED=Yes

Once the authentication is enabled the user session will expire after inactivity for certain period. The session timeout period is defined in Profile Parameter P14 and the default value is 600 seconds. If the user is logged into dEX, to correctly log out the user must use the logout button in the top right hand corner of the application or no other user will be able to log in until the current user session timeout has expired. The same goes if the user is using a command terminal. The user should use the SIGNOFF command to end the session gracefully.

User Roles

User Role	Command line abbreviation
No Acess	NA
Data Supervisor	DSV
Config User	CONF
Administrator	ADM

User Rights

User rights based on the user role are detailed below.

User Role	User Rights
No Acess	View real time data on the command window
Data Supervisor	Unload data, view logger status, download data, delete data
Config User	Unload data, view logger status, download data, delete data, control current job, configure the logger and load new jobs
Administrator	Unload data, view logger status, download data, delete data, control current job, configure the logger and load new jobs. Create new users, modify existing users.

User Management

Administrator can create and update the user database. The table below specifies the command window commands for different user operations.

Command	Description
USER	list all user accounts
USER uname1	list a user account specified as a parameter
USER uname1 password=password1	create or change password for the specified User account (by default account will be created having No Access).
USER uname1 password=password1 grant=Conf action=act	User account successfully created User account successfully activated Role: Configurer successfully granted to the user Grant –: Assign the Role Accepts (DSV,CONF,ADM) default value NA (No Access) Action: Activate account. Accepts ACT, DEL User Name: 26 Characters Password: 16 Characters (Alpha numeric) Max users Allowed: 5
USER uname1 action=DEL	Removes user account form the device
SIGNON	Will allow you enter user name and password
SIGNOFF	Closes user session and displays login prompt.
WHO	Displays user currently logged in name.

dEX Security

Detailed information on the <u>dEX security</u> and implementation can be found under Part I of this manual.

Part R - Reference

DT80 Series Specifications

Analog Inputs

Max Number of Inputs

Input Type	DT81	DT82	DT80	DT85	DT80 + 5 x CEM20	DT85 + 16 x CEM20
3-wire & 4-wire independent inputs	1	2	5	16	100	320
2-wire independent inputs	2	4	10	32	200	640
2-wire shared terminal inputs	3	6	15	48	300	960

Supported Measurement Types

- voltage
- current and 4-20mA current loop (internal or external shunt)
- resistance (2, 3, 4 wire; max 10kΩ)
- ratiometric resistance e.g. strain gauges (1/4, 1/2 or full bridges; current or voltage excited)
- thermocouples: types B, C, D, E, G, J, K, N, R, S, T (internal or external reference junction sensor)
- RTDs (Pt, Ni, Cu)
- thermistors (YS400xx series; generic thermistor scaling)
- IC temperature sensors (AD590 series, LM35 series, LM135 series)
- frequency
- vibrating wire strain gauges (DT80G/85G GeoLogger only)
- · Carlson meters
- logic state

Input Ranges

Range	Resolution
±30 mV	0.00025 mV
±300 mV	0.0025 mV
±3000 mV	0.025 mV
±30 V	0.00025 V
±0.3 mA	0.0000025 mA
±3 mA	0.000025 mA
±30 mA	0.00025 mA
depends on shunt	depends on shunt
10 Ω	0.00015 Ω
100 Ω	0.0015 Ω
1000 Ω	0.015 Ω
10,000 Ω	0.15 Ω
0.1 to 10,000 Hz	0.0002%
0 to 100%	0.01%
depends on sensor	depends on sensor
±10 ⁴ ppm	1 ppm
±10 ⁵ ppm	10 ppm
±10 ⁶ ppm	100 ppm
0 or 1	1
	$\pm 30 \text{ mV}$ $\pm 300 \text{ mV}$ $\pm 3000 \text{ mV}$ $\pm 3000 \text{ mV}$ $\pm 30 \text{ V}$ $\pm 0.3 \text{ mA}$ $\pm 3 \text{ mA}$ $\pm 30 \text{ mA}$ depends on shunt $\pm 1000 \Omega$ $\pm 1000 \Omega$ $\pm 10000 \Omega$ $\pm 10000 \Omega$ 0.1 to 10,000 Hz 0 to 100% depends on sensor $\pm 10^4 \text{ ppm}$ $\pm 10^6 \text{ ppm}$

Accuracy

Maximum measurement error is given by:

error = (reading * Basic Accuracy) + (FullScale Reading * 0.01%)

where Basic Accuracy is as specified in the following table:

	5°C to 40°C	-45°C to 70°C
DC voltage measurement	±0.1%	±0.35%
DC current measurement	±0.15%	±0.45%
DC resistance measurement	±0.1%	±0.35%
Frequency measurement	±0.1%	±0.25%

Input Characteristics

Limit	min	typ	max	unit
Input terminal voltage	-30	-	30	V
Common mode voltage	-3.5	-	3.5	V
Common mode voltage, attenuators enabled	-30	-	30	V
Input impedance	100M	-	-	Ω
Input impedance, attenuators enabled	100k	-	-	Ω
Inter-channel isolation (relay)	100	-	-	V
Analog/digital isolation (opto)	100	-	-	V
Internal shunt resistance	-	100	-	Ω
Sample rate	-	-	25	Hz
Common mode rejection	90	-	-	dB
Line series mode rejection	35	-	-	dB
Effective resolution	-	-	18	bits

Warning Exceeding input voltage limits may cause permanent damage.

Excitation

- voltage source, 4.5V
- precision current sources: 213µA or 2.5mA
- switched external excitation input
- general purpose switchable 12V regulated power output for powering sensors & accessories. (max 150mA) (not DT80/81 Series 1)
- isolated switchable 5V regulated power output (max 25mA) (series 3 only)

Digital Inputs and Outputs

Max Number of I/O

Input Type	DT81	DT82E	DT82I	DT80	DT85	DT85/85L Series 3
Open drain digital input/outputs, pull-up	3	3	4	4	4	4
Logic input/outputs. tri-stateable, pull-down	1	1	-	4	4	4
Relay contact outputs	1	1	1	1	1	1
User LED outputs (Attn)	1	1	1	1	1	1
Low speed counter inputs (shared with digital I/O)	4	4	4	8	8	8
High speed counter inputs with programmable TTL or low threshold inputs	2	2	2	2	2	2
High speed counter inputs with TTL-level inputs	2	2	2	2	2	2
High speed counter inputs with TTL-level inputs (shared with digital I/O	-	-	-	-	-	3
Phase encoder (quadrature) inputs (shared with high speed counter inputs)	1 1	-	2	2	2	3

Input Characteristics

Terminal	Limit	min	typ	max	unit
1D-4D	Input terminal voltage	-0.6	-	30	V
(1D-3D	Input high voltage	3.0	-	-	V
for DT81/82)	Input low voltage	-	-	0.75	V
5D-8D	Input terminal voltage	-0.6	-	20	V
(4D for	Input high voltage	3.0	-	-	V
DT81/82)	Input low voltage	-	-	0.75	V
	Low speed counter input frequency		-	25	Hz
	Low speed counter input pulse width	20	-		ms

Warning Exceeding input voltage limits may cause permanent damage.

Output Characteristics

Terminal	Limit	min	typ	max	unit
1D-4D	Output sink current (output low)	-	-	100	mA
(1D-3D	Output high voltage (no load)	-	4.1	-	V
for DT81)	Pull up resistance	-	47k	-	Ω
5D-8D	Output high voltage	-	4.1	-	V
(4 D for	Pull down resistance	-	200k	-	Ω
DT81)					
1RELAY	Contact rating @ 30Vdc	-	-	1.0	Α

High Speed Counter Inputs

Input Characteristics

Terminal	Limit	min	typ	max	unit
1C-2C	Input terminal voltage	-10	-	10	V
	Input high voltage – counter mode, e.g. 1HSC	2.1	-	-	V
	Input low voltage – counter mode	-	-	0.75	V
	Input high voltage – phase encoder mode, e.g. 1PE	3.0	-	-	V
	Input low voltage – phase encoder mode	-	-	0.8	V
	Input high voltage – low threshold option, e.g. 1HSC(LT)	7	-	-	mV
	Input low voltage – low threshold option	-	-	2	mV
	Input frequency – relay/switch input	-	-	500	Hz
	Input frequency – 3V p-p logic input	-	-	100k	Hz
3C-4C	Input terminal voltage	-30	-	30	V
5C-7C	Input high voltage – counter mode, e.g. 3HSC	3.0	-	-	V
	Input low voltage – counter mode	-	-	0.6	V
	Input high voltage – phase encoder mode, e.g. 2PE (DT80), 1PE	3.0	-	-	V
	(DT81)				
	Input low voltage – phase encoder mode	-	-	0.8	V
	Input frequency – relay/switch input	-	-	500	Hz
	Input frequency – 3V p-p logic input	-	-	100k	Hz

Warning Exceeding input voltage limits may cause permanent damage.

Serial Channels

Number of Ports

Item	DT81	DT82E	DT82EM	DT82I	DT80	DT80LM	DT85	DT85LM
SDI-12 network connections (shared with digital I/O)	1	1	1	-	4	4	4	4
Total possible SDI-12 sensors	10	10	10	-	40	40	40	40
RS232/422/485 serial sensor port (shared with host communications)	-	-	-	1	1	1	1	1
RS232 serial sensor port (shared with host communications)	1	1	-	1	1	-	1	-
USB port (shared with host communications)	1	-	-	-	1	1	1	1

SDI-12

- Supports SDI-12 protocol versions 1.0 through 1.3 (auto-sensing)
- Measure on Demand and Continuous Measurement modes
- Includes facility for directly interrogating sensors for diagnostic purposes

Generic Serial Sensor Channel

- Allows data to be logged from a wide range of smart sensors and data streams.
- Flexible poll string generation and response parsing
- · Supports polled or unsolicited data
- Includes facility for directly interrogating sensors for diagnostic purposes

Data Manipulation and Logging

Calculated Channels

- Combine values from analog, digital and serial sensors using expressions involving variables and functions.
- Functions: An extensive range of arithmetic, trigonometric, relational, logical and statistical functions are available.

Alarms

- · Condition: high, low, within range and outside range, optional time specifier
- Actions: set digital outputs, transmit message, execute any DT80 command.

Schedules

- Number of schedules: 11
- Schedule types: immediate, continuous, periodic, time of day/week, polled, digital/counter/serial event, variable change
- Conditional schedule execution: digital state or variable
- · Periodic schedule rates: 10ms to days; synchronised to time of day

Data Storage

- Internal memory capacity: 128MB (upgradeable)
- Removable USB 1.1/2.0 full speed memory device (optional accessory)
- Data density: approx. 90,000 data points per megabyte.

Communication Interfaces

Ethernet Port

• Interface: 10BaseT (10Mbps)

Protocol: TCP/IP

USB Port (not DT82)

- Interface: USB 1.1/2.0 full speed (virtual COM port)
- Protocols: ASCII command, TCP/IP (PPP), Modbus, Serial Sensor

Host RS232 Port (not DT8xM)

- Speed: 300 to 115200 baud (57600 default)
- Flow Control: Hardware (RTS/CTS), Software (XON/XOFF), None
- Handshake lines: DCD, DSR, DTR, RTS, CTS
- Modem support: auto-answer and dial out
- Protocols: ASCII Command, TCP/IP (PPP), Modbus, Serial Sensor

Serial Sensor Port (not DT81/82E)

- Interface: RS232, RS422, RS485
- Speed: 300 to 57,600 baud
- Flow Control: Hardware (RTS/CTS), Software (XON/XOFF), None

Protocols: ASCII Command, TCP/IP (PPP), Modbus, Serial Sensor

Integrated Modem (DT8xM only)

Cellular Networks:

DT8xM3 models: GSM (2G), GPRS/EDGE (2.5G), WCDMA (3G), DSDPA/HSUPA (3.5G)

DT8xM2 models: GSM (2G), GPRS/EDGE (2.5G)

• Frequencies:

DT8xM3 models: quad-band 2G (850/900/1800/1900MHz), tri-band 3G (850/1900/2100MHz)

DT8xM2 models: quad-band 2G (850/900/1800/1900MHz)

- Subscriber Identity Module: Standard format SIM slot (1.8V/3V)
- Antenna connection: two standard SMA screw connections: main (TX/RX) and diversity (RX only)
- Included antenna: 1 x Micromag multiband antenna with 2m cable
- Status LED: Power/connection status
- Firmware: Upgradeable via USB memory device
- Protocols: TCP/IP (PPP), SMS

Network (TCP/IP) Services

Uses Ethernet and/or Host/USB/serial sensor (PPP) ports, or integrated modem

Command Interface Server

Allows access to the ASCII command interface via TCP/IP

Web Server

- Configure the DT80 and access current data and status from a web browser.
- Supported browsers: Internet Explorer Version 7 or later, Mozilla Firefox, Google Chrome, Apple Safari
- Custom pages can be defined.
- Download data in CSV format.
- · Command interface window.
- · Define mimic displays.

Modbus Server

• Access current data and status from any Modbus client (e.g. SCADA system)

Modbus Client (not DT81/82)

• Poll serial or network Modbus sensors

FTP Server

· Access logged data from any FTP client or web browser

FTP Client

Automatically upload logged data direct to an FTP server

Email Client

- · Automatically send logged data to an email address
- · Send alarm messages to an email address

DDNS Client (DT8xM only)

 Updates a Dynamic Domain Name Service server so that DT80 can be accessed over the Internet using a domain name.

NTP Client

· Automatically synchronise system time to NTP server

System

Display and Keypad (not DT81)

- Type: LCD, 2 line by 16 characters, backlight.
- Display Functions: channel data, alarms, system status.
- Keypad: 6 keys for scrolling and function execution.
- Status LEDs: 4 (Sample, Disk, Attention, Power)

Firmware Upgrade

• RS232, Ethernet (FTP), USB or USB disk.

Real Time Clock

- · Resolution: 0.2ms
- Accuracy: ±1 min/year (0°C to 40°C), ±4 min/year (-40°C to 70°C)

Power Supply

- External power input: 10 to 30Vdc
- Internal 6V lead acid battery: DT80/81/82I: 1.2Ahr, DT85/85G: 4.0Ah, other models: none
- Power output for charging external lead acid battery (some models only)

Power Consumption

Peak Power: 12W (12Vdc 1A)

• DT80/81/85 approximate average power consumption (10 analog channels):

Schedule Rate	Ext 12V power consumption	1.2Ah battery life	4.0Ah battery life
1 sec	1400 mW	6 hours	1 day
5 sec	500 mW	1 day	3 days
1 minute	100 mW	10 days	1 month
1 hour	60 mW	3 months	9 months

• DT82E/80L/85L approximate average power consumption (6 analog channels):

Schedule Rate	Ext 12V power consumption
1 sec	750 mW
5 sec	300 mW
1 minute	40 mW
1 hour	10 mW

Physical and Environment

Construction: Powder coated zinc and anodized aluminium.

• Dimensions: DT80/81: 180 x 137 x 65mm, DT85: 300 x 137 x 65mm

• Weight: DT80/81: 1.5kg, DT85: 2.5kg

• Temperature range: -45°C to 70°C (integrated modem: -30°C to 70°C) *

Humidity: 85% RH, non-condensing

Accessories Included

• Resource CD: includes software, video training, and user manual.

• USB communications cable (DT80/81/85)

Micromag multiband antenna with 2m cable (DT80LM/82EM/85LM/85GLM)

• Ethernet crossover cable (DT82)

Line adaptor: 110/240Vac to 15Vdc, 800mA

^{*} reduced battery life and LCD operation outside range -15°C to 50°C

CEM20 Specifications

Interfaces

- Power/Control inputs: 12Vdc, ground, serial data, serial clock (from logger or previous CEM20)
- Power/Control outputs: 12Vdc, ground, serial data, serial clock (to next CEM20)
- Analog output: (to logger channel corresponding to CEM20 address)
- 20 x 4-wire analog inputs

Connections

- Max total cable length between data logger and furthest CEM20: 100m
- Max supported CEM20 units per data logger:

DT80 (Series 2 or later): 5 DT85 (Series 2 or later): 16 DT81/82: none

Sampling

- Type: Relay multiplexer
- Maximum Input Voltage: 30Vdc
- Maximum Sampling Speed: 12Hz
- Internal RTD reference junction sensor for thermocouple measurements

System

- Status LED: Sample activity
- Address Selection: 4-way DIP switch. Address 1-15

Power Supply

- Recommended: Logger's switched 12V output
- Alternative: External regulated 12Vdc ± 5%

Power Consumption

- Sampling: 0.36W (12V 30mA)
- Idle: 0.01W (12V 1mA).

Note that in most cases idle power consumption will be zero because the *DT80*'s 12V output will be turned off when not sampling.

Physical and Environment

- Construction: Powder coated steel and anodized aluminium
- Dimensions: 180 x 100 x 50mm
- Weight: 0.55kg
- Temperature Range: -45°C to 70°C
- Humidity: 85% RH, non-condensing

Accessories Included

• Analog and power/control cables for connection to the DT80

Command Summary

The following table lists all **commands** supported by the *DT80*. It does not include:

- channel definitions (P29)
- schedule definitions (P45)
- alarm definitions (P79)

Command	Description	Page
comment text	comment, remainder of line is ignored by DT80	58
*	repeat last immediate schedule	53
/ switch	set switch on (uppercase) or off (lowercase)	261
//	set all switches to their power-on default values	261
?ALL	return current values of all alarm tests	89
? n	return current value of alarm n's test	89
?sched	return current value of all alarm tests for schedule sched	89
BEGIN	clear current job and begin entry of a new job called UNTITLED	57
BEGIN "jobname"	clear current job and begin entry of a new job called jobname	57
CATTN	clear Attn LED	121
CERRLOG	clear error log	274
CEVTLOG	clear event log	274
CHARAC	return characterisation report	275
CHARACn	return line n of characterisation report	275
CLOSEDIRECTPPP	manually close PPP connection on host RS232 port	252
COPY srcfile destfile	copy file srcfile to destfile	113
COPY srcfile ftp-uri	upload file srcfile to FTP server	113
COPY ftp-uri destfile	download file from FTP server and write to destfile	113
COPYD option=value option=value	unload data from the specified store file to various destinations in various formats	
CURJOB	return name of current job	59
DEL file	delete file file	113
DELALLJOBS	delete program text, archive files, logged data and alarms for <u>all</u> jobs	109
DELD option=value option=value	delete logged data	108
DELJOB jobspec	delete program text and archive files for specified job(s)	59
DELONINSERT	delete ONINSERT.DXC for this DT80 from USB memory device	60
DELONINSERTALL	delete global ONINSERT.DXC from USB memory device	60
DELRSTAT	delete running average statistics	71
DELTREE dir	delete directory dir and any subdirectories	113
DELVIDEOS	delete all video tutorials	164
DIAL	commence modem dialling	206
DIR	return directory listing for B:\	113
DIR dir	return directory listing for dir	113
DIRJOBS	return a list of all stored jobs	59
DIRTREE dir	return directory listing for dir and all subdirectories	113
DT=[dt/SO]	set DT80 system date/time to dt/SO	267
EAA	return DT80 Ethernet adapter address (MAC address)	237
END	complete definition of new job	57
ENDSSDIRECT	cancel SSDIRECT mode	360
FACTORYDEFAULTS	reset all settings to factory default values	272
FORMAT A:	clear and re-format entire file system on USB memory device	113

Command	Description	Page
FORMAT B: DELETEALL	clear and re-format entire file system on internal flash drive	113
G	start all schedules in current job	55
Gsched	start all schedules in schedule sched in current job	55
н	halt all schedules in current job	55
Hsched	halt all schedules in schedule sched in current job	55
HANGUP	terminate active modem connection	206
HELP	list available help topics	19
HELP topic	display quick reference information on specified topic	19
HRESET	generate a hardware reset of the DT80	271
INIT	clear current job and reset settings to power-on defaults	271
IP	return DT80 IP address	237
IPGW	return default gateway IP address	237
IPSN	return subnet mask	
LISTD option=value option=value	return store file details	237
LOCKJOB jobspec	prevent specified job(s) from being overwritten when a new job is	95
	entered	59
LOG "string"	save a user specified message to the event log	274
LOGOFF	switch off data/alarm logging for all schedules	91
LOGOFFsched	switch off data/alarm logging for schedule sched	91
LOGON	switch on data/alarm logging for all schedules	91
LOGONsched	switch on data/alarm logging for schedule sched	91
MODEM sub-command	low level diagnostics for integrated modem	222
NAMEDCVS	return current values of all named channel variables	65
NTP	attempt to set time from NTP server	269
Pn	return the current value of parameter n	258
Pn=value	set parameter n to value	258
PASSWORD	return 1 if a comms interface password is set, otherwise 0	187
PASSWORD="password"	set comms interface password	187
PAUSE value	delay for value ms	86
PH	return current host RS232 port parameters	197
PH=baudrate, databits, parity, stopbits,	set host RS232 port parameters (all parameters are optional)	
flow		197
PING hostname	send echo request to specified host computer	225
PROFILE	return current settings for all profile keys	262
PROFILE section	return current settings for all profile keys in section	262
PROFILE section key	return current value of specified profile key	262
PROFILE section key=	set specified profile key to default	262
PROFILE section=	set all profile keys in section to defaults	262
PROFILE section key=keystring	set specified profile key to keystring	262
PS	return current serial sensor port parameters	202
PS=mode, baudrate, databits, parity,	set serial sensor port parameters (all parameters are optional)	202
stopbits, flow		
Q	terminate an unload	107
RAINFLOWmaxcyc: rej%: mnIV	return a rainflow analysis report	76
REMOVEMEDIA	stop using a USB memory device so it can be safely removed	113
RENAME src dest	rename file/folder src to dest (src may also be an FTP URI)	113
RESET	(obsolete) same as INIT	271
RUNJOB "jobname"	replace current job with specified job	58
RUNJOBONINSERT "jobname"	create ONINSERT.DXC for this DT80 on USB memory device	60
RUNJOBONINSERTALL "jobname"	create global ONINSERT.DXC on USB memory device	60
Sn=a,b,c,d"units"	define span $\#n$ (all parameters other than a and b are optional)	61
		V I

Command	Description	Page
SATTN	set Attn LED	121
SDI12SEND sdi-chan "sdi-cmd"	send the specified SDI-12 command	347
SERVICEDATA {filename}	generate service report; optionally write to specified file	275
SESSION command	communications session diagnostics	232
SETDIALOUTNUMBER "phonenum"	set the number to call when DIAL command is issued	206
SETMODBUS channels format scaling	define data formats used when communicating with Modbus client system	178
SHOWPROG jobspec	return the program text for the specified job(s)	59
SIGNOFF	end authenticated user session (password required to reconnect)	187
SIGNON	start authenticated user session	187
SINGLEPUSH	(obsolete) same as HRESET	271
SSDIRECT port "terminator"	forward all subsequent commands, terminated by specified string, to serial channel port (1=serial sensor, 2=host RS232)	360
STATUS	return a status report	275
STATUSn	return line <i>n</i> of the status report	275
STATUS14 "jobname"	return internal details about specified job	275
Tn=a,b,c"units"	define thermistor scaling function $#n$ (all parameters other than a are optional)	62
TEST	return a test report	273
TESTn	return line <i>n</i> of the test report	273
TYPE file	return contents of a text file	113
UERRLOG	return contents of error log	274
UEVTLOG	return contents of event log	274
UNLOCKJOB jobspec	allow specified job(s) to be overwritten when a new job is entered	59
USER	lists all user accounts	382
USER username	list the user account	382
USER username password=password	create or change password for the user account	382
USER username action=DEL	removes user account from the device	382
USER username grant=ADM	grants administrator(ADM) rights to the user account see rights table	382
WHO	displays the current logged in username	382
x	trigger schedule X	51
Xsched	trigger schedule sched	51
Yn=a,b,c,d,e,f"units"	define polynomial function $\#n$ (all parameters other than a are optional)	62
Table 18: DT80 Command Summary		

Table 18: DT80 Command Summary

Note that the spaces shown between commands and parameters are generally <u>optional</u>, e.g. **BEGIN"LUPIN"** and **BEGIN "LUPIN"** are equivalent.

If multiple commands are specified on one line they should normally be separated by semi-colons (;), e.g.:

```
U; PAUSE 5000; LOGONA
```

although these may be omitted if the result is unambiguous, e.g.:

GA GB GC LOGONA

ASCII-Decimal Tables

Decimal	ASCII	Control	Description	Decimal	ASCII	Description	Decimal	ASCII	Description	Decimal	ASCII	Description
0	NUL		null	32		space	64	@		96	*	backquote
1	SOH	^ A		33	!		65	A		97	a	
2	STX	^B		34	m .	dbl quote	66	В		98	b	
3	ETX	^C		35	#		67	C		99	C	
4	EOT	^D		36	\$		68	D		100	d	
5	ENQ	^E		37	%		69	E		101	е	
6	ACK	^F	acknowledge	38	&		70	F		102	f	
7	BEL	^G	bell	39	•	quote	71	G		103	g	
8	BS	^H	backspace	40	(72	H		104	h	
9	HT	^I	tab	41)		73	I		105	I	
10	LF	^J	line feed	42	*		74	J		106	j	
11	VT	^K	vertical tab	43	+		75	K		107	k	
12	FF	^L	form feed	44	,	comma	76	L		108	1	
13	CR	^M	carriage	45	-	dash	77	M		109	m	
			return									
14		^N		46	•	period	78	N		110	n	
15		^0		47	/	slash	79	0		111	0	
16		^P		48	0		80	P		112	p	
17		^Q	XON	49	1		81	Q		113	q	
18		^R		50	2		82	R		114	r	
19		^S	XOFF	51	3		83	S		115	S	
20		^ T		52	4		84	T		116	t	
21	NAK		negative acknowledge	53	5		85	U		117	u	
22		^ V		54	6		86	V		118	v	
23	ETB	^W		55	7		87	W		119	w	
24	CAN	^X		56	8		88	X		120	x	
25		^ Y		57	9		89	Y		121	y	
26		^ Z		58	:	colon	90	Z		122	Z	
27	ESC		escape	59	;	semicolon	91	[123	{	
28	FS			60	<		92	\	backslash	124		
29	GS			61	=		93	1		125	}	
30	RS			62	>		94	٨	caret	126	~	tilde
31	US			63	?		95		underline	127	DEL	delete

Table 19: Standard ASCII Characters – **boldface** indicates LCD-displayable characters

This table lists the standard ASCII character set. The printable characters (codes 32-126) may be directly included in a *DT80* program.

For **text strings** enclosed by "" within a *DT80* program (e.g. channel name, profile settings, alarm action text, etc. – but not file names), printable or non printable characters may also be entered using the "control character" notation (e.g. ^M for carriage return) or by entering a backslash followed by the decimal character code (e.g. \013 for carriage return, \034 for double quotes). Use ^^ or \\ to insert a single ^ or \ character.

Note that if DeTransfer is used to send the command to the DT80, all backslashes must be entered as \\ so that they are not interpreted by DeTransfer. So to output a \underline{single} \ in an alarm string you would need to enter e.g.

DO"hello\\\there"

in the DeTransfer send window.

Decimal	ASCII	Description	Decimal	ASCII Description	Decimal	ASCII Description	Decimal	ASCII Description
128	€		160	not used	192	À	224	à
129		not used	161	i	193	Á	225	á
130	,		162	¢	194	Â	226	â
131	f		163	£	195	Ã	227	ã
132	"		164	¤	196	Ä	228	ä
133			165	¥	197	Å	229	å
134	Ť		166		198	Æ	230	æ
135	#		167	§	199	Ç	231	Ç
136	^		168		200	È	232	è
137	%		169	©	201	É	233	é
138	Š		170	a	202	Ê	234	ê
139	<		171	«	203	Ë	235	ë
140	Œ		172	7	204	ì	236	ì
141		not used	173	-	205	Í	237	í
142	ž		174	R	206	Î	238	î
143		not used	175	-	207	Ï	239	ï
144		not used	176	0	208	Đ	240	ð
145	1		177	±	209	Ñ	241	ñ
146	•		178	2	210	Ò	242	ò
147	TI .		179	3	211	Ó	243	ó
148	n.		180	•	212	ô	244	ô
149	•		181	μ	213	õ	245	õ
150	-		182	¶	214	Ö	246	ö
151	_		183	•	215	×	247	÷
152	~		184	3	216	Ø	248	Ø
153	TM		185	1	217	Ù	249	ù
154	š		186	0	218	Ú	250	ú
155	>		187	»	219	Û	251	û
156	œ		188	1/4	220	Ü	252	ü
157		not used	189	1/2	221	Ý	253	Ý
158	ž		190	3/4	222	Þ	254	þ
159	Ÿ		191	ં	223	ß	255	ÿ

Table 20: Extended ASCII Characters - Windows CodePage 1252 / ISO-8859-1 (Latin1) - boldface indicates LCD-displayable characters

This table lists an "extended ASCII" character set. Any of these characters may be directly included in a *DT80* program, e.g. by using a non-US keyboard mapping, or by holding down ALT and typing the 4-digit character code (e.g. ALT-0197 for the Angstrom symbol).

Within text strings enclosed in "", you can also use the backslash notation (e.g. \176 for a degree symbol).

Note that many different character sets have been defined for the "extended ASCII" character codes (128-255). The character set shown above is the one most commonly used on Windows based computers, but be aware that some of these characters may appear differently or not appear at all, depending on the application program and font used to display them.

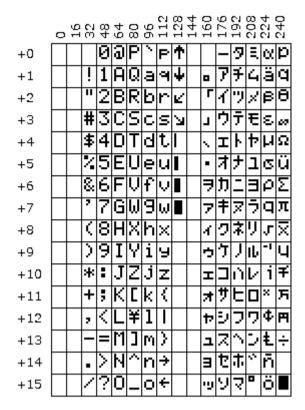


Table 21: LCD Character Set

This table lists the characters that can be displayed on the DT80's LCD. Note the differences between this character set and the previous set. Thus to display a sigma symbol (Σ) on the LCD you would use 246 (240+6) in an alarm text or channel name/units string.

Note that the DT80 automatically translates the standard units strings degC, degF, degR and Ohm to °C, °F, °R and Ω when displaying on the LCD.

Signals

The following table lists the standard RS-232 pinouts for both 9-pin (DE-9) and 25-pin (DB-25) DCE and DTE interfaces. Normally the DTE (*DT80*, computer) device's connector is male and the DCE (modem) device's connector is female.

Signal	Function	Direction	DE-9 Pin	DB-25 Pin
DCD	Data Carrier Detect	$DTE \leftarrow DCE$	1	8
RXD	Receive Data	$DTE \leftarrow DCE$	2	3
TXD	Transmit Data	$DTE \to DCE$	3	2
DTR	Data Terminal Ready	$DTE \to DCE$	4	20
GND	Signal Ground		5	7
DSR	Data Set Ready	$DTE \leftarrow DCE$	6	6
RTS	Request To Send	$DTE \to DCE$	7	4
CTS	Clear To Send	$DTE \leftarrow DCE$	8	5
RI	Ring Indicator	$DTE \leftarrow DCE$	9	22

Table 22: RS-232 Pinouts

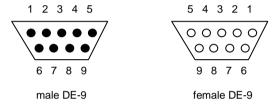


Figure 161: RS-232 pin numbering

Cables

Host Port null modem cable

For applications where a DTE is connected to another DTE (e.g. a DT80 is connected to a host computer):

- the RXD and TXD signals must be "crossed over" so that one device's TXD is connected to the other device's RXD.
- The "Request To Send" output changes its meaning to "Clear To Send Output" (i.e. a device sets it active when it is able to receive data). This allows hardware flow control to operate in both directions.
- DCD, DTR, DSR and RI are not normally used.

The following cable (dataTaker product code **IBM-6**) is used to connect a PC serial port to the *DT80* host RS232 port. The cable is terminated by a female DE-9 connector at each end. The wiring is symmetrical, i.e. the cable can be connected either way around.

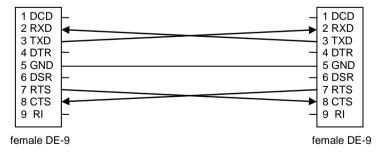


Figure 162: RS-232 null modem cable (IBM-6)

Host Port modem cable

If a DTE is connected to a DCE then a "straight-through" cable is used. The following cable (dataTaker product code **MOD-6**) is used to connect between the *DT80* host port and a modem.

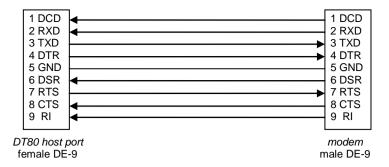


Figure 163: RS-232 modem cable (MOD-6)

Serial Sensor Port null modem cable

The following cable (dataTaker product code **CAB-015**) is used to connect a PC to the *DT80* serial sensor port. This cable is also often used to connect the dataTaker *CANgate* product to the serial sensor port.

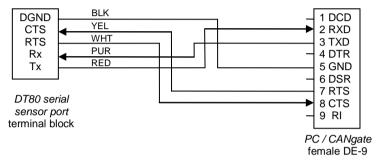


Figure 164: serial sensor RS-232 null modem cable (CAB-015)

Note This cable is only applicable if the serial sensor port mode is set to RS232.

Upgrading DT80 Firmware

The *DT80*'s "operating system" (or **firmware**) is stored in the *DT80*'s Flash memory. This means that you can easily upgrade your *DT80*'s firmware:

- · using a USB memory device, or
- from a host computer running DeTransfer, or
- using an FTP client

It is strongly recommended that you keep your *DT80* up-to-date with the latest firmware. Firmware files are available for free download from www.datataker.com in the Support/Downloads area.

The same firmware is used for all *DT80* series products (DT80/81/82/85). The firmware upgrade file is named according to its firmware version number – for example, **DT80-9081234.zip** is firmware Version 9.08.1234 (normally referred to as just "9.08").

Two different firmware packages are available:

- The standard package (DT80-9081234.zip) is suitable for Series 2 or later loggers
- For Series 1 loggers, use **DT80-9081234-series1.zip**. This contains the same firmware, but the files relating to the enhanced web interface are not included, as it is not supported on Series 1 loggers.

The above packages are suitable for upgrade using a connected computer running DeTransfer.

Packages are also available for upgrade via USB memory device or FTP. These files have a **–usbdisk** suffix, e.g. **DT80-9081234-usbdisk.zip**.

Important All firmware packages include **release notes**, which describe the changes made in the release and other information. Always check the release notes for any changes to the upgrade procedure documented here.

Recommended Preparation

In most cases a firmware upgrade can be performed without disturbing the *DT80*'s settings or logged data. If any special procedures are required, these will be detailed in the firmware release notes.

It is recommended, however, that you carry out the following procedure before upgrading the *DT80*'s firmware to ensure that nothing is lost in the event of a problem during the upgrade.

- 1. Connect to the DT80 using dEX or DeTransfer.
- Save any previously logged data stored in the DT80's internal memory by unloading it to the host computer or copying to a USB memory device.
- 3. Using the *dEX* command window, or *DeTransfer*, issue the **PROFILE** command to return the current profile settings. Make a note of any non-default settings, which are indicated with an asterisk.
- 4. Power the logger from an external supply, and ensure that the internal battery is connected and is fully charged.
- 5. Verify that there is sufficient free space on the DT80's internal flash disk, as described below.

You are now ready to perform the firmware upgrade.

Note If you have previously used the *DT80* web interface then it is recommended that you <u>clear your web browser's cache</u> to ensure that after the upgrade you are running the correct version of the web interface. (The browser cache, also referred to as "temporary internet files", holds copies of downloaded files on the computer's hard disk.)

Free Disk Space

As part of the firmware upgrade process, files may be installed on to the internal flash disk (B:). It is therefore necessary to ensure that there is sufficient free space on this drive before starting the upgrade. To check the free space, type DIR "B:" in *DeTransfer*, or use the **Storage** status screen in the enhanced web interface.

The current firmware packages install approximately 13MB of files (5MB for Series 1 loggers). If these files do not already exist then this amount of free space will be required.

When upgrading using a USB memory device or FTP, a temporary copy of the installation package is made on the internal flash disk. This means that an <u>additional</u> of 15MB free space (6MB for Series 1) is required during installation.

The following table summarises the approximate total free space required in order to upgrade to a current firmware version, based on the previous firmware version in the logger.

Logger Series	PREVIOUS firmware version	Free space required for <i>DeTransfer</i> upgrade	Free space required for USB memory device or FTP upgrade
1	7.02 or later	2MB	8MB
1	older versions	6MB	12MB
2,3	8.06 or later	5MB	20MB
2,3	older versions	10MB	25MB

Firmware Upgrade – USB Flash Device

The simplest way to upgrade the *DT80* firmware is by using a USB memory device. This is also convenient if you have several loggers to upgrade.

- Obtain the appropriate firmware upgrade zip file from <u>www.datataker.com</u> or your dataTaker representative. This file should have a <u>-usbdisk</u> suffix.
- 2. Extract all files from the zip file into the root directory of a USB memory device.
- 3. If a USB or RS232 cable is connected to the logger, disconnect it.
- 4. Ensure that the *DT80* is powered up and awake, then Insert the USB memory device into the logger. The **oninsert.dxc** file on the USB device will then run. This will:
 - a) copy the firmware upgrade files to the DT80 internal memory (during this time the green **Disk** LED will flash), then
 - b) start the firmware upgrade, which will proceed in a similar way to the USB/RS232 method described below.
- 5. The logger will automatically restart once the upgrade is complete.
- 6. Check the firmware version displayed on the LCD, or send the TEST0 command.

Note If in step 4 the green **Disk** LED does not flash and instead the red **Attn** LED comes on, then there may be insufficient free disk space on the logger. Check the available free space, as described above.

Firmware Upgrade – Host USB or RS232 Port

Here's the procedure for upgrading the firmware of a *DT80* by using *DeTransfer* (Version 3.18 or later) on a computer directly connected to the *DT80*'s USB or Host RS-232 port:

- 1. Obtain the appropriate firmware upgrade zip file from www.datataker.com or your dataTaker representative. This file should not have a **–usbdisk** suffix. Extract all files from the zip file.
- 2. Connect the host computer to the *DT80* using USB. RS232 may also be used (57600 baud, 8 data bits, no parity, 1stop bit, software flow control)
 - Start DeTransfer.
- If you are using USB then the DtUsb driver software will need to be disabled in order to make the USB virtual COM port available to DeTransfer. Open the DtUsb GUI by double clicking on the purple system tray icon, or selecting DtUsb in the Windows start menu. Then click Quit to shut down DtUsb.
- 4. In DeTransfer:
 - a) Open a connection to the DT80
 - b) Choose Upgrade Firmware (DT80/800) from the File menu.
 - c) Select the correct firmware file, then press OK
- 5. The upgrade process will now proceed automatically. The *DT80*'s LEDs will flash and the LCD display should indicate that the upgrade is progressing. You will notice that the upgrade proceeds through three phases:
- a) A special "loader" program is downloaded to the logger (Attn LED flashes and display shows: DT8x Bootstrap)
- b) The main firmware package is downloaded to the logger (**Sample** LED flashes and display shows: DT8x Loader). This package normally consists of a number of files (which are installed onto the internal B: drive), followed by the firmware proper (which is installed into a special area of flash memory).

Note If one or more of the files in the firmware package cannot be installed onto the *DT80*'s internal drive (e.g. due to insufficient disk space) then an error message (e.g. fwrite: Cannot write data) will be returned to the host computer and the *DT80* will restart. The firmware version will not have changed. Press the **Details** button on the firmware upgrade window to see status and error messages returned by the logger.

- c) A hard reset is performed (display shows the normal "sign-on" screen)
 - Important During the upgrade, do not remove any cables, or reset or power-down the DT80.
- Once the upgrade is complete, check that the version number displayed on the sign-on screen is correct. For example
 if the file DT80-9081234.dxf was loaded then the display should indicate DT80 V9.08.
- 7. Connect to the DT80 and re-load the required job if required.
 - The upgraded *DT80* is now ready for use.

Firmware Upgrade - Remote TCP/IP

The following method can be used to upgrade a DT80 via a remote TCP/IP connection (Ethernet or PPP).

- Obtain the appropriate firmware upgrade zip file from <u>www.datataker.com</u> or your dataTaker representative. This file should have a **–usbdisk** suffix.
- 2. Extract all files from the zip file into a convenient temporary folder.
- Load the dEX web interface and open the command window. Alternatively, run DeTransfer and make a TCP/IP connection to the logger.
- 4. Connect to the logger using an FTP client. For example, enter

ftp://username:password@ip-address

into the address bar of Windows Explorer (where *username* and *password* are the logger's configured FTP username and password, and *ip-address* is the logger's IP address).

You should see the contents of the root directory of the logger's internal drive (B:), which will normally contain **EVENTS**, **INI** and **JOBS** folders, along with a file called **FAILSAFE**.

- 5. Upload the **LOADER.S** and **FIRMWARE.BIN** files (which you extracted from the zip file) into the logger's root directory (e.g. by dragging them from the temporary folder where you saved them).
- 6. Refresh the FTP view to confirm that the files are present. Close the FTP client.
- 7. In the dEX or DeTransfer send window, type !BOOTIT and press Enter. The upgrade will now start.
- 8. Disconnect from the logger in dEX or DeTransfer, wait 10 minutes, then re-connect.
- 9. Verify the new firmware version by sending TEST0

Reverting Back to Old Firmware

The above procedures can also be used to revert back to an earlier version of the firmware, should that be required. The resource CD shipped with the logger contains a copy of the original firmware that was installed on the *DT80*. Contact dataTaker support if you need to obtain an installation file for any other non-current firmware version.

In Case of Failed Upgrade

In the unlikely event that something goes wrong during an upgrade (e.g. power to the *DT80* or host computer is lost, or the firmware file is corrupted), use the following recovery procedure.

- 1. Reset the DT80 by inserting a paper clip or similar into the reset hole (Figure 96 (P278))
- 2. If the old firmware starts correctly, simply repeat the above upgrade procedure.
- 3. If the firmware does not start correctly (i.e. the normal sign-on display is not shown and the *DT80* does not respond to commands, or the *DT80* continuously resets) then hold down the **OK/Edit** key and reset the *DT80*. The **Attn** LED should now be flashing slowly (5s on, 5s off) and the display should show DT80 Bootstrap. Release the **OK/Edit** key.
- 4. At this point you should now be able to repeat the above upgrade procedure using the USB/RS232 method.

If the upgrade repeatedly fails to complete then click the **Details** button during the upgrade and check for error messages in the small text window that appears. It is possible that there is insufficient free space on the internal B: drive, for example.

Upgrading Modem Firmware

DT8xM models include an integrated modem module, which has its own firmware. Like the *DT80* firmware, this should be kept up to date so that you can take advantage of fixes and performance improvements.

To check the current modem firmware version, use the following commands:

```
MODEM ON
MODEM FIRMWARE
R7.45.0.201105250416.FXT003
```

In the above example, the current modem firmware version is 7.45.

 $\label{thm:modem} \mbox{Modem firmware update packages are available for download from from $\underline{\mbox{www.datataker.com}}$.}$

Important When downloading modem firmware packages, be sure to obtain the correct one for your logger model (DT8xM3 or DT8xM2). Upgrading modem firmware using the wrong package can result in a non-functional modem, requiring the logger to be returned for service.

Error Messages

Standard Messages

The *DT80* returns a message when it detects an error in a command, or an operational difficulty. The form of the error report is controlled by the /u switch. The default is the verbose form shown in the table below. If the switch is set to /u the error message is reduced to an error number (e.g. E3). (Note this Switch also reduces the verbosity of other returned data).

Error messages can be switched off by the /m switch. The default is for errors to be reported (/M). During an unload operation, error reporting is disabled until the unload is complete.

If an error is detected during job entry (i.e. between BEGIN and END) then the remainder of the job is ignored.

The table below lists all of the DT80 errors, along with an explanation of their likely cause and/or correction.

Error Number and Description Error Category					
Cause/Action	Syntax	Operation	Memory	Reading	Hardware
E1 - Time set error	$\overline{\checkmark}$				
 Must be in format defined by P39 and P40 					
Illegal separator or non-digits entered					
E2 - Command line too long		$\overline{\checkmark}$			
Command too long (maximum 1023 characters)					
E3 - Channel option error	$\overline{\checkmark}$				
Illegal channel option used					
 Incompatible options used 					
Option invalid for channel type					
E7 - Day set error	$\overline{\checkmark}$				
Illegal day number entered					
E8 - Parameter read/set error	$\overline{\checkmark}$				
 Parameter index out of range 					
Parameter value out of range					
E9 - Switch error	$\overline{\checkmark}$				
Illegal switch command character					
E10 - Command error	$\overline{\checkmark}$				
Unrecognised keyword					
E12 - Channel list error	\checkmark				
 Channel number outside the legal range 					
 Incomplete channel sequence 					
Invalid channel type					
Polynomials or spans index out of range					
E18 - STATUS command error	V				
STATUSn outside the range 1 to 14	_				
E23 - Scan schedule error	$\overline{\checkmark}$				
Schedule ID not A-K, X or S	_				
Scan time interval too large					
Scan interval type invalid					
Event or counter channels invalid					
E25 - Channel table full			$\overline{\checkmark}$		
Internal acquisition and alarm table filled (maximum			¥		
1000 entries). Additional channels cannot be declared					
E29 - Poly/span declaration error	$\overline{\checkmark}$				
 Polynomial or span index out of range (1 to 50) 					
 Individual terms not separated by a comma 					
 Range of terms outside 1.0e–18 to 1.0e18 					
E30 - Analog measurement fault					$\overline{\checkmark}$
Faulty circuit board, circuit board connector, or circuit					
board power supply					

Error Number and Description			Error Category	у	
Cause/Action	Syntax	Operation	Memory	Reading	Hardware
 If fault persists after a hard reset contact your dataTaker representative. 					
E32 - Job not found	V				
• The named job cannot be found. E37 - No current job					
 A command was entered that operates on the current 	$\overline{\checkmark}$				
job, but there is no job currently loaded.					
E39 - Channel list fixed /F					
Changes to program are not allowed E42 - USB device not ready		$\overline{\square}$			<u> </u>
No USB memory device inserted		V			V
 DT80 has not yet read the required system 					
information from the device (wait a few seconds)					
USB device is faulty or not a memory device E49 - Job has logged data/alarms					
A job that has logged data cannot be deleted. Delete		\square			
the data first.					
E50 - Job locked					
A job that has been locked cannot be modified E51 - ALARM/IF command error	$\overline{\checkmark}$				
Setpoint character <, >, <> or >< missing	V				
AND, OR, XOR incorrectly entered					
Setpoint not specified or too large					
Delay incorrectly specified					
E52 - Text memory full			V		
Memory for storage of alarm and expression text is full E54 - Expression error					
Syntax error	$\overline{\checkmark}$				
Expression too complex					
E65 - ALARM undefined	$\overline{\mathbf{V}}$				
Alarm n does not exist					
E74 - Serial sensor CTS did not go to the required state				$\overline{\checkmark}$	
 Serial sensor: CTS did not go to the required state within timeout period 					
E75 - Serial sensor transmit timeout				\checkmark	
 Serial sensor was not able to transmit (e.g. due to flow control state) within the timeout period 					
E80 - Serial device not responding				V	V
 no response received from SDI-12 sensor 				_	_
check cabling and sensor address					
E81 - Serial device invalid response				$\overline{\checkmark}$	$\overline{\checkmark}$
garbled response received from SDI-12 sensor shock for address conflict.					
check for address conflictcheck for electrical noise					
E82 - Serial device data not available				V	
 SDI-12 sensor doesn't support the requested measurement 					
sensor doesn't support continuous mode					
E89 - Serial sensor receive timeout				$\overline{\checkmark}$	
Serial sensor: expected characters were not received within timeout period E90 - Serial sensor scan error					
Serial sensor: could not convert the received text as				$\overline{\checkmark}$	
specified in the control string					
E101 - Undefined reference: name					
No channel was found with the specified name					

			Error Categor	v	
Error Number and Description Cause/Action	Syntax	Operation	Memory	Reading	Hardware
E102 - Storefile record size too large			V		
There are too many logged channels in the schedule					
E103 - Invalid storefile: filename		$\overline{\checkmark}$			
The indicated storefile appears to be corrupted E104 - Drive format failed					
					\checkmark
 Unable to format the specified drive. It may be write-protected or damaged. 					
E105 - Invalid PROFILE section/key name	V				
Check spelling of section and key name in PROFILE	ت				
command					
E106 - Invalid PROFILE value	$\overline{\checkmark}$				
 Check that value being set in PROFILE command is valid 					
E107 - Counter is already used as a trigger		$\overline{\checkmark}$			
The specified counter is already used as a schedule					
trigger and cannot be used again.					
E109 - File IO error: detailed description		$\overline{\checkmark}$			
An error occurred while reading or writing to a file on					
one of the drives (A: or B:). The detailed description will contain exact details of the error type. For					
example, a write-protected file cannot be written to.					
E110 - Error accessing storefile: detailed		$\overline{\checkmark}$			
description					
 An error occurred while reading or writing to a storefile containing logged data. The file may be corrupted. 					
E112 - Parameter/option conflict	<u> </u>				
The specified combination of command parameters or					
channel options are not valid					
E113 - Schedule option error	$\overline{\checkmark}$				
Invalid schedule option specified E114 - Command parameter error					
-	$\overline{\checkmark}$				
• Invalid parameter specified for a command E115 - Serial sensor control string error					
Invalid syntax within serial sensor control string	$\overline{\checkmark}$				
E116 - Cannot log: detailed description		7	V		<u> </u>
The DT80 cannot log data for one or more schedules		V	V		V
for the indicated reason					
If the problem was that an existing job of the same					
name had logged data/alarms then you need to give					
the new job a different name, or delete the old job's data using DELDATA/DELALARMS					
E117 - Incompatible schedule store units and	V				
trigger					
You can only specify storefile size by time (e.g. 12 hours data) if the cabadula trigger is time based.					
hours data) if the schedule trigger is time based. E118 - Error accessing drive x: detailed		$\overline{\square}$			V
description		V			V
The indicated drive (A: or B:) could not be accessed					
Media may be absent, not formatted or faulty.					
E119 - No matching storefiles found		$\overline{\checkmark}$			
There are no storefiles for the specified job/schedule					
E122 - Command incompatible with configured port function					
*					
 nSERIAL channel or trigger defined, or SSDIRECT command used, and specified serial port has not been 					
configured as a serial channel in the profile					
E123 - SSDIRECT mode already active					
SSDIRECT command was issued but SSDIRECT mode is already active on another comms part. Use					
mode is already active on another comms port. Use ENDSSDIRECT to cancel SSDIRECT mode.					

Error Number and Description			Error Categor		
Cause/Action E124 - Modbus transaction failed	Syntax	Operation	Memory	Reading	Hardware
could not establish connection to Modbus slave device, or no response to request		V.			
E125 - Modbus - write attempt to read-only register	V				
 Modbus discrete inputs and input registers (types 1 and 3) cannot be written to using an expression 					
E126 - Modbus not supported on this channel	$\overline{\checkmark}$				
Modbus channel should be 1,2,3 or 4 E127 - Modbus IP address specified on serial					
channel	\square				
E128 - Modbus serial address specified on TCP/IP channel					
• or no address specified E129 - Modbus - unexpected format of					
response packet		<u> </u>			
E130 - Modbus - unexpected function id in response					
E131 - Modbus - exception response received		$\overline{\checkmark}$			
slave device does not support the requests used by the <i>DT80</i> .					
E132 - Modbus - error in definition of CV block to send					
• invalid CV index E133 - Modbus - reading values to CVs	<u> </u>				
prevents writing	V				
MODBUS channel cannot write values from CVs and also assign to CVs					
E134 - Modbus - 32 bit format not applicable to discrete transfer	$\overline{\square}$				
MBL, MBF options are not applicable when reading 1-bit registers (coils/discrete inputs)					
E135 - Modbus - volume of data to transfer exceeds Modbus message capacity	$\overline{\square}$				
• limit is 123 16-bit registers or 1968 1=bit registers E137 - Unresolved host name: name					
host name may be misspelled					
check that DNS server is functional E142 - Modem command failed					
MODEM command failed, possibly because the required prerequisites were not satisfied e.g. PIN not entered		☑			
E143 - Modem busy		V			
 MODEM command failed due to the modem being busy, e.g. firmware upgrade in progress 		_			
• Time of day schedule trigger syntax error					
E153 - Create user - detailed msg	$\overline{\mathbf{V}}$				
User account cannot be created as the username already exists					
• User account cannot be created as the username	V				
already exists E153 - No such user - detailed msg	$\overline{\mathbf{V}}$				
User account does not exist					
• Cannot delete logged in user account					
E156 - User not authorised - detailed msg					
Not authorised to perform action					

Error Number and Description	Error Category				
Cause/Action Cause/Action	Syntax	Operation	Memory	Reading	Hardware
E157 - User not authenticted - detailed msg		abla			
User cannot be authenticated					
E158 - Another user logged in - detailed msg		V			
Another user session is active.		_			
Only one session in time is supported					
E159 - Invalid username - detailed msg					
The username is invalid					
E160 - Invalid password - detailed msg					
The password is invalid					
E161 - User accounts limit - detailed msg		V			
Cannot create a user account as soon as maximum					
number of account in the users database reached.					
E162 - User authentication required -		V			
detailed msg		_			
User authentication is required					
E163 - Function not implemented - detailed		abla			
msg					
Function is not implemented yet					
E164 - User not logged in - detailed msg		$\overline{\checkmark}$			
User not logged in					
E165 - Authentication disabled - detailed		$\overline{\checkmark}$			
msg					
 No security related commands are allowed when 					
authentication is disabled					
E166 - No users configured - detailed msg		$\overline{\checkmark}$			
No one user account is configured					
E167 - User change role - detailed msg					
Changing role for the current user is not allowed					
E168 - No users configured - detailed msg		$\overline{\checkmark}$			
Operation failed as authenticaton is enabled					
Table 23: DT80 Frror Messages					

Table 23: DT80 Error Messages

Data Errors

Errors may also occur even though the *DT80*'s measurement system is operating normally – for example if an analog input is out of range or a connected sensor does not perform correctly. In some cases, the *DT80* returns an error message (see "Reading" error category in the above table), but mostly there is no message returned. Instead, the *DT80* flags the logged and/or returned data value as invalid.

Each logged reading has an associated "data state", which identifies whether that particular reading is valid or invalid. The following data states are possible:

Logged data state	Value when unloaded CSV/free format	fixed format	Description
OK	measured value	measured value	No error
Overrange	OverRange	99999.9	input voltage exceeds max positive input voltage
			input voltage exceeds positive linearization limit for sensor
			 input frequency too high (F channel type)
Underrange	UnderRange	-99999.9	input voltage exceeds max negative input voltage
			input voltage exceeds negative linearization limit for sensor
			input frequency too low (F channel type)
Not Yet Set	NotYetSet	-9e9	DT80 analog hardware fault
			 insufficient samples have been taken to calculate a statistical value
			 could not read a valid value from a serial device
Reference Error	RefError	8e9	Thermocouples and some bridges require a separate reference channel measurement as part of the measurement process. This error indicates that although this channel's raw measurement was OK, the associated reference channel measurement was not.
Calculation Error	Error	-8e9	Maths error such as division by zero

DT80 Abnormal Resets

If a serious internal hardware or firmware failure occurs, the *DT80* will normally force a hardware reset (equivalent to a **HRESET** command). A message will be displayed on the LCD (e.g. SW Exception) and the **Attn** LED will flash until a keypad button is pressed.

Additional technical details about the cause of the reset will generally be logged to the *DT80*'s event and error log files. You can view these files using the **UEVTLOG** and **UERRLOG** commands, or via the web interface.

Abnormal resets should never occur, but if you do experience one please **contact dataTaker support**. It will assist us if you can provide the following details:

- SERVICEDATA report
- the job that was running at the time
- any other details regarding how the *DT80* is set up (How does the *DT80* communicate with the host? How is it powered? What host application(s) are being used?)
- the circumstances leading up to the failure (How many times has this happened? What was the logger doing immediately prior to the failure?).

Glossary

❖ 4–20mA loop

A common industrial measurement standard. A transmitter controls a current in the range of 4 to 20mA as a function of a measurement parameter. Any receiver(s) or indicator(s) placed in series can output a reading of the parameter. Main advantage is 2-wire connection and high immunity to noise pick-up. Usually powered from a 24V supply.

❖ 50/60Hz rejection

The most common source of noise is that induced by AC power cables. This noise is periodic at the line frequency. *DT80*s are able to reject most of this noise by integrating the input for exactly one line cycle period (20.0 or 16.7ms).

* O

ohm, a unit of resistance

☆ µA

microamp, 10⁻⁶ A

microsecond, 10⁻⁶ s

❖ µStrain

microstrain, strain expressed in parts per million (ppm). Strain is a measure of the stress-induced change in length of a body.

♦ uV

microvolt, 10⁻⁶ V

A

Ampere or amp, a unit of current

* actuator

A device that converts a voltage or current input into a mechanical output.

* ADC

Analog-to-Digital Converter. Part of the DT80's input circuitry that converts an analog input voltage to a digital number (in other words, it converts a smoothly-varying signal to a quantised digital value). The DT80 is a digital instrument, and therefore requires an ADC to convert analog sensor signals into digital form prior to processing. Important characteristics of an ADC are its linearity, resolution, noise rejection and speed.

* Ah

Ampere-hour, a unit of electrical charge, often used when referring to battery capacity

* analog

a quantity that can vary continuously through a potentially infinite number of values — for example, the time swept out by the hands of a clock, or the output of a thermocouple. Compare with digital.

❖ analog ground

Reference point for the *DT80*'s instrumentation amplifier. This ground is normally <u>isolated</u> from any other ground point so it can "float" up or down to match the common mode voltage of the input. This isolation extends the *DT80*'s common mode voltage limits, and helps prevent ground loops.

* ASCII

American Standard Code for Information Interchange. A coding system designed for standardising data transmission to achieve hardware and software compatibility. It assigns a 7-bit code to each of the 128 standard characters: 96 visible characters — letters, numbers and punctuation marks (including the space character); 32 hardware control characters — sounding a bell, advancing a printer page, carriage return, line feed and so on.

asynchronous

Not synchronised, not occurring at pre-determined or regular intervals. A telephone conversation is asynchronous because both parties can talk whenever they like. In an asynchronous communications channel, data is transmitted intermittently rather than in a constant stream.

* Auto-IP

A system where a device on a TCP/IP network can, in the absence of a DHCP server, automatically select its own IP address and other network parameters.

autoranging

The process of changing amplifier gain automatically so that the signal is amplified as much as is possible without exceeding output limits.

❖ base date and time

The DT80's base date is 0:00:00 on 01/01/1989. All timestamps are stored as offsets from this point in time.

❖ bit

The smallest unit of information in a computer. A bit has a single value: either 0 or 1. Computers generally store information and execute instructions in bit-multiples called **bytes**.

bps

bits per second, a measure of data transfer rate

❖ bridge

A sensitive and stable means of measuring small changes in resistances. They are particularly useful when applied to strain gauges (as found in pressure sensors and load cells). See *Bridges* (p309).

❖ buffer

An area of memory where data is held temporarily until the system is ready for it, or in case it is needed in the future.

byte

A unit of information that is eight bits long

* CAN

Controller Access Network. A standard network protocol widely used in the automotive industry. The *dataTaker CANgate* product allows a *DT80* to log data from a CAN network.

Carlson meter

A sensor for measuring strain, which works by detecting the change in resistance of a pair of steel wires.

carriage return (CR)

An ASCII character (code 13 decimal) often used to mark the end of a line of text or a data record.

cat

Furry domesticated mammal, Felis catus

❖ channel

Describes a measurement to take, or a control action to perform.

❖ channel definition

A channel's ID followed by any channel options (in round brackets). See Figure 7(P45).

❖ channel ID

A channel's number and type (e.g. 3TK). See Components of a typical schedule command (P45).

❖ channel list

A list of channel definitions within one report schedule.

* channel table

An internal *DT80* data structure that stores details of all defined channels. The channel table is limited to a maximum of 1000 entries

A channel table entry is used each time a channel is referenced in the current job. For example, the job RA10S T 4V 1CV(W)=1CV+1 ALARM2(1CV>10)"boo" {1DSO=0} uses 5 channel table entries (for T, 4V, 1CV, 1CV and 1DSO).

* clock

The DT80 a real-time clock/calendar, which you can set to your actual time

❖ CMRR

 \underline{C} ommon- \underline{M} ode \underline{R} ejection \underline{R} atio. A measure of the influence of common-mode voltage (unwanted) on the output of the DT80's instrumentation amplifier (see common-mode voltage (P410) below).

More precisely, CMRR is the ratio of the common-mode voltage at the amplifier's input to the common-mode voltage at the amplifier's output, expressed in dB. It indicates the quality of a measuring system's input electronics. Relevant to basic (differential) inputs only.

$$CMRR = 20\log \frac{V_{CM}}{V_{out} \cdot A_{V}}$$

where

- V_{CM} is an applied common mode voltage
- Vout is the resulting output voltage
- A_V is the amplifier's voltage gain

❖ command line

One or more *DT80* commands typed one after the other, separated by tab, space or semi-colon characters, and ending with a return character. Limited to a maximum of 1023 characters. For example

RA10S T 4V 5TK

is a command line made up of a schedule definition followed by three channel definitions (separated by spaces).

❖ common-mode voltage

An unwanted AC and/or DC voltage that offsets both inputs to the *DT80*'s instrumentation amplifier (with respect to amplifier ground). It is unwanted because it usually originates from nuisance sources such as electrical noise, DC offset voltages caused by the sensors or the equipment being measured, or from ground loops.

Typically in industrial measurement, the sensor signals you apply to the DT80's input terminals consist of

- the small component you want to measure (a few mV to a few tens of mV), PLUS
- a large unwanted component (a few V to a few tens of V) the **common-mode voltage**.

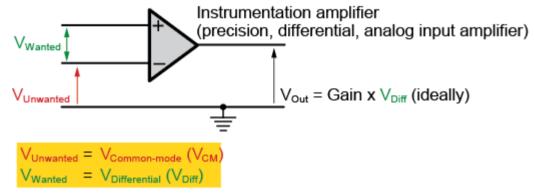


Figure 165: Common-mode voltage VCM and Differential voltage (VDiff) - 1

When the *DT80* makes a measurement, both of these components are applied to the inputs of the its instrumentation amplifier. Then, when configured for basic (differential) use, the amplifier does two things:

- It rejects most of the common-mode voltage (the unwanted signal). How well the amplifier does this is indicated by its common-mode rejection ratio see CMRR (P409).
- It amplifies the difference between the signals on its two inputs. This is the wanted signal and is called the **differential voltage** see *differential voltage* (P411).

Common-mode voltage is calculated as the average of the voltages between the measurement system's ground and the two input terminals:

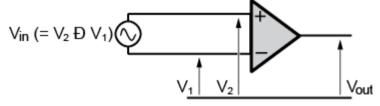


Figure 166: Common-mode voltage VCM and Differential voltage (VDiff) — 2

⊹ CR

See carriage return (P409).

* DAC

Digital-to-Analog-Converter

* data acquisition system

A measurement system that scans a range of analog and digital channels, converts the readings to digital format, and forwards the data to a host. The host does any storage or data manipulation required. See also logging (P413).

* data logging system

A data acquisition system with its own on-board data storage and manipulation facilities. See also logging (P413).

❖ dataTaker

The name of the family of stand-alone data logging, acquisition and associated equipment manufactured by Thermo Fisher Scientific.

```
      dataTaker releases:

      1983 dataTaker DT100

      1987 dataTaker DT200

      1990 dataTaker DT500 series, DT600 series, and the DT50

      2000 dataTaker DT800

      2005 dataTaker DT80

      2006 dataTaker DT81

      2007 dataTaker DT85

      2008 dataTaker DT80/81/85 Series 2, DT80G/85G, CEM20

      2010 dataTaker DT82E/82I

      2011 dataTaker DT8x Series 3, DT8xM with integrated modem
```

* DCE

<u>Data Communications Equipment.</u> A DCE device (a modem, for example) enables a DTE device (such as a computer or a *DT80*) to communicate over phone lines or data circuits. A DCE device connects to the RS-232 interface of a DTE device.

dEX

A suite of web-based applications that allow the DT80 to be configured and monitored using only a web browser.

♣ DDNS

Dynamic Domain Name Service. An Internet service which allows you to access by name a device (such as the *DT80*) that has a dynamic IP address.

❖ default

An attribute, value or option that is assumed if none is explicitly specified. A state or group of operating conditions (determined by the manufacturer and factory-set) to which the *DT80* automatically reverts after a reset.

* DHCP

Dynamic Host Configuration Protocol. A system for automatically setting the IP address and other network parameters for a device on a TCP/IP network.

* differential input

An analog input where the difference between two voltages is measured, without reference to ground or any other common point. For example the 1v command measures the differential voltage between the 1+ and 1- terminals.

differential voltage

The difference between the voltages on the two inputs of the *DT80*'s instrumentation amplifier. See common-mode voltage (P410).

❖ digital

a quantity that is represented by a number that has a finite number of possible values. The number of bits used to store a digital value determines the resolution, i.e. how close two values can be and still be resolved (distinguished). Some quantities are inherently digital, e.g. a logic signal or switch (whose state can be represented by 1 bit)

* digital ground

The reference point for most of the *DT80*'s circuits, e.g. power, communications, digital I/O – everything <u>except</u> the analog input sub-system (see *analog ground* (P408)).

directory

an area on a data storage device used to store related files. Also known as a folder.

* DNS

Domain Name Service, a TCP/IP network protocol. Networked devices, such as the *DT80*, send requests to a DNS server whenever they need to translate a domain name (e.g. **ftp.moose.com.au**) into a numeric IP address (e.g. 203.111.202.44)

DTE

<u>D</u>ata <u>Terminal Equipment</u>. The information source and/or destination in an RS-232 communications link. The *DT80*'s Host RS-232 port and Serial Channel are DTE devices, as is a PC's RS-232 port (serial port).

The RS232 standard was originally designed for connecting a DTE to a DCE (e.g. a modem). However, a DTE can also be directly connected to another DTE by means of a null-modem cable

❖ DtUsb

Windows-based driver that provides a TCP/IP connection to the logger over USB.

❖ echo

A communications option for <u>commands</u> you send to the DT80. When echo is turned on see Table 7: DT80 Switches (P261), commands you send to the DT80 are automatically returned to the host computer screen.

Echo is useful for troubleshooting: when the echo is on, you can see by the returned commands that the *DT80* is actually receiving them. (Once you're confident that it is receiving, you can turn the echo off.) Also, any error message appears right under the echo of the erroneous command, making the error obvious.

❖ EEPROM

<u>E</u>lectrically-<u>E</u>rasable <u>P</u>rogrammable <u>R</u>ead-<u>O</u>nly <u>M</u>emory. A special type of PROM that can be erased by exposing it to an electrical charge. Requires data to be written or erased one byte at a time (compare with Flash (P412) below). Retains its contents even when power is unavailable.

❖ enable

Turn on or activate

* Ethernet

A standard method for connecting a network of computers so that they can share information. The *DT80* supports "10 Base-T" Ethernet, that is it operates at a data rate of <u>10</u>Mbps and uses <u>T</u>wisted-pair cable.

firmware

The "operating system" software stored inside the DT80. The DT80's firmware is user-upgradeable.

❖ Flash

A special type of EEPROM that can be erased and reprogrammed in blocks (instead of one byte at a time — compare with EEPROM (P412) above). Flash memory is therefore much faster to erase and re-write. Retains its contents even when power is unavailable. The DT80's firmware is stored in Flash memory. See also Upgrading DT80 Firmware (P399).

flow control

The process of controlling the flow of information between communications devices. For example, if data is being sent too quickly from a *DT80* to its host computer, the computer tells the *DT80* to temporarily stop sending data; then when the computer has caught up, it tells the *DT80* to resume sending data. Hardware handshaking (hardware flow control; RTS/CTS) and software handshaking (software flow control; XON/XOFF) are alternative mechanisms of flow control.

❖ folder

Another name for directory

❖ format

A specific way of organising related information. For example, the *DT80*'s internal data memory is formatted as a DOS/Windows compatible file system.

❖ FTP

<u>File Transfer Protocol</u>. A TCP/IP protocol for copying files from one computer to another.

Gray code

A binary numbering system where two successive values differ by only one bit. Rotary or linear position encoders frequently provide Gray-coded outputs to avoid the possibility of erroneous readings due to multiple bits changing not quite simultaneously.

For example, a 3-bit Gray code sequence is 000, 001, 011, 010, 110, 111, 101, 100.

❖ ground

A common return path that is the zero voltage reference level for the equipment or system. It may not necessarily be connected to earth.

❖ ground loops

More often that not, grounds in a measurement system are not at the same electrical potential — differences may be from microvolts to many volts. Then, if signal wires happen to connect different grounds together, currents can flow and result in unpredictable measurement errors. These unintended conduction paths are referred to as **ground loops**. The *DT80* has been designed for maximum immunity to ground loops — see *Ground Loops* (P374).

* host computer

The computer you use for supervising the DT80

❖ host software

The software you run on the host computer to supervise the DT80. See DT80-Friendly Software (P16)

hunting

An undesirable oscillation

* HWFC

Hardware flow control (RTS/CTS). Also known as hardware handshaking. See flow control (P412).

A device using hardware flow control monitors its Clear To Send (CTS) input and will not send data until the signal is active. Conversely, a device indicates that it can receive data by driving its RTS output active (which is then connected to the other device's CTS input)

♦ Hz

Hertz, a unit of frequency

❖ instrumentation amplifier

A precision differential amplifier for amplifying the *DT80*'s analog input signals (wanted) and rejecting any common-mode voltage (unwanted).

❖ IP address

A device's address on a TCP/IP Ethernet or wireless network. Every device connected to an TCP/IP network must be assigned its own unique IP Number. An IP address is written as four decimal numbers e.g. 192.168.1.209

A **private IP address** has the form 10.x.x.x or 192.168.x.x or 172.16.x.x through 172.31.x.x, or 169.254.x.x and is only visible on the local network. A **public IP address** is visible from anywhere on the Internet.

* ISO

International Organization for Standardisation

❖ iob

A logical "hold-all" for a group of schedules and other commands, and related data and alarms. Each job has a name and a directory structure that organizes this information. See Jobs (P24).

kilobyte, 1024 bytes

kbps

kilobits per second, 1024 bps

Kelvin sense point

A particular point in a measurement circuit where a measurement should be made to ensure the best possible accuracy by ensuring that unwanted voltage drops due to current flows are minimized. Symbol

LED indicator

Light-emitting diode indicator. The *DT80* has three LEDs on the front panel, which light to indicate Sampling, Internal Disk Activity, Attention Required and Power Status.

❖ logging

Recording or storing data. The *DT80* logs data to its internal memory and/or an external USB memory device. Logging is a separate, user-configurable operation that the *DT80* performs in addition to its basic function of data acquisition (taking measurements from sensors connected to its inputs). See also data logging system (P410) and data acquisition system (P410).

❖ Isb

least significant bit (within a byte)

* LSB

Least Significant Byte (within a multi-byte word)

❖ mΩ

milliohm, $10^{-3}\Omega$

⊹ mA

milliamp, 10⁻³ A

❖ MB

megabyte, 1048576 bytes

❖ Mbps

Megabits per second

❖ Modbus

A widely used control and automation communications protocol, often used in SCADA systems.

* monolithic sensors

Also called **IC** (Integrated Circuit) sensors. Sensors that are constructed on a single piece of silicon using integrated circuit fabrication techniques. Available sensors include those for measuring temperature (see Temperature – AD590 Series IC Sensors (P319)), pressure, acceleration and concentration of various compounds in gases and liquids.

⊹ ms

millisecond, 10⁻³ s

❖ msb

most significant bit (within a byte)

❖ MSB

Most Significant Byte (within a multi-byte word)

* multidrop

In communications, a multidrop configuration allows multiple devices to be connected in parallel by means of a single twisted-pair cable. This requires that each device switch off (tri-state) its transmitter when it is not actively transmitting.

* multiplexer

A "many-in, one-out" switching network that allows many input signals to time-share one analog input circuit. It sequentially routes multiple channels to a single signal processing system.

* NAT

Network Address Translation. A system used by TCP/IP routers to allow a small number of public IP addresses to be shared by many different devices on a private network.

* noise

Unwanted voltage or current (generally with an AC component) superimposed on the wanted signal.

❖ NTP

Network Time Protocol. A means of synchronising the DT80 system time to a time server on the Internet.

❖ null-modem cable

A communications cable for connecting two DTE devices together (for example, a PC to another PC, or a *DT80* to a PC). Also known as a **crossover cable**.

* nybble

Half a byte (four bits)

parse

To identify components of a command string

❖ PC

A <u>personal computer of the IBM or IBM-compatible type.</u> (Although the Macintosh is technically a PC, it is not referred to as such.)

* PCB

Printed Circuit Board

❖ peak-to-peak

The value of an alternating quantity measured from its negative peak to its positive peak.

Figure 167: Peak-to-peak measurement

❖ period

The time taken for a cyclic event to repeat itself. Reciprocal of frequency:

$$Period = \frac{1}{Frequency}$$

* PLC

Programmable Logic Controller. Used to automate monitoring and control of industrial equipment.

* plug-and-play

A device whose characteristics are automatically determined when it is plugged in. All USB devices are plug-and-play.

polling

Requesting information

port

A plug, socket or interface that enables connection to another device for information transfer. For example, the *DT80* has three ports for communicating with a host computer: Ethernet, USB and RS232.

port (TCP/IP)

A logical endpoint for a connection between two applications over a TCP/IP network. This allows multiple independent connections to exist over the one physical cable. For example, an application such as DeTransfer can connect to port 7700 to access the logger's command interface, and at the same time a web browser can connect to port 80 to access the logger's web interface.

❖ PPP

Point-to-Point Protocol. A low-level protocol that allows TCP/IP based protocols to be used over an RS232 or wireless connection.

* process list

The part of a schedule command that follows the schedule header and trigger, and lists the processes you want the schedule to carry out. It may include, for example, a channel list and an **IF** command.

* program

A DT80 program is a group of one or more jobs or commands that you send to the DT80.

* protocol

The language (or set of rules) that devices use to communicate over a network. For the Information Superhighway, think of protocols as the "rules of the road". All devices on a network must use the same protocol to communicate with each other. See TCP/IP (P416).

❖ RAM

<u>Random Access Memory.</u> Memory that allows the storage locations within it to be accessed (written to or read from) directly (non-sequentially). This characteristic makes RAM very fast. Often simply called **memory**.

❖ RAM disk

An area of RAM configured by a software program to emulate a disk drive.

* real-time

As it happens. The *DT80* can return data directly to the host computer in real time — that is, as each scan is made, its resulting data is returned to the host computer straight away and displayed on-screen immediately.

resolution

The smallest detectable increment of measurement — that is, the smallest change in input that produces a detectable change in output. In the field of data acquisition, resolution is the number of bits that the ADC uses to represent the analog signal — the greater the resolution, the smaller the changes in input signal that can be resolved/detected.

* retrieve

To unload or return data and other information from the DT80 to the host computer, either by:

- Unloading through one of the DT80's communications interfaces
- Unloading by temporarily inserting a USB memory device into the DT80

❖ ROM

Read Only Memory. Memory that can be randomly read from but not normally written to. The DT80 uses flash ROM.

* RS-232

A common communications and interface standard for connecting two serial devices in a point to point configuration.

RS232 uses a negative voltage (typically –5V) to represent a logic "0" and a positive voltage (typically +5V) to represent a logic "1". These signals are with respect to a common ground terminal, hence RS232 is said to use *single-ended* signalling.

❖ RS-422

Another communications interface standard for point to point connection of serial devices. RS-422 uses *differential* signalling (a pair of wires for each signal, no signal-ground connection) which provides improved noise immunity and allows operation over longer distances than RS-232.

❖ RS-485

Yet another communications interface standard. Like RS-422, RS-485 uses differential signalling. RS-485 is designed for **multi-drop** operation over a <u>single shared pair</u> of wires. RS-485 is therefore a **half duplex** protocol –only one device can transmit at any one time.

❖ RTD

Resistance Temperature Detector. A resistive sensor that changes resistance with changes in temperature.

* sampling speed

The maximum rate at which analog-to-digital conversions can be done. This includes any channel selection time, settling time (for the signal to stabilise) and processing time (if required).

* SCADA

<u>Supervisory Control and Data Acquisition</u>. SCADA systems are used to monitor and control plant status and provide data logging facilities.

❖ schedule

A collection of channel definitions which will be evaluated when a certain trigger condition is true (e.g. the required time interval has elapsed, or a digital input has changed state)

❖ schedule header

The schedule's ID and trigger, e.g. RA1S — see Figure 7(P45).

❖ SDI-12

Serial Data Interface - 1200 baud. A 3-wire multi-drop serial sensor interface, and associated protocol.

serial

One by one. In serial data transfer, data is sent in a single stream of bits, one bit at a time, one after the other. The opposite of serial is parallel. In parallel data transfer, several streams of bits are sent concurrently.

❖ settling time

The time allowed for the input signal to the ADC to stabilise before it is measured. This can be controlled using the measurement delay (MDn) channel option.

* shared-terminal inputs

Analog inputs where a common reference is used. Also called single-ended inputs. For example, the 1*V, 1+V and 1-V commands all measure single-ended voltages relative to a common point (the 1# terminal)

See Shared-Terminal Analog Inputs (P21).

❖ shield

A conductor surrounding input signal wires that is generally connected to the *DT80*'s ground. The purpose is to shield the input signal from capacitively-coupled electrical noise. Such a shield provides little protection from magnetically-induced noise.

❖ SIM

Subscriber Identity Module – a small card which electronically identifies a mobile subscriber. The DT8xM loggers require a SIM card in order to be able to connect to a mobile network.

❖ stand-alone

Not connected to a host computer. The *DT80* is designed to operate in stand-alone mode: once programmed, you can disconnect the *DT80* from the host computer leaving the *DT80* operating totally independently. Later, to download data or reprogram the *DT80*, you reconnect the host computer.

state

Of an alarm: the true/false result of an alarm test.

* SWFC

Software flow control (XON/XOFF). Also known as software handshaking. See flow control (P412).

A device using software flow control will stop transmitting if an XOFF character is received and will resume when an XON character is received.

switch

A two-state (ON or OFF) command that changes a DT80 internal setting. For example, sending the switch command / \mathbf{R} to the DT80 turns ON the return-of-data-to-the-host-computer switch, and sending / \mathbf{r} turns it OFF. See Switches (P261) for a complete listing.

* syntax error

An error in the order, arrangement or spelling of the components of a command.

❖ TCP/IP

<u>Transmission Control Protocol / Internet Protocol.</u> A commonly-used family of communication protocols. TCP/IP protocols are used on the *DT80*'s Ethernet interface, and can also be used on an RS232 link if PPP is enabled.

All TCP/IP protocols allow data to be transported across a local area network or the Internet.

* TCP

<u>Transmission Control Protocol.</u> TCP is the default TCP/IP protocol used by the *DT80* to communicate over an Ethernet or PPP link.

TCP provides:

- flow control (prevents data being sent faster than it can be received)
- reliable data transfer (errors are detected and data is automatically re-sent)

support for application protocols, such as e-mail and FTP

* thermocouple

A temperature-sensing device constructed from dissimilar metals. See Temperature – Thermocouples (P315).

* transducer

A device that converts a physical parameter (temperature, for example) into an electrical voltage or current. It is usually a sensor with additional electronics for signal conditioning and scaling.

UART

<u>U</u>niversal <u>A</u>synchronous <u>R</u>eceiver/<u>T</u>ransmitter. A hardware component that provides an RS232 serial interface. The *DT80* uses two UARTs – one for the host RS232 port, one for the serial sensor.

❖ UDP

 $\underline{\textbf{U}}$ ser $\underline{\textbf{D}}$ atagram $\underline{\textbf{P}}$ rotocol. A component of the TCP/IP suite of protocols. UDP is a simple "connectionless" protocol that operates in a similar way to an RS232 link, except that the link can be across a LAN or the Internet.

Unlike TCP, UDP does not guarantee that all data will be delivered.

unshared input

a differential input.

* URI

Uniform Resource Identifier. A standard way of identifying a resource (such as a file) on a TCP/IP network. The *DT80* uses a URI to specify the destination when uploading to an FTP server.

USB

<u>Universal Serial Bus.</u> A standard method of connecting peripheral devices to a host computer. The *DT80* operates both as a USB *device* (when talking to a host computer) and as a USB *host* (when talking to a USB memory device).

See USB (P188)

❖ USB Memory Device

A memory device designed to be connected to USB. These devices can either be hard disk drives or flash memory devices. They are generally powered from the USB port.

* V

volt, a unit of electrical potential (voltage)

version number

The version number of the *DT80*'s firmware consists of a major number, a minor number and a build number, e.g. for Version 6.18.0002, the major number is 6, the minor number is 18 and the build number is 2.

* vibrating wire strain gauge

a sensor for measuring strain, which works by detecting changes in the resonant frequency of a steel wire as its length changes.

* whitespace

The set of "blank" ASCII characters, namely ASCII character codes 9 (tab), 10 (line feed), 11 (vertical tab), 12 (form feed), 13 (carriage return) and 32 (space).

* XON/XOFF

Transmitter on / transmitter off. Control characters used for software flow control (SWFC), instructing a device to start transmission (XON) and end transmission (XOFF).

Safety Information

General

- Ensure that all voltage input limits as specified in the specifications (P383) are strictly adhered to.
- All sensor and other wiring connected to the logger are classed as extra low voltage circuits. These must be separated from any hazardous voltage circuits (e.g. mains) wiring by double or reinforced insulation and physical separation, as required by the local wiring code.
- The *DT80* is powered by a 10-30V DC supply. If the supplied plugpack is not used then ensure that the power supply output voltage is within this voltage range and is capable of supplying sufficient power for the *DT80* and any other equipment. See *Power Consumption* (P290) for more details.
- The *DT80* and the supplied plugpack are <u>not</u> waterproof, and must be protected from exposure to water and any other liquids at all times.
- The only user-servicable parts inside the *DT80* are the main and lithium batteries. When replacing these items the procedure detailed in this manual (see *Inside the DT80* (P280)) must be followed carefully, and the warnings therein observed.
- The *DT80* is <u>not</u> authorised for use as a critical component in any life-support or other safety-critical system, where a failure of the *DT80* could affect the system's safety or effectiveness.

Models with Internal Lead Acid Battery

The following applies to DT80/82I/85 models with an internal lead acid battery.

- The battery may generate gases, so ventilation must be provided to allow any battery gases to escape. If the *DT80* is mounted in a sealed enclosure then a valve should be provided to prevent gas build-up.
- When operating at high temperatures, acid may seep from the battery's regulator valve (located between the battery terminals) if it is facing downward. The internal battery's terminals face the rear panel of the *DT80*. The logger should therefore be oriented either in table top configuration (keypad/display facing up), or wall mounted (input terminals facing down). It should <u>not</u> be wall mounted upside down (input terminals facing upwards) because then the battery terminals and regulator valve would face downward.
- Any replacement battery must be identical in specification to the factory fitted battery. There is a risk of explosion if the battery is replaced by an incorrect type.
- Dispose of used batteries via an appropriate recycling facility only.
- Do not expose the battery to excessive heat or short circuit its terminals.
- To fully power down the *DT80*, it is necessary to disconnect the external power connection, <u>and</u> disconnect the battery link or external battery.

Models with Integrated Modem

The following applies to DT8xM models with integrated wireless modem.

The *DT80* modem, like any mobile telecommunications device, generates radio frequency (RF) radiation while it is switched on. This can present various hazards, as detailed below.

While the modem is switched off (as indicated by the red indicator LED on the side panel being off), no radio signals are generated.

- It has been suggested that prolonged exposure to mobile telephone transmissions can be a health risk. To minimise operator exposure to RF energy, the *DT80* antenna should be positioned so that it is at least 200mm away from the body of the user.
- Radio signals can interfere with personal medical equipment, including pacemakers and hearing aids. Users of these devices should keep clear of the antenna.
- Radio signals can interfere with aircraft systems, so the DT80 modem must not be used while in flight.
- Radio signals can generate sparks in some circumstances. The DT80 modem must not be used during vehicle
 refuelling or at any time where explosive or flammable vapours or gases are present. It must also not be used if
 blasting operations are in progress in the vicinity.
- Radio signals can interfere with electronic devices such as medical equipment and life-support systems. Respect any
 restrictions relating to the use of mobile devices in the vicinity of such equipment.

Index

12V terminal	288	Safety	418
5VSW terminal	288, 289	Storage	288
Accuracy	384	Boolean Expression	81
Adaptive scheduling	87	Bridges	31, 309, 383, 409
AGND terminal	372, 375	3 wire, current excitation	314
AGND terminal	288	4 wire, current excitation	314
Alarm	79	4 wire, voltage excitation	312
Action Processes	85	6 wire, voltage excitation	310
Order of Execution	85	Calculation	64
Action Text	46, 82	Calculations	65
Destination	82	Calibration	
Special Characters	83	DT80	259, 261, 271, 273
Substitution Characters	83	Sensor	61, 62
Combining Alarms	81	Carlson Sensor	327
Communication Actions	84	Cat	409
Condition	80	CEM20	14, 377
Digital Action	82	Troubleshooting	380
Display	117	Channel	29
Email	84	Channel Factor	31, 38, 61
Number	80	Channel List	45
Polling Alarm State	90	Channel Number	30
Repeating (IF)	79	Channel Option	38
SMS	84	Default	31, 40
Alarm Commands	0.	Mutually Exclusive	39
ALARM	79	Order of Application	39
ALARMR	79	Channel Options	00
DO	56, 79	2V	323
IF 79	23, 13	- · 4W	31, 306
Analog Channels	20, 383	AV	73, 74
Attenuators	41, 300, 372	BG	116
Block Diagram	370	BR	311
Excitation	21, 306, 373	CM	348, 350
Gain	20, 41, 300	DF	72
Independent Input Configuration	301, 302, 304	DMN	73, 74
Input Terminals	20, 299, 372	DMX	73, 74
Multiplexers	20	DT	72
·	301, 302, 303, 416	Fn (function)	63
Termination	41, 372	H (histogram)	75
ASCII-Decimal Tables	394	IB 72, 74	, 0
Auto-IP	239, 408	II 305	
	280, 286, 290, 298	IMN	73, 74
Charger	286	IMX	73, 74
Charging Link	286	INT	73, 74
Display	116	LT342	70, 77
External	285, 286, 287	MDn	376, 416
Memory Backup	281, 289	MN	73, 74
Operating Time	286, 295	Modbus	43
opolating Time	200, 200	Modelado	70

MX	73, 74	TMPxx	319, 321
ND	81, 117	VANA	273
NL	24, 91	VBAT	273, 287, 290
NUM	73	VDD	273
RAINFLOW	76, 77, 78	VEXT	273, 290
RC	72	VLITH	273, 290
Rnnn	348	VREF	273
RS	72, 345	VRELAY	273
SD	54, 73, 74	VSYS	273
Sn (span)	61	YSxx	318
T 33		Channel Variable (CV)	64, 271
TFF	72, 73	Name	65
TFR	72	Channels	
TMN	73, 74	PWR12V	289
TMX	73, 74	PWR5V	289
Tn (thermistor)	62	Clock/Calendar	34, 267, 388
TOF	72, 73	Command Interface	254
TOR	72	Commands	391
TR	36, 42, 316	* 53	
TRF	73	? 90	
TRR	72	ALARM	See Alarm Commands
W 64, 91, 117, 169, 261		BEGIN	24, 54, 57, 58
Yn (polynomial)	62	CATTN	121
Channel Type	23, 31	CERRLOG	274
Channel Types		CEVTLOG	274
\$ 35		CHARAC	275
AD5xx	319	CLOSEDIRECTPPP	252
BGI	310, 314	COPY	113, 114
BGV	310, 312	COPYD	99
CMRR	273, 409	COPYDATA	112
CU	319	CURJOB	59
D 34		DEL	113
DBO	336	DELALARMS	94, 109
DELAY	36, 86, 347	DELALLJOBS	109
DNO	336	DELD	108
DSO	340	DELDATA	94, 109, 113
HV	311, 312	DELJOB	59, 109
IBAT	273, 290	DELONINSERT	60
IV 77		DELONINSERTALL	60
LMx35	322	DELTREE	113
LMxx	321, 322	DIAL	206
NI 319		DIR	91, 92, 94, 113
PE	344	DIRJOB	113
PT3xx	319, 333, 335	DIRJOBS	59
REFT	316	DIRTREE	91, 111, 113
RELAY	82, 205, 336, 340	DO	See Alarm Commands
SERIAL	352	DT=	267
T 34		EAA	237

END	24, 54, 57	TYPE	113
ENDSSDIRECT	360	UERRLOG	274, 407
FACTORYDEFAULTS	272	UEVTLOG	274, 407
FORMAT	112, 113, 114	UNLOCKJOB	57, 59
G 55	, ,	X 51	,
H 55		Yn	62
HANGUP	206	Comment	58
HELP	19	Common Mode Voltag	e 301, 410
HRESET	271	Communications	183
IF See Alarm Commands		Command Interface	187
INIT	271	Error handling	229
IP 237		Ethernet	236
IPGW	237	External Modem	202
IPSN	237	Integrated Modem	210
LISTD	95	RS-232	196
LOCKJOB	57, 59	Session	227
LOG	274	TCP/IP	208
LOGOFF	91	USB	188
LOGON	91	Configuration Line	39
MODEM	222	Counter Channels	341, 385
NAMEDCVS	65	High Speed Counte	er 33, 271, 340, 343
NTP	270	Phase Encoder	33, 344
PASSWORD	187	CSV	27
PAUSE	86	Current	303, 383
PH	198	Current Loop, 4-20mA	31, 305, 383
PING	225	Date	260
PROFILE	262	DBD	28
PS	202	DCE	397, 411
Q 107		DeTransfer	16
RAINFLOW	77	dEX	16, 122
REMOVEMEDIA	93, 113, 114	Configuration Builde	er 127, 130
RENAME	113	Customising	165
RUNJOB	58, 88	Mimics	155
RUNJOBONINSERT	60	Unloading Data	152
RUNJOBONINSERTALL	60	Web Interface	149
SATTN	121	DGND terminal	199, 333, 343, 371, 375
SDI12SEND	347	DHCP	209, 239, 411
SERVICEDATA	275	Diagnostics	181, 206, 259, 260, 351, 361, 369
SESSION	232	Differential Voltage	410
SETDIALOUTNUMBER	206	Digital Channels	22, 333, 384
SETMODBUS	178	Counter	271
SHOWPROG	59	Input	333
SIGNOFF	188	Input Specifications	
Sn	61	Output	271, 335
SSDIRECT	360	Digital Manipulation	42
STATUS	275	Directory (folder)	91, 411
TEST	273, 274	DNS	210
Tn62		DNS server	264

DTE	397, 411	Disk	120
DtUsb	188	Ethernet	237
Dynamic DNS	216, 226	Power	120
Earthing	284	Sample	120
Echo	261, 412	Logging Data	91
Email	84, 103, 215, 231	Capacity	92
Error Message	402	Checking Status	94
Ethernet	236, 412	Free Space	94
Direct Connection	236	Number of Records Logge	
LAN Connection	236	Enabling and Disabling	91
LEDs	237	Factors Which May Prevent	Logging 93
settings	237	Schedule Options	93
Excitation	305, 373, 384	Speed	92
Expressions	67	Store Files	46, 91
EXT * terminal	41	Mimics	155
EXT# terminal	372, 375	Modbus	43, 176, 265, 364, 413
File System	91, 111	Data Types	178
Firmware	2, 122, 399	Register Mapping	177
Fixed Format Mode	26	Serial	176, 364
Flash	399, 412	TCP/IP	176
Flow Control	196, 203	Modem	
Format of Returned Data	26	Power	336
Free Format Mode	26	Modem Cable	207, 397
Frequency	323, 345, 383	Modem, External	202
Front Panel	115, 279	Control Signals	203, 204, 206, 397
FTP	103, 170, 175, 231, 255, 264	Initialisation	203, 205
Gateway	210	Power	205
Gray code	412	Modem, Integrated	210, 387
Ground Loop	374	Bands	225
Grounding	284	Configuration	213
Hardware Reset	278	Getting Started	213
Histogram	See H Channel Option	Mobile plans	210
Host Port 82	2, 176, 197, 263, 298, 364, 386	Safety	418
Humidity	323	Troubleshooting	220
IC Temperature Sensor	319, 320, 413	Multiple Reports	39
Internet	242	Noise	375
Intrinsic Functions	See Channel Options: Fn	NTP	268
IP Address	209	Null modem cable	187, 196, 411, 414
Isolation	301, 375	ONINSERT Job	60, 112, 117
Jobs	24, 48, 57, 413	ONRESET Job	60
Job Commands	59	Operating Environment	283
Loading an Existing Jol	58	Optimal Speed	376
Single Line Jobs	57	Parameters	258, 260, 265, 271
Keypad	119	P09	89
LabVIEW	16	P11	36, 375, 376
LCD	44, 115, 396	P14	188
LED		P15	255, 298
Attn	33, 82, 94, 113, 120, 121, 391	P17	118, 297, 298

P20	118, 296	Pagetting the DT90	271
P21	296	Resetting the DT80 Safe Mode	272
P26	197	Resistance	38, 305, 319, 383
P27	343	2 wire measurement	307, 308, 373
P28	289	3 wire measurement	307, 373
P31	34, 116	4 wire measurement	306, 307, 309
P32	267	Parallel Resistor	309
P33	26, 260	Retrieving Logged Data	95
P36	34	Aborting	107
P39	34, 116, 267	Deleting	108
P41	34	Email	103
P53	32	FTP	103
	06, 256, 350, 351, 361, 369	Listing	95
P62	376	Unloading	25, 99
Polynomials	See Channel Options: Yn	RS-232	196, 199, 397, 411, 415
Power	285	RS-422	199, 200, 415
Consumption	290, 296	RS-485	199, 200, 415
External	285	RTD	31, 32, 38, 319, 415
External Modem	205	Safe Mode	272
Monitoring	290	Safety	418
Outputs	33, 288	SCADA	176, 180, 364, 416
PPP	245, 415	Scaling	38, 42, 61
Connecting	252	Schedule	23, 45
Direct Cable	247	Continuous Trigger	51
Modem	250	Enable Trigger While CV	52
Profile Settings	262	Enable Trigger While Digital	52
ALLOW_ANONYMOUS	255	Executing Commands	56
BPS	198, 202	Halting & Resuming	55
DOC_ROOT	171	Immediate	52
EXT_POWER_SWITCH	205, 207	Order of Execution	55
FLOW	198, 207	Redefining Trigger	53, 55, 87
GATEWAY	238, 242	Statistical	53
HOST_ADDRESS	177, 182	Trigger at Date/Time	49
INIT	205	Trigger on Counter	50
IP_ADDRESS	238, 241, 242	Trigger on CV	50
MAX_CD_IDLE	205	Trigger on Digital Channel	50
PASSWORD	255	Trigger on Poll Command	51
SERSEN_ADDRESS	177	Trigger on Serial Channel	50, 359
SUBNET_MASK	238, 241, 242	Trigger on Time Interval	48
SUPPORTED	255	Schedule ID	45
TCPIP_PORT	176	Schedule Name	46
USER	255	Schedule Option	46
PWR OUT terminal	288	defaults	46
Rainflow Cycle Counting	76	Schedule Options	93
References	65	"A:"	46
Relay	_	"B:"	46
Contact Closure Inputs	333, 335, 345	Alarm Size	46
DT80 Relay Output	33, 335	Alarm Width	46

Data Size	46	/R	24
NOV	46	/S	56
OV	46	/T	26
Schedule Trigger	47	/U	26, 275, 402
SDI-12	22, 43, 346, 416	/Z	82
Self heating	375	Synchronizing to Midnight	56, 74, 261
Serial Channel	22, 43, 50, 411	System Timer (ST)	35
Baud Rate	202	System Variable (SV)	36
Control String	352, 358	System Variables	
Flow Control	202	01SV	94
Input Action	352, 356	03SV	94
Loopback	361	11SV	42, 316
Output Action	352, 354	25SV	206
Return Value	357	30SV	94
Terminals	361	32SV	94
Serial Sensor Direct Mode	360	53SV	94
Serial sensor port	32, 176, 298, 364	TCP/IP 122, 176, 183,	187, 208, 271, 364, 387, 416
Serial Sensor Port	199, 263, 386	Temperature	283, 383
settings	201	Thermistor	32, 318
Session	227	Thermocouple	31, 315, 407, 417
Diagnostics	232	Units	31, 44, 73, 260, 261
Settings	228	Unload	See Retrieving Logged Data
Single quotes	82	URI	417
Sleep Mode	297	USB	188
Digital I/O	340, 343	USB memory device	25, 112
Ethernet	255	USB port	196
Forced Sleep	298	USER.INI	111
RS-232	197, 199	Vibrating Wire Strain Gaug	e 325
Settings	259, 298	Voltage	300, 383
USB	195	Web Interface	122
Wake Events	298	Browser Requirements	124, 168
SMS	84, 232	Classic	168
Spans	See Channel Options: Sn	Command window	163, 166
Statistics	39, 43, 53, 73	Customising	165, 171
Strain Gauge	383	Enhanced	124
Subnet Mask	209	Flash Player	124
Switches	261, 271, 416	Help	164, 166
/C	26	Mimics	155, 167
/E	18, 187	SSI Directives	171
/F	57	Status Screens	150
/H	26	Unloading Data	152
/K	376	whitespace	417
/M	402	WK terminal	298, 335
/N	26		