

Charge variant analysis of cysteine-linked antibody-drug conjugates using an online multiple heart-cut 2D-SCX-SEC-LC HRAM MS approach

Authors

Xuepu Li¹, Xiaoxi Zhang¹, Maria Grübner², Min Du³, Frank Steiner²;

¹Thermo Fisher Scientific, Shanghai, China; ²Thermo Fisher Scientific, Germering, Germany;

³Thermo Fisher Scientific, Lexington, MA. USA

Keywords

Polatuzumab vedotin, cysteine-linked antibody-drug conjugates (ADCs), charge heterogeneity, multiple heart-cut 2D-LC, strong cation exchange (SCX), size exclusion chromatography (SEC), Orbitrap Exploris 240 mass spectrometer, Chromeleon CDS, BioPharma Finder software

Application benefits

- The online multiple heart-cut two-dimensional liquid chromatography (2D-LC) system provides an efficient approach for in-depth charge heterogeneity characterization of cysteine-linked antibody-drug conjugates.
- The 250 µL fractionation loops offer adjustable fraction volumes in the first dimension.
- The backflush system sharpens the size exclusion chromatography (SEC) peak in the second dimension and improves sensitivity.
- The high sensitivity of the Thermo Scientific™ Orbitrap Exploris™ 240 Mass Spectrometer allows for the identification of low-abundance charge variants

Goal

Analyze the charge heterogeneity of polatuzumab vedotin under native conditions using 2D-LC coupled with high-resolution accurate-mass mass spectrometry (HRAM MS).

Introduction

Antibody-drug conjugates (ADCs) are a rapidly emerging class of biotherapeutics used to treat cancer and autoimmune diseases. ADCs typically comprise a monoclonal antibody (mAb) covalently linked to a cytotoxic drug via a chemical linker. This design leverages the precise selectivity of antibodies to deliver cytotoxic agents directly to targeted cells. Charge heterogeneity is a critical quality attribute of ADCs, impacting

thermo scientific

the product quality, safety, stability, and efficacy. Regulatory agencies require detailed characterization of charge variants as part of ADC quality control and assurance. In addition to the heterogeneity of the naked mAb arising from post-translational modifications (PTMs), amino acid substitutions, and other biochemical processes, the process of linker-payload conjugation introduces additional charge heterogeneity to ADC molecules. Consequently, analyzing charge heterogeneity in ADCs presents significant challenges in their characterization.

Cation exchange chromatography is commonly utilized to separate charge variants and can be performed with either salt or pH gradients. The pH gradient method, facilitated by commercially available pH gradient buffers such as Thermo Scientific™ CX-1 pH Gradient Buffers, has emerged as a preferred technique over the conventional salt gradient method. These buffer systems streamline method development by providing generic, rapid, reproducible, linear pH gradients suitable for mAbs and ADCs with different isoelectric points (pl).1 To characterize the ADCs after the liquid chromatography (LC) separation, mass spectrometry is the most widely used technique. However, commercially available buffers are usually not MS-compatible, limiting their use in MS-based characterization. Online 2D-LC addresses this by enabling desalting in the second dimension (2D) and offering multi-attribute analysis in one method.

In this application note, we introduce an online multiple heart-cut 2D strong cation exchange (SCX)-SEC-HRAM MS system

for characterizing the charge heterogeneity of polatuzumab vedotin, a cysteine-linked ADC marketed as Polivy™, developed by Genentech. This system integrates a Thermo Scientific™ Vanquish™ Online 2D-LC System with an Orbitrap Exploris 240 mass spectrometer. Figure 1 provides an overview of the experimental study design. The CX-1 pH gradient buffer and Thermo Scientific™ ProPac™ 3R SCX Column were used in the first dimension (¹D) to effectively separate charge variants. Then, the ¹D peaks were cut into the sample loops based on VWD and were eluted to ²D SEC separation for the HRAM-MS characterization. To remove the salts introduced from the ¹D and maintain the ADCs in their native state. SEC with the MScompatible salt ammonium acetate was used in the ²D. This approach prevents the disruption of non-covalent interactions in cysteine-linked ADCs, which can occur when reversedphase (RP) chromatography is applied for desalting in the ²D. ensuring the analysis of intact ADCs. The fluidic setup of the system (Figure 2A) enables the backflush of fractions to minimize sample dispersion in the fractionation loops and enhance peak shape and sensitivity in the ²D, as there is no refocusing at the column head for SEC separation. The Orbitrap Exploris 240 mass spectrometer offers high sensitivity, high resolution, and high mass accuracy, facilitating the identification of all the charge variants, even those present at very low abundance. By integrating multiple separation techniques into a single workflow, this system enhances analytical efficiency and provides comprehensive insights into charge heterogeneity-related PTMs of polatuzumab vedotin for quality assessment.

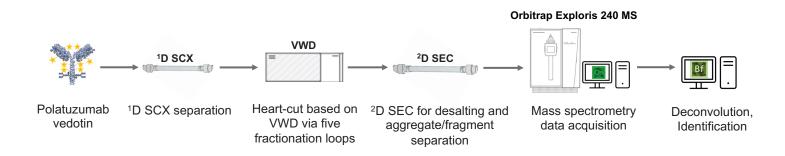


Figure 1. Overview of the experimental study design for polatuzumab vedotin charge variant analysis using the online multiple heart-cutb2D SCX-SEC-LC HRAM MS approach.

Experimental

Chemicals

Chemical name	Cat. No.
Deionized water with 18.2 MΩ·cm resistivity or higher, purified by a Thermo Scientific™ Barnstead™ GenPure™ Pro Water Purification System	50131948
Thermo Scientific™ CX-1 pH Gradient Buffer A, 10X concentrate	302779
Thermo Scientific™ CX-1 pH Gradient Buffer B, 10X concentrate	302780
Fisher Chemical™, Ammonium acetate, Optima™ LC-MS grade	A11450

Sample handling

Item name	Cat. No.
Thermo Scientific™ SureSTART™ 2 mL Polypropylene Screw Top Microvials	6ESV9-04PP
Thermo Scientific™ SureSTART™ 9 mm Vial Caps with Septum	6ASC9ST1
Thermo Scientific™ Sorvall™ Legend™ Micro 21R Microcentrifuge	75002545
Thermo Scientific™ Finnpipette™ F3 Variable Volume Single Channel Pipettes	4640030, 4640040, 4640050, 4640060

Sample preparation

Polatuzumab vedotin solution with a protein concentration of 4.2 mg/mL in water was provided by one of our customers and used directly in the experiment.

Instrumentation

A Vanquish Flex Simple Switch 2D-LC system for multiple heart-cut was used, enabling the collection of up to five fractions from a ¹D separation and the transfer to ²D separation. The fluidic setup is depicted in Figure 2.

Liquid chromatography

Module	Cat. No.
Thermo Scientific™ Vanquish™ 2D UHPLC System consisting of:	
Thermo Scientific™ Vanquish™ System Base	VF-S01-A-02
Thermo Scientific™ Vanquish™ Binary Pump F (¹D pump)	VF-P10-A-01
Thermo Scientific™ Vanquish™ Quaternary Pump F (²D pump)	VF-P20-A
Thermo Scientific™ Vanquish™ Dual Split Sampler F	VF-A40-A-02
Thermo Scientific™ Vanquish™ Column Compartment H ×2	VH-C10-A-03
Thermo Scientific™ Vanquish™ Variable Wavelength Detector ×2	VF-D40-A
Thermo Scientific™ Vanquish™ Switching Valves, 2-position/6-port 150 MPa bio ×2	6036.2520
Thermo Scientific™ Vanquish™ Switching Valves, 6-position/7-port 150 MPa bio ×2	6036.2530
Thermo Scientific™ Vanquish™ Viper Fractionation Loop, MP35N, 250 μL ×6	6823.0030

Chromatographic conditions

The chromatographic conditions are listed in Tables 1-3.

Table 1. ¹D chromatographic conditions.

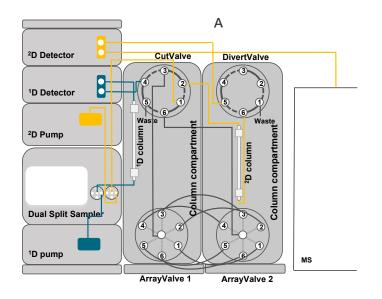

Column	ProPac 3R SCX column, 100 × 4 mm, 3 μm (Cat. No. 43103-104068)
Mobile phase	A: CX-1 pH gradient buffer A (10-fold diluted) B: CX-1 pH gradient buffer B (10-fold diluted)
Column temperature	40°C
Autosampler temperature	4°C
Autosampler wash solvent	10% MeOH in water
Injection volume	10 µL for method optimization and system setup 20 µL for charge heterogeneity characterization
Detector	280 nm, 0.2 Hz

Table 2. ²D chromatographic conditions.

Calvern	Thermo Scientific™ MAbPac™ SEC-1 Column,
Column	300×4 mm, 5 μ m (Cat. No. 074696)
Mobile phase	100 mM ammonium acetate
Column temperature	30°C
Autosampler temperature	4°C
Autosampler wash solvent	10% MeOH in water
Injection volume	¹ D fraction volume
Detector	280 nm, 0.2 Hz

Table 3. Gradient and column switching valve position.

Table 3. Gradient and column swite	ching valve position.							
Fractio	n collection from S	CX						
	Time (min)	А	В					
	0	100	0					
	2	100	0					
	2.1	95	5					
¹ D pump gradient	32	50	50					
	33	0	100					
	35	0	100					
	36	100	0					
	41	100	0					
¹ D pump flow rate 0.3 mL/min								
² D pump gradient	ent Isocratic elution, 41 min							
² D pump flow rate	o flow rate 0.10 mL/min							
Column switching valve position	CutValve: 1–2 DivertValve: 1–6 ArrayValves: Triggered by the valve switching time set in the ¹ D							
SEC separat	ion and MS data ac	quisition						
¹ D pump gradient	Isocratic elution with	n 100% A, 30 mi	in					
¹ D pump flow rate	0.10 mL/min							
² D pump gradient	Isocratic elution, 30	min						
² D pump flow rate	0.12 mL/min							
Column switching valve position	ition CutValve: 1–6 DivertValve: 0–10 min (1–6); 10–25.5 min (1–2); 25.5–30 min (1–6) ArrayValves: Corresponding to the fractionation loop that was eluted into the ² D							

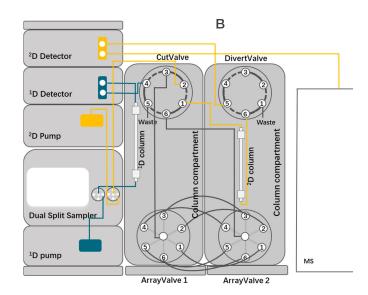


Figure 2. Fluidic scheme of multiple heart-cut 2D-LC-HRAM MS setup for (A) backflush and (B) forward flush. The 250 μ L fractionation loops combined with the backflush system offer adjustable fraction volumes in the ¹D and sharpen the SEC peaks in the ²D.

Mass spectrometry

System	Cat. No.
Orbitrap Exploris 240 mass spectrometer	BRE725535
BioPharma Option (factory installed)	BRE725539

Table 4. Instrument and scan settings for the mass spectrometer.

Parameters	Value/settings
Spray voltage: Positive ion (V)	3,800
Sheath gas (Arb)	35
Aux gas (Arb)	10
Ion transfer tube temp. (°C)	250
Vaporizer temp. (°C)	175
Orbitrap resolution	60,000
Microscans	10
AGC target	Custom
Normalized AGC target (%)	300
RF lens (%)	200
Maximum injection time mode	Custom
Data type	Profile
Source fragmentation (eV)	120
Intact protein mode	High pressure

Software

The Thermo Scientific™ Chromeleon™ Chromatography Data System (CDS) version 7.3.2 was used for instrument control, data acquisition, and UHPLC data analysis. Thermo Scientific™ BioPharma Finder™ Software version 5.3 was used for HRAM MS data deconvolution and analysis (Table 5).

Table 5. Deconvolution parameter settings used in the BioPharma Finder software.

Parameter	Value
Algorithms	Respect™ (for isotopically unresolved spectra) with Sliding Windows algorithm.²
<i>m/z</i> range	5,000-7,000
RT range	17.8–25 min
Target avg. spectrum width	0.2 min
Target avg. spectrum offset	1
Merge tolerance	30 ppm
Max. RT gap	1 min
Min. number of detected intervals	3
Output mass range	145,000-160,000
Model mass range	145,000-160,000
Charge state range	5–100
Minimum adjacent charges	4–4
Deconvolution mass tolerance	15 ppm
Target mass	160,000

Results and discussion

Multiple heart-cut 2D-LC-MS system setup

The multiple heart-cut 2D-LC-MS system was configured based on our previously published application note for infliximab charge variants characterization, which provides detailed information regarding the fluidic connections, hardware configuration, and instrument control.3 In this study, the RP method in the 2D was replaced by SEC to benefit from the native conditions and to remove salts introduced from the ¹D and provide orthogonal separation for the ADCs under the native state. For cysteinelinked ADCs, the interchain disulfide bonds in the mAb are reduced for conjugation. The heavy and light chains are held together by non-covalent interactions, which may separate under the high organic solvent conditions in RPLC. Figure 2A depicts the fluidic scheme. The ¹D SCX peaks were collected and stored in up to five 250 µL fractionation loops with the aid of one 2-position/6-port (2-p/6-p) valve (CutValve) and two 6-position/7-port (6-p/7-p) valves (ArrayValves). After the ¹D separation was completed, the fractions were successively collected and stored in the fractionation loops. The fractions were then transferred to the SEC stationary phase under

aqueous conditions one by one. The detection in the ²D was toggled between UV-MS and waste by the second 2-p/6-p valve (DivertValve) to avoid nonvolatile salts being eluted to the MS.

The fractionation loops employed in this 2D-LC system offer flexible ¹D fraction volumes up to 250 µL but can also contribute to the dispersion of fractions in the loops when the fraction volume is less than 250 µL. To minimize this dispersion effect, the fluidic connections at the CutValve were set up in a way to enable reverse flow directions in the loops for fraction loading by the ¹D and fraction transfer to the ²D (backflush, Figure 2A). This can significantly sharpen the SEC peaks in the ²D, as the peak shape in SEC is highly affected by the injection volume.⁴ The benefits of the backflush fraction transfer, compared to forward flush, are illustrated in Figure 3 for three ¹D SCX peaks (main, acidic, and basic peak). The UHPLC conditions for this test are listed in Tables 1 to 3. After implementing the backflush, sharper SEC peaks were detected, and the sensitivity increased. This improvement was particularly noticeable for small-volume SEC columns (data not shown here).

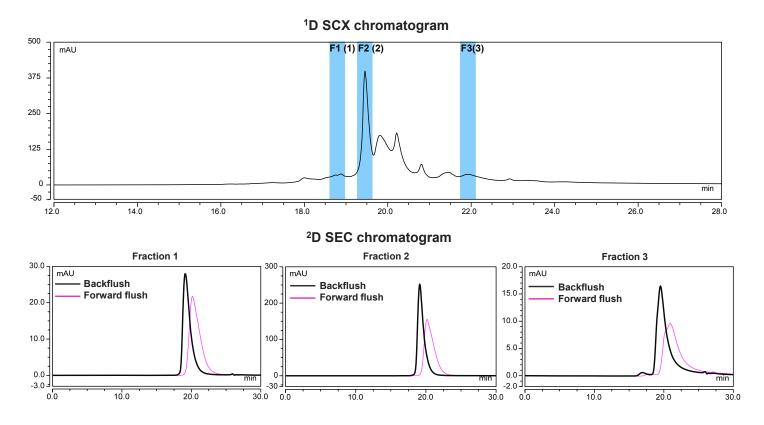


Figure 3. The ¹D SCX (top) and ²D SEC UV chromatograms (bottom) for three fractions, with a fraction volume of 105 μL from ¹D, demonstrating significant improvements in peak shape and sensitivity when fractions were transferred in backflush mode compared to forward flush.

Method optimization

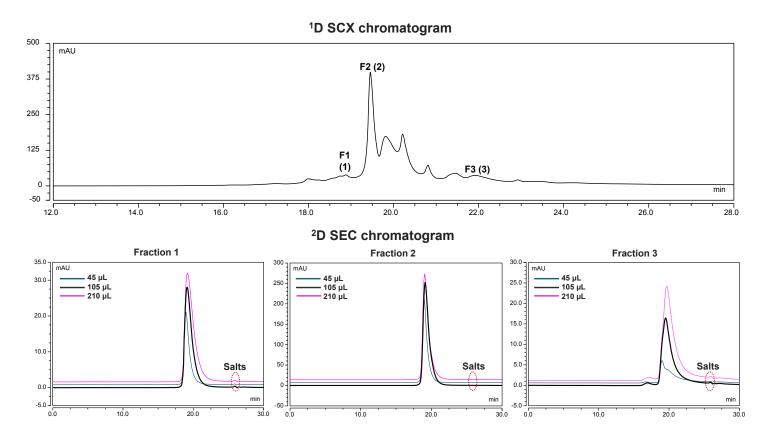
The objective of the 2D-LC-MS application was to characterize the charge heterogeneity of polatuzumab vedotin using the CX-1 pH gradient buffer. For the 1D analysis, a ProPac 3R SCX column with a dimension of 100×4 mm, 3 μm was used. This size allows for the loading of a substantial sample amount, which is particularly advantageous for analyzing charge variants with very low abundance. The 1D gradient was optimized under LC-UV conditions; the final parameters are detailed in Table 3. The 2D analysis was primarily aimed at the desalting of 1D fractions. Several SEC column dimensions were evaluated for the 2D analysis, including 50 \times 2.1 mm (3 μ m), 150 \times 2.1 mm (5 μ m), and 300 \times 4.0 mm (5 μ m). The results indicated that the 300 \times 4.0 mm column provides the best peak shapes and separation for the salts and ADCs.

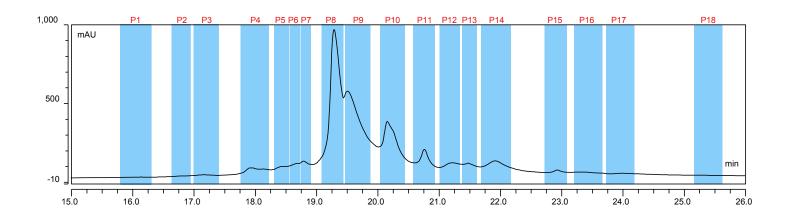
The influence of fraction volume from the ¹D analysis was also studied. While larger fraction volumes can enhance signal intensity in the ²D and ensure comprehensive ¹D peak coverage, thereby preventing the loss of early or late coeluted peak information, this may also cause peak broadening in the ²D SEC,

potentially resulting in inadequate separation from salts. Fraction volumes of 45 μ L, 105 μ L, and 210 μ L for three peaks were investigated, and the results are shown in Figure 4. Although the SEC peaks broadened with increasing fraction volume, the separation remained adequate with a fraction volume of 210 μ L when the 300 \times 4.0 mm SEC column was used. Utilizing a 210 μ L fraction volume, the fraction collection time translated into 0.70 min, ensuring the transfer of the entire ¹D peak to the ²D.

²D charge heterogeneity characterization of polatuzumab vedotin

In the 1D chromatogram, 18 peaks were separated and subsequently transferred to the 2D system for the native intact mass analysis. Four injection cycles were conducted. For the first three injections, five fractions were collected and transferred for each cycle. For the fourth injection, three fractions were collected. Fraction volumes were determined based on the peak width, ranging from 48 μL (0.16 min width) to 150 μL (0.5 min width), as listed in Figure 5. Relative abundances of the separated charge variants were calculated by their 1D peak areas.




Figure 4. The 1D SCX (top) and 2D SEC UV chromatograms (bottom) of three different fractions, with fraction volumes of 45 μ L, 105 μ L, and 210 μ L, collected from 1D . Despite SEC peaks being broadened with increasing fraction volume, separation of protein and salts remained adequate with a fraction volume of 210 μ L when the 300 \times 4.0 mm SEC column was used.

After acquiring the MS data using Chromeleon CDS, raw data were exported and spectra deconvolution was performed using the ReSpect™ algorithm for isotopically unresolved spectra within BioPharma Finder software, applying deconvolution parameters as detailed in Table 5. The results indicate that payload conjugation altered the surface charge of the mAbs, allowing ADCs with different drug-to-antibody ratio (DAR) to be separated in the SCX chromatogram. For example, the main components in peaks 8 and 9 in ¹D were identified as DAR2 and DAR4, respectively, as shown in Figure 6. And the predominant glycosylation pattern for DAR 2 and DAR 4 was identified as A2G0F+A2G0F, along with some low-abundance forms such as A2G0F+A2G0 and A2G0F+A2G1F, demonstrating the high sensitivity of the Orbitrap Exploris 240 mass spectrometer.

Besides the payload conjugation, other modifications such as deamidation, oxidation, and lysine (Lys) truncation affect the *pl* of ADCs and were separated and identified in this method. C-terminal Lys truncation variants are commonly observed in mAbs and increase the *pl* value of the molecule, causing a later elution in SCX chromatography. Peaks 11 and 12 in Figure 7 were used to show this modification. Compared with the DAR2 isoform

detected in peak 8 and the DAR4 isoform detected in peak 9, the average mass of the main components detected in peaks 11 and 12 showed a mass shift of 128 Da in Figure 7C and Figure 7F, indicative of a Lys truncation. Additionally, the Lys truncation variants were separated and identified with a DAR $_{\rm n}$ + 1 Lys and DAR $_{\rm n+2}$ + 0 Lys pattern in polatuzumab vedotin. DAR2+1 Lys and DAR4, DAR4+1 Lys with a minor amount of DAR6 and DAR2 were identified in peak 11 and 12, respectively. This lysine truncation modification was also identified for the subsequent SCX peaks 13, 15, 16, 17, and 18, and the DAR $_{\rm n}$ + 1 Lys and DAR $_{\rm n+2}$ + 0 Lys pattern was found in peaks 13 and 17.

The high sensitivity of the Orbitrap Exploris 240 mass spectrometer allows for the identification of charge variants even when they are present at very low abundance levels. As illustrated in Figure 8, peak 18, which has an abundance of merely 0.43% as detected by the UV, still exhibits a high signal-to-noise ratio (S/N) in the raw mass spectra. This high S/N of raw data facilitated the generation of a deconvoluted mass spectrum that allows for precise identification of peak 18. The analysis determined that peak 18 is a composite of DAR4, DAR6, DAR8, DAR6 + 2 Lys, and DAR8 + 2 Lys.

Peak no.	Relative abundance (%)	Fraction volume (µL)	Peak no.	Relative abundance (%)	Fraction volume (μL)
1	0.24	150	10	11.26	120
2	0.47	90	11	5.10	105
3	0.91	120	12	4.41	99
4	4.15	135	13	2.76	69
5	2.45	72	14	6.54	135
6	1.53	48	15	1.80	105
7	2.53	51	16	1.67	135
8	27.90	105	17	1.72	135
9	24.14	120	18	0.43	135

Figure 5. A total of 18 peaks were separated in the ¹D SCX chromatogram. The relative abundance of the charge variants peaks and fraction volume that transferred to the ²D SEC separation are shown in the table.

The summary of the identified principal species for each fraction is listed in Figure 9 and Table 5. The sequential elution of the DARO, DAR2, DAR4, and DAR8 species suggests that the payload conjugation alters the surface charge of the mAbs, thereby increasing their retention on the SCX column. Additionally, deamidation and oxidation also affect the *pl* of ADCs, resulting in the formation of acidic variants, whereas Lys truncation at the C-terminus of the heavy chain leads to

the formation of basic variants. Identifying charge variants from intact mass analysis presents substantial challenges due to the multitude of potential PTMs and their combinations. Further indepth characterization can be achieved through peptide mapping experiments; however, once these variants are identified and confirmed, intact mass analysis serves as a convenient tool for monitoring the identified and confirmed variants.

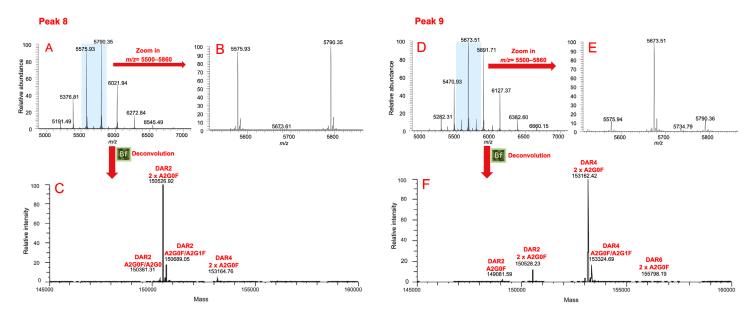


Figure 6. The full mass spectra (A and D) and deconvoluted spectra (C and F) of peak 8 and peak 9 in Figure 5. The blue shaded area in the full mass spectra indicates the location of the zoomed-in spectra to the right. The major payloads/glycoforms are labeled in the deconvolution spectra C and F. Peak 8 was identified as a mixture of DAR 2 with a minor amount of DAR 4, while peak 9 was identified as a mixture of DAR 4 with a minor amount of DAR 2 and DAR 6.

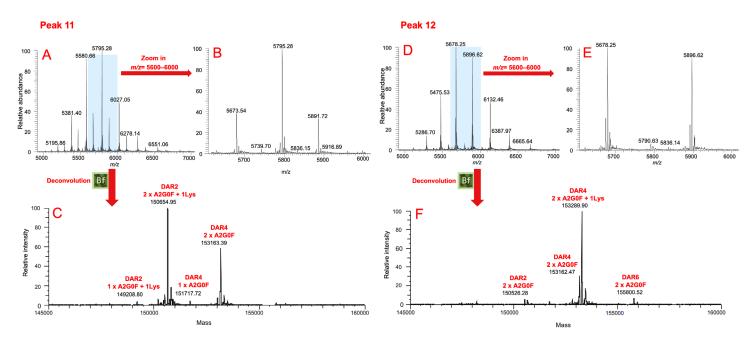


Figure 7. The full mass spectra (A and D) and deconvoluted spectra (C and F) of peak 11 and peak 12 in Figure 5. The blue shaded area in the full mass spectra indicates the location of the zoomed-in spectra to the right. The major payloads/glycoforms/PTMs were labeled in the deconvolution spectra C and F. It shows the Lys truncation variants were separated and identified with a DAR_{n+2} + 1 Lys and DAR_{n+2} + 0 Lys pattern.

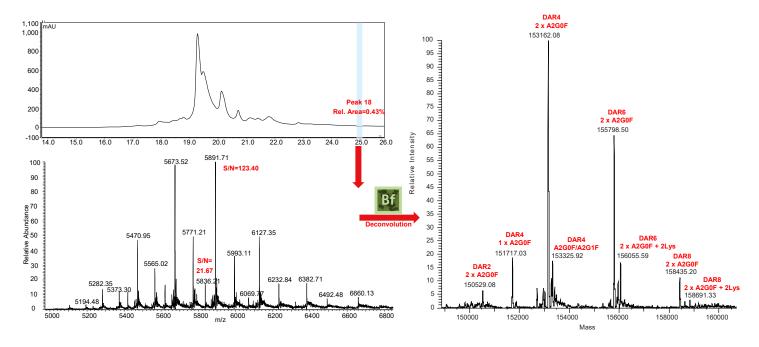


Figure 8. The ¹D UV chromatogram and ²D mass spectrum before and after deconvolution for peak 18. The identification results were labeled on the deconvolution mass spectrum.

Peak	Main species
Peak 1	DAR0 related compounds
Peak 2	DAR2 +98 Da
Peak 3	DAR2 + Oxidation, DAR2 +6 Da, DAR2+98 Da
Peak 4	DAR2 +6 Da, DAR2 +101 Da, DAR2 + Oxidation
Peak 5	DAR4 + Oxidation, DAR2+Deamidation, DAR0+Deamidation
Peak 6	DAR2+Deamidation, DAR4 + Oxidation, DAR3
Peak 7	DAR2+Deamidation, DAR4 + Deamidation, DAR0
Peak 8	DAR2
Peak 9	DAR4,DAR2
Peak 10	DAR4, DAR0
Peak 11	DAR2 + 1Lys, DAR4
Peak 12	DAR4 + 1Lys, DAR6
Peak 13	DAR4 + 1Lys, DAR0 + 1Lys, DAR2
Peak 14	DAR6, DAR4, DAR2
Peak 15	DAR4, DAR2 + 2Lys, DAR6
Peak 16	DAR4, DAR4 + 2Lys, DAR6 + 1Lys, DAR6, DAR0 + 2Lys
Peak 17	DAR4, DAR6, DAR6 + 1Lys, DAR8
Peak 18	DAR4, DAR6, DAR6 + 2Lys, DAR8, DAR8 + 2Lys

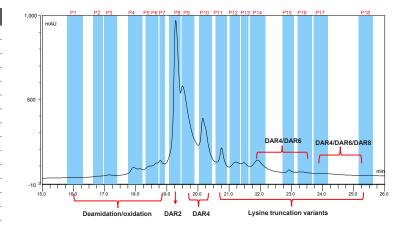


Figure 9. The left table summarizes the main species identified for all charge variant peaks, and the SCX chromatogram shows how the DAR value and modifications affected the SCX separation. Deamidation and oxidation result in acidic variants, while Lys truncation at the C-terminus leads to basic variants. Increased payload conjugation increases retention on the SCX column.

Table 5. Summary of all deconvoluted masses obtained for the main species and identification assignment for all the charge variant peaks.

¹ D peak (fractional area)*	Payload	Glycoform	Modification	Average mass (Da)	Mass accuracy (ppm)	Mass accuracy (Da)	¹ D peak (fractional area)	Payload	Glycoform	Modification	Average mass (Da)	Mass accuracy (ppm)	Mass accuracy (Da)
P1 (0.24%)	0	2*A2G0F	+ 446Da	148336.12	-	-		4	2*A2G0F	+ 1 Lys	153290.84	-12.53	-1.92
P2 (0.47%)	2	2*A2G0F	+98Da	150624.32	-	-	D40 (4 440()	4	2*A2G0F	-	153161.47	-20.37	-3.12
	2	2*A2G0F	+6Da	150532.31	-	-	P12 (4.41%)	2	2*A2G0F	-	150526.90	-2.72	-0.41
P3 (0.91%)	2	2*A2G0F	+101Da	150627.35	-	-	1	6	2*A2G0F	-	155799.17	10.14	1.58
	2	2*A2G0F	+ Oxidation	150542.67	-4.18	-0.63		4	2*A2G0F	+ 1 Lys	153290.87	-12.33	-1.89
	2	2*A2G0F	+ Oxidation	150541.46			P13 (2.76%)	0	2*A2G0F	+ 1 Lys	148019.68	9.75	1.48
D4 (4 1 E0/)	2	2*A2G0F	+98Da	150624.32	-	-		2	2*A2G0F	-	150526.59	-4.78	-0.72
P4 (4.15%)	3	2*A2G0F	+604Da	152444.08	-	-		6	2*A2G0F	-	155797.59	0.00	0.00
	1	2*A2G0F	+470Da	149677.04	-	-	P14 (6.54%)	4	2*A2G0F	-	153161.32	-21.35	-3.27
	4	2*A2G0F	+ Oxidation	153179.15	-9.34	-1.43		2	2*A2G0F	-	150527.10	-1.40	-0.21
P5 (2.45%)	2	2*A2G0F	+ Deamidation	150530.54	1.37	0.21		4	2*A2G0F	-	153161.90	-17.56	-2.69
	0	2*A2G0F	+ Deamidation	147892.70	4.49	0.66	P15 (1.80%)	2	2*A2G0F	+ 2 Lys	150783.51	-0.93	-0.14
	2	2*A2G0F	+ Deamidation	150528.61	1.94	0.29		6	2*A2G0F	-	155798.74	7.38	1.15
P6 (1.53%)	4	2*A2G0F	+ Oxidation	153177.84	-17.89	-2.74		4	2*A2G0F	-	153162.41	-14.23	-2.18
	3	2*A2G0F		151844.41	-16.79	-2.55		4	2*A2G0F	+ 2 Lys	153418.96	-12.91	-1.98
	2	2*A2G0F	+ Deamidation	150528.03	-1.91	-0.29		6	2*A2G0F	-	155798.46	5.58	0.87
P7 (2.53%)	4	2*A2G0F	+ Deamidation	153164.95	-4.30	-0.65	P16 (1.67%)	6	2*A2G0F	+ 1 Lys	155925.68	-0.51	-0.08
	0	2*A2G0F	-	147890.63	4.12	0.61	1	4	1*A2G0F	-	151717.72	3.23	0.49
D0 (07 000()	2	2*A2G0F	-	150526.92	-2.59	-0.39	1	0	2*A2G0F	+ 2 Lys	148149.03	17.96	2.66
P8 (27.90%)	4	2*A2G0F	-	153164.76	1.11	0.17		4	2*A2G0F	-	153162.58	-13.12	-2.01
	4	2*A2G0F	-	153162.42	-14.17	-2.17	1	6	2*A2G0F	-	155797.40	-1.22	-0.19
P9 (24.14%)	2	2*A2G0F	-	150528.23	6.11	0.92	P17 (1.72%)	6	2*A2G0F	+ 1 Lys	155924.15	-10.33	-1.61
	2	1*A2G0F	-	149081.59	-2.55	-0.38	1	4	1*A2G0F	-	151718.13	5.93	0.90
	4	2*A2G0F	-	153162.56	-13.25	-2.03		8	2*A2G0F	-	158433.62	16.22	2.57
P10	0	2*A2G0F	-	147891.13	7.51	1.11		4	2*A2G0F	-	153162.08	-16.39	-2.51
(11.26%)	4	1*A2G0F	-	151717.72	3.23	0.49	1	6	2*A2G0F	-	155798.50	5.84	0.91
	2	2*A2G0F	+ 1 Lys	150654.95	-3.52	-0.53		6	2*A2G0F	+ 2 Lys	156055.59	10.64	1.66
D44 (E 400)	4	2*A2G0F	-	153163.39	-7.83	-1.20	P18 (0.43%)	4	1*A2G0F	-	151717.03	-1.32	-0.20
P11 (5.10%)	4	1*A2G0F	-	151717.72	3.23	0.49		8	2*A2G0F	-	158435.20	26.19	4.15
	2	1*A2G0F	+ 1 Lys	149208.80	-8.83	-1.34	1	8	2*A2G0F	+ 2 Lys	158691.33	24.83	3.94

Conclusions

In this study, an online multiple heart-cut SCX-SEC-HRAM MS system was configured and optimized for the characterization of charge heterogeneity in polatuzumab vedotin. This approach provides detailed and comprehensive insights into charge heterogeneity-related PTMs of polatuzumab vedotin under native conditions.

- The online multiple heart-cut 2D-LC system enables the direct transfer of SCX fractions to mass spectrometric analysis by utilizing SEC as a desalting step, thereby overcoming the incompatibility of CX-1 buffer with MS.
- The backflush transfer of fractions was employed to enhance peak shape and sensitivity in the ²D SEC separation.
- The ²D SEC-MS analysis enables the identification of charge heterogeneity of ADCs under native conditions.
- The high sensitivity of the Orbitrap Exploris 240 MS and the straightforward workflow in BioPharma Finder software allow for the accurate identification of all fractions even at very low abundance levels.

References

- Lin, S. et al, Thermo Fisher Scientific Application Note 20784. A novel pH gradient separation platform for monoclonal antibody (mAb) charge variant analysis. https://assets.thermofisher.cn/TFS-Assets/CMD/Application-Notes/an-20784-gradient-separation-platform-mab-an20784-en.pdf
- Millán-Martín, S., et al, Optimisation of the use of sliding window deconvolution for comprehensive characterisation of trastuzumab and adalimumab charge variants by native high resolution mass spectrometry, European Journal of Pharmaceutics and Biopharmaceutics 2021, https:// doi.org/10.1016/j.ejpb.2020.11.006
- Grübner, M. et al, Thermo Fisher Scientific Application Note 001938. Intact
 mass analysis of monoclonal antibody charge variants by multi heart-cut
 2D-LC/MS coupling ion-exchange and reversed-phase chromatography.
 https://assets.thermofisher.cn/TFS-Assets/CMD/Application-Notes/
 an-001938-hplc-multi-heart-cut-2dlc-ms-monoclonal-antibodyan001938-en.pdf
- Ehkirch, A., et al, An online four-dimensional HIC× SEC-IM× MS methodology for proof-of-concept characterization of antibody drug conjugates, *Analytical chemistry* 2018, https://doi.org/10.1021/acs. analchem.7b02110

Learn more at thermofisher.com/vanquish

General Laboratory Equipment – Not For Diagnostic Procedures. © 2025 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. Polivy is a trademark of Genentech USA, Inc. ReSpect is a trademark of Positive Probability Ltd. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. AN004167-1125S

