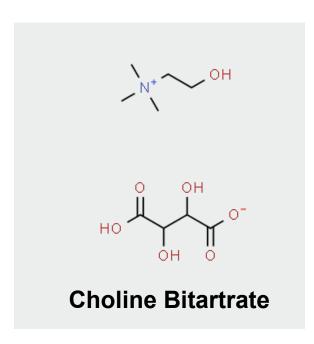


Thermo Fisher S C I E N T I F I C

Quality Control of Choline as a Dietary Supplement by Liquid Chromatography Coupled to a Charged Aerosol Detector

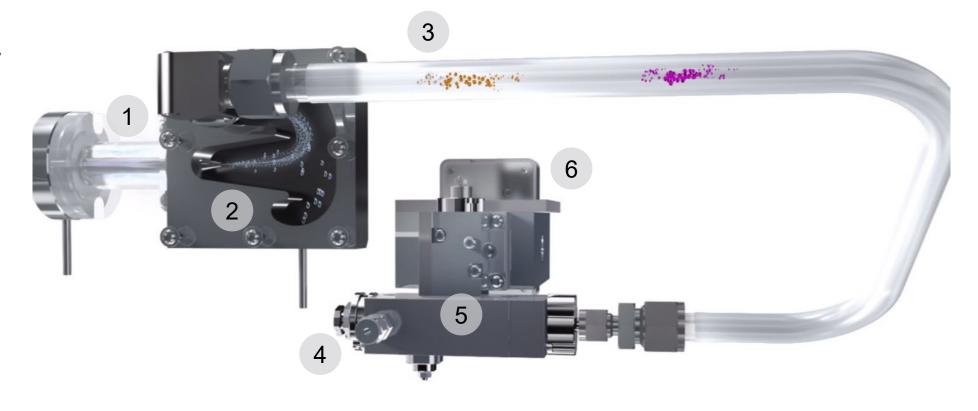
Katherine Lovejoy, Susanne Fabel and <u>Paul Gamache</u> Pittcon March 1, 2020, Chicago, IL, USA


Topics

- Choline as dietary supplement
- Analytical considerations
- Mixed-mode chromatography with charged aerosol detection
- Results

Choline as Dietary Supplement

- Essential nutrient involved in cell membrane integrity, lipid transport and metabolism, neurotransmission, etc.
- Food sources include animal-based products, beans and nuts
 - Free choline, phosphocholine and phosphatidylcholine (lecithin)
- Most people in US consume less than the amount considered to be necessary to ensure nutritional adequacy
- Use of dietary supplements is common
- Quality testing needed to ensure safety and effectiveness


Choline – Analytical Considerations

- Polar; cation and anions
- Weak or non-chromophores
- Goal = single method with direct detection (no derivatization)
 - Mixed mode (zwitterionic operated in HILIC mode)
 - Universal detection Charged aerosol detector (CAD)
 - MS-compatible method

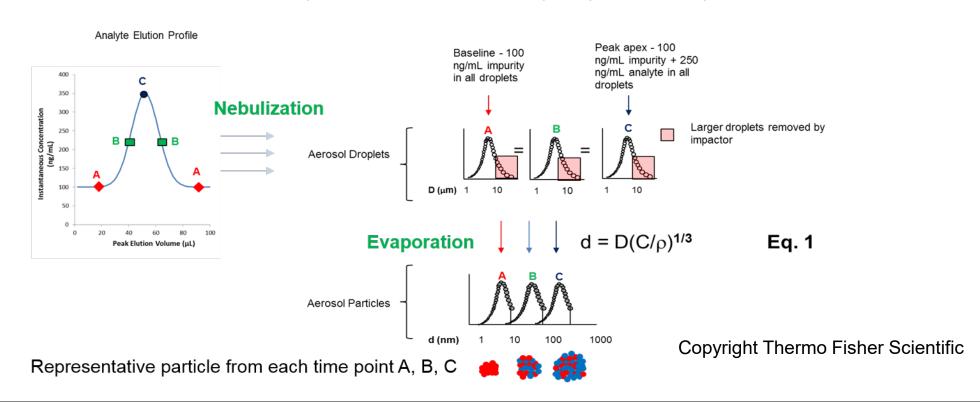
Charged Aerosol Detection

- 1 Concentric Nebulizer
- 2 Spray Chamber
- 3 Evaporation Tube
- 4 Corona Charger
- 5 Mixing Chamber
- 6 Electrometer

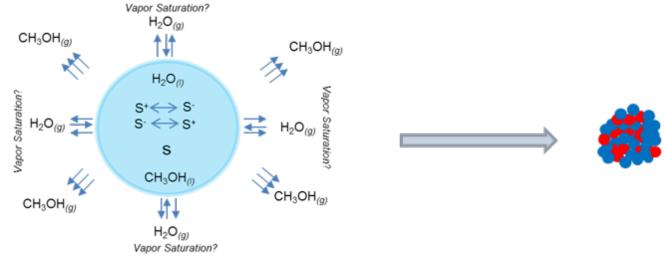
High analyte concentration droplet

Larger dried particle

Low analyte concentration droplet



Smaller dried particle


Spray Drying during Analyte Elution

- Droplet distribution ~ constant in isocratic conditions, changes during solvent gradients
- Diameter of each dried particle (d) depends on its initial droplet diameter (D) and its mass concentration (C) of non-volatile solute, corrected for 'bulk' density (ρ)
- Each dried particle consists of many molecules of: analyte (if present) + impurities

Ionized Analytes

- Mobile Phase Additives (e.g., pH modifiers, buffers)
 - Ionic, typically at higher concentration than analytes
- Interactions between oppositely charged species are enhanced as droplets shrink during evaporation
- Ionic analytes exist as salt form within dried aerosol particles

Copyright Thermo Fisher Scientific

Charged Aerosol Detection

Column: Thermo Scientific

Acclaim Trinity P1, 3 µm

Dimensions: 3.0 x 50 mm Mobile Phase: 60/15/25 v/v/v

CH₃CN

0.1 M NH₄OAc, pH 5.2

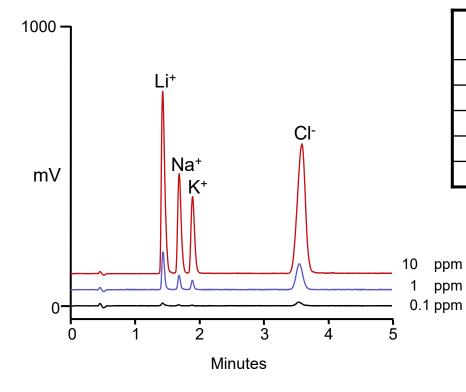
D.I. H₂O

Temperature: 30 °C

Flow Rate: 0.6 mL/min

Inj. Volume: 5 μL

Detection: Corona™ ultra CAD


(nebulizer – 35 °C;

nitrogen – 35 psi;

filter - off)

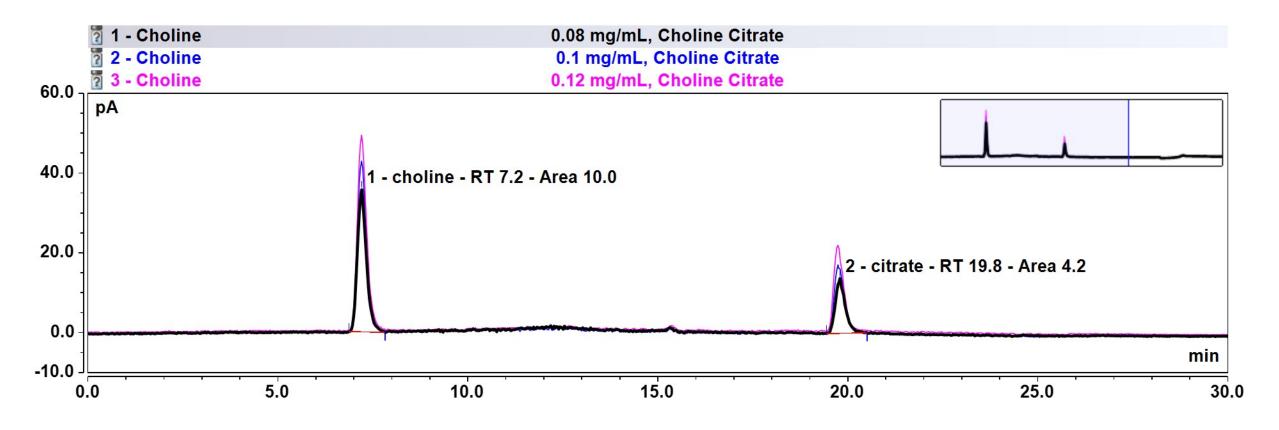
Sample: Chloride salts dissolved in

D.I. H₂O

Concentration (ppm)	Li ⁺ (S/N)	Na ⁺ (S/N)	K ⁺ (S/N)
10	672	367	470
1	201	75	49
0.1	15	5.5	3
LOD (S/N = 3)	0.1 ng	0.3 ng	0.5 ng
LOQ (S/N = 10)	0.33 ng	1.0 ng	1.7 ng

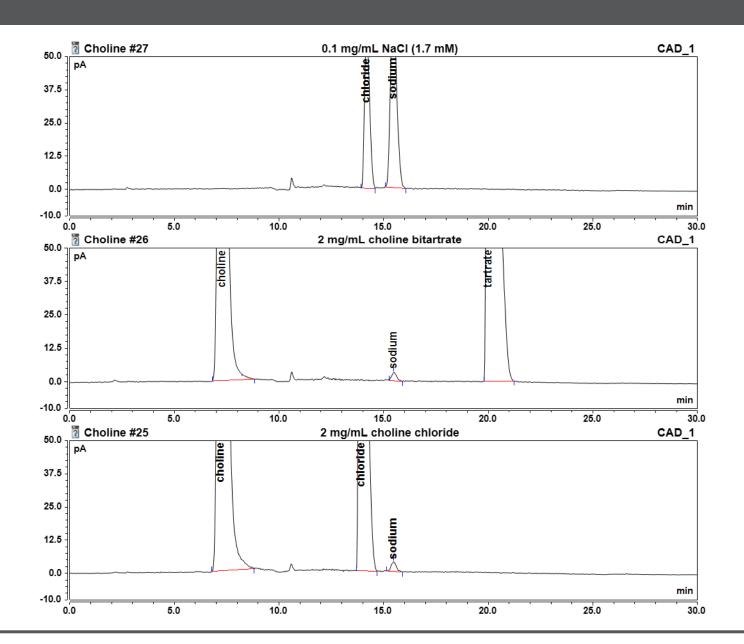
Typically sub-ng to low ng limits of detection

Instrument Method

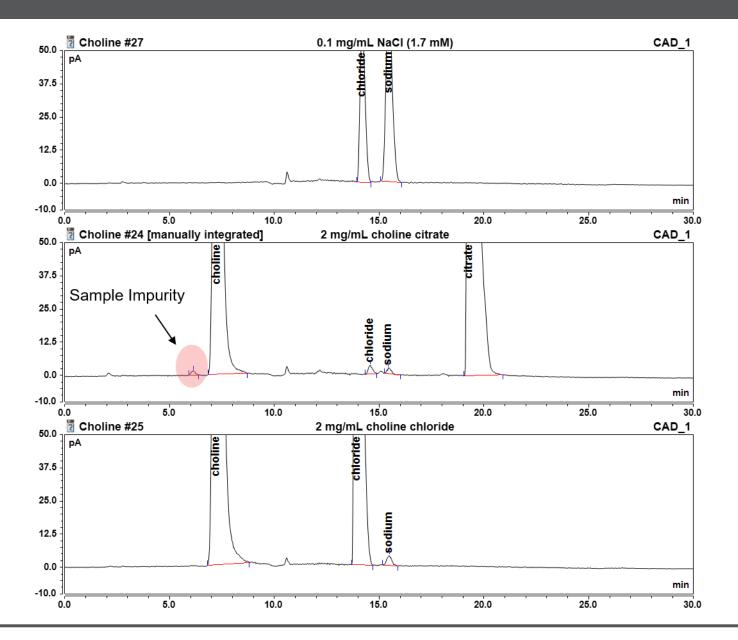

Parameter	Setting
Column	Zwitterionic HILIC*
Elution	Acetonitrile - aqueous ammonium acetate gradient*
Injection Volume	10 µL
Flow Rate	0.5 mL/min
Sample Diluent	Buffer and acetonitrile (30/70 v/v)
Column Temp.	30 °C still air mode, active preheater
Autosampler Temp.	10 °C
Detector	Vanquish Flex Charged Aerosol Detector (same as Corona Veo CAD)
	Filter Constant: 3.6 s
	Evaporator Temperature: 35 °C
	Data Collection Rate: 10 Hz
	Power Function Value: 1.00

^{*} Details to be published in USP Pharmacopeial Forum (PF Online)

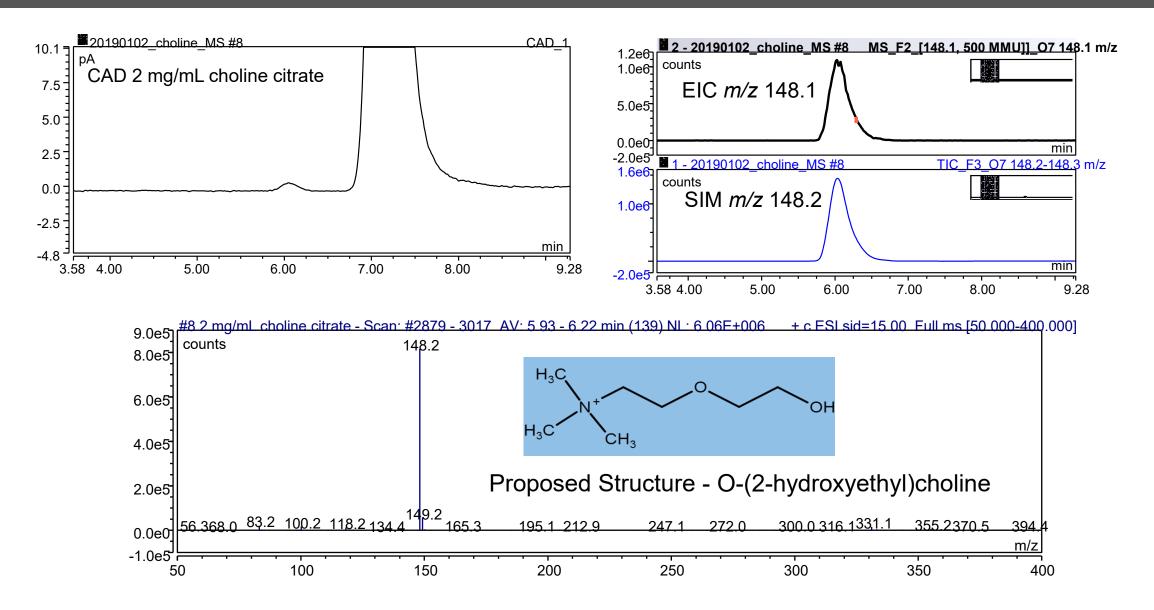
Thermo Scientific™ Vanquish™ UHPLC System with CAD


Choline Citrate

- Choline detected as acetate salt
- Citrate detected as ammonium salt


Impurities and Artifacts

- Sodium present in choline bitartrate and choline chloride samples
- Identified based on RT using standards
- Observed in blank when using glass sample vials
- Plastic containers to minimize
- Sodium detected as acetate salt
- Chloride detected as ammonium salt
 - Without ammonium additive, chloride is not detected by CAD (HCl is too volatile)



Impurities and Artifacts

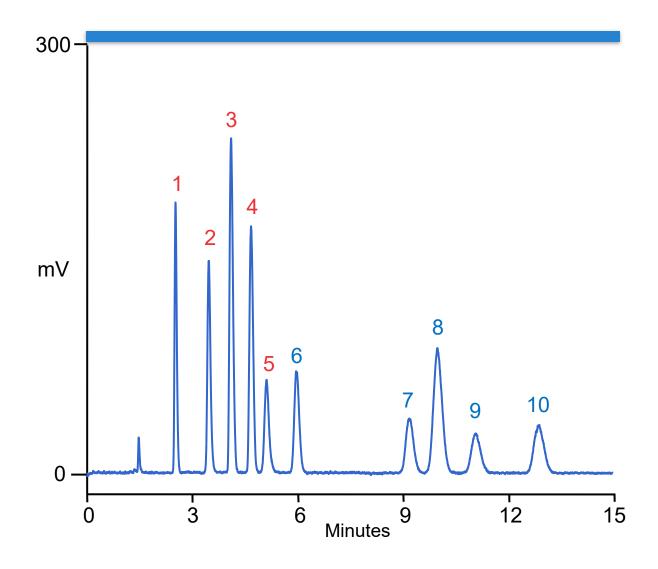
- Sodium and chloride in choline citrate sample
- Sodium in choline chloride sample
- Sample impurity in choline citrate sample (RT ~ 6.0)
 - Studied using flow split to Thermo
 Scientific™ Vanquish™ ISQ EM Single
 Quadrupole Mass Spectrometer

MS Data for Choline Citrate Sample Impurity RT ~ 6 min

Choline Citrate Validation Summary

Choline Citrate				
Parameter	Choline - Day 1, 2	Citrate - Day 1, 2		
Precision 0.1 mg/mL (% RSD, n = 6)	1.83, 1.23	1.33, 1.76		
Linearity (r ²) (0.08, 0.1 and 0.12 mg/mL)	0.99997, 0.99784	0.99778, 0.99918		
Recovery (%) at level:				
80%	98.3, 100.2	94.2, 105.5		
100%	100.8, 99.4	98.1, 102.2		
120%	99.1, 96.7	99.8, 98.7		

Summary


- Mixed mode chromatography with CAD allows simultaneous analysis of anions and cations
- Analytes detected as salts formed with mobile phase additives
- Low or sub-ng on-column limits of detection
- Directly compatible with MS, which facilitated impurity identification
- Zwitterionic HILIC method was applied to choline citrate, choline chloride and choline bitartrate samples
- Acceptable precision, linearity and recovery obtained

Thank you

Thermo Fisher S C I E N T I F I C

Pharmaceutical-related Anions and Cations – Mixed Mode Separation

Column: Thermo Scientific™ Acclaim™ Trinity P1,

3 µm

Dimensions: 3.0 × 100 mm

Mobile Phase: 60/40 v/v CH₃CN/20 mM (total) NH₄OAc, pH5

Temperature: 30 °C

Flow Rate: 0.5 mL/min

Inj. Volume: 2 μL

Detection: Corona[®] ultra[™] (Gain = 100 pA; Filter = med;

Neb Temp = 30° C)

Peaks: (50 to 100 ppm)

1. Choline

2. Tromethamine

3. Sodium

4. Potassium

5. Meglumine

6. Mesylate

7. Nitrate

8. Chloride

9. Bromide

10. lodide

PP73732-EN 0720S