

Microwave Digestion of Organic and Inorganic Samples Including Lithium Battery Materials

Macy Harris
Applications Chemist

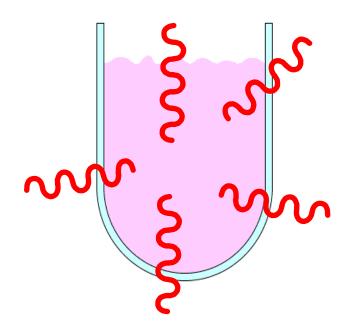
Why Do We Digest Samples?

- Its all about the analysis (ICP-OES & ICP-MS)
- Measurements take time
- Signal must stay constant during the measurement
- The analyzer needs homogeneity
- The solution is a solution...

Why Pressurized Digestion?

- Elevate acid temperatures above boiling point
- Oxidative potential of reagents is higher at elevated temperatures
- Digestion is faster and more complete
- Can use nitric acid for most oxidations
 - Super acid at 200 °C
 - Cleaner blanks because only 1 reagent
- Will not go to dryness like hot plate/block
 - No worries of analyte loss

Why Microwave?


- Rapid heat up time (instantaneous heating)
- Active control of samples
- Reproducibility of conditions
- High throughput
- Rapid cool down
- Only the sample and reagent is heated
- Energy Efficient

Microwave vs. Thermal Heating

- Thermal (Conductive) Heating
 - Energy transferred through vessel then dissipated throughout the digestion
 - Hot Plate remains on after completion of the digestion, risk of heating to dryness.

- Microwave Heating
 - Vessel wall transparent to energy
 - Direct activation of molecules in the solution
 - Localized Superheating maximizes heat transfer
 - Upon reaction completion, energy addition stops, sealed container holds sample for when you are ready to work with it.

Heating Isn't Everything

Organic Samples

- Acid Type
- Sample Size
- Heating Programs
 - Ramp to Temperature
 - Pre-Digestion
 - Hydrogen Peroxide
 - Char Step
- Digestion Vessel

Inorganic Samples

- Acids
- Sample Matrix
- Analytes of Interest
- Heating Programs
- Step-wise Approach

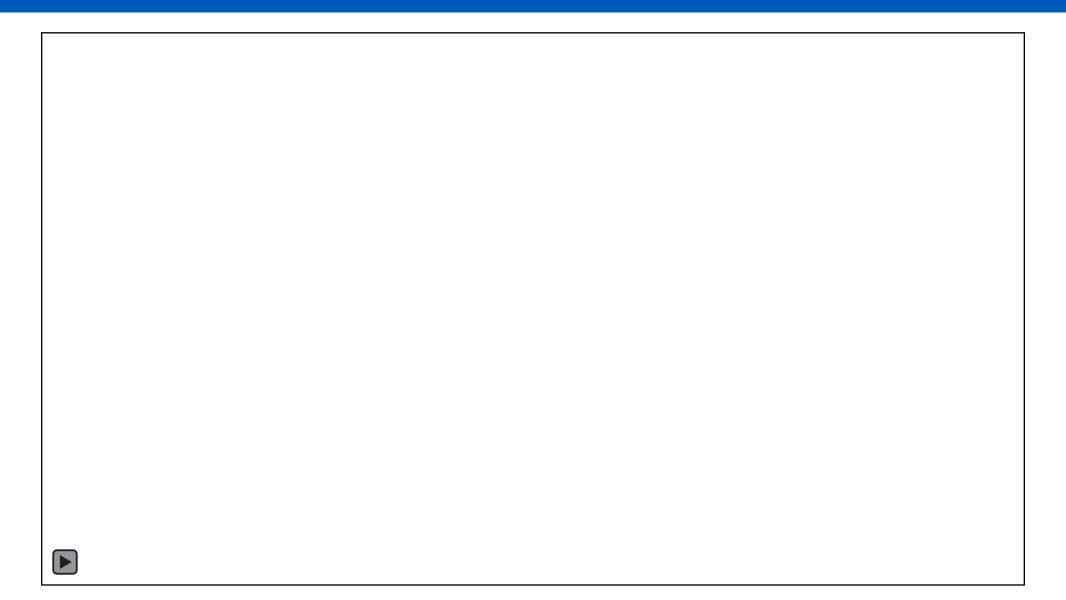
Samples

Organic Samples

- Plant and Animal Tissue
- Oil and Oily Waste
- Paint and Paint Chips
- Foods
- Nutraceuticals
- Pharmaceuticals
- Polymers
- Graphite Resins Composites

Inorganic Samples

- Soils
- Ores
- Ceramics
- Catalysts
- Metal Alloys
- Ash
- Water



Organic Digestions

- Target temperatures between 180°C and 210°C
- Start with small (0.1 g) samples and increase slowly to 0.5 g if needed
- Elevated temperatures eliminate the need for other oxidants such as peroxide and perchloric acids (less risk of contamination)
- A pre-digestion step will help prevent exothermic reactions

Predigestion

Mixed Foods

- Digest up to 40 mixed food samples
- Total digestion time 35 min
- Ready for further processing in under an hour
- Resulting digestate will be clear and colorless

Inorganic Digestions

It's all about the chemistry!

Acids

Nitric Acid

- Oxidizing acid
- Starting acid for organics
- Most nitrates are soluble
- Compatible with most analytical techniques
- Can be obtained in high purity
- May passivate certain metals (Al, Cr, Ti)

Hydrochloric Acid

- Not an oxidizing acid
- Good complexing agent
- Stabilizes Hg (can be added postdigestion)
- Useful for Fe, Al, In, Sb, Sn, Rh
- Problem with Ag precipitation as AgCl
- May interfere with ICP/MS and GFAA

Acids

Hydrofluoric Acid

- Dissolution of silicates
- F- is a powerful complexing anion (Refractory elements, Sb, Sn, Mo)
- Volatilization of Si as SiF₄
- Formation of insoluble fluorides (Group IIA, Rare Earth elements, ICP Internal Standards)
- Complex with H₃BO₃
- Safety Hazard!
- HF resistant transport systems for ICP/AA

Sulfuric Acid

- High boiling point (340°C)
- Elevation of boiling point in acid mixtures
- Strong dehydrating agent (Charring)
- Opens aromatic rings
- Formation of insoluble sulfates (Pb & Ba)
- High viscosity may cause analytical problems
- Matrix-match calibration standards

Acid Mixtures

• HCI:HNO₃ (3:1) Precious metals (Aqua Regia)

• HCI:HNO₃ (1:3) Soils, fertilizers (Reverse aqua regia)

• HNO₃:HCI:HF Alloys, ores, silicates, ash

• H₃PO₄:H₂SO₄ Aluminum oxide

• HNO₃:H₂SO₄ High molecular wt. organics

Lithium Battery Materials Sample Preparation

Materials of Interest

- Lithium Sources
 - Spodumene
 - Lepidolite
 - Petalite
 - Li₂CO₃
 - LiOH

- Recycled Material
 - Spent Li-Battery

- Cathode Materials
 - LCO
 - NMC
 - LFP
 - NCA

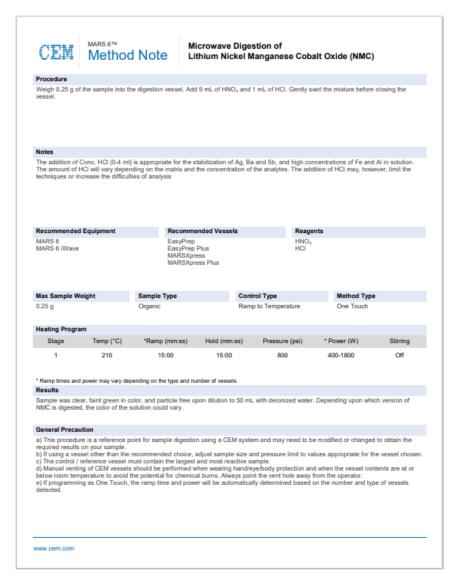
- Anode Material
 - Graphite

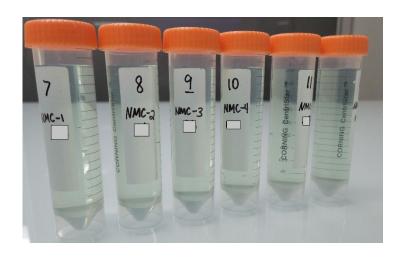
Sample Prep Protocol

- Sample sizes of 0.25 0.5 g
- Lepidolite Sample was in rock form and had to be ground
 - SPEX Shattterbox 8530
- All other samples were digested as received
- As these are inorganics the use of the proper acid mix is critical
- All samples digested in triplicate including method blanks
- Calibration
 - Two custom (1000 mg/L) multi-element standards from Inorganic Ventures
- Validation
 - Three NIST SRMS used lithium ore 182 (petalite), lithium ore 183 (lepidolite), 2711a (Montana Soil II)
 - Lithium Carbonate Spikes at various levels

The System

MARS 6 iWave – EasyPrep


- Digest up to 12 samples per batch
- Preprogrammed methods w/ recipe for digestion
 - Sample size
 - Acid type
 - Acid volume
- Onboard instructional videos


Acid Mixtures and Digestion Temperatures

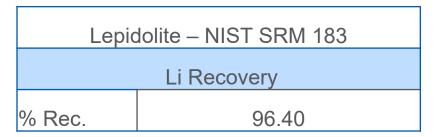
Sample	Acid Mixture	Temperature Required
Spodumene	(1:1) HCI:H2O + 5mL HF	210°C
Montana Soil II (SRM 2711a)	(1:1) HCI:H2O + 5mL HF	210°C
Lepidolite (SRM 183)	(1:1) HCI:H2O + 5mL HF	210°C
Petalite (SRM 182)	(1:1) HCI:H2O + 5mL HF	210°C
Lithium Hydroxide	(1:1) HNO3:H2O	180°C
Lithium Carbonate	(1:1) HNO3:H2O	180°C
Lithium Iron Phosphate (LFP)	(3:1) HCI:HNO3	220°C
Lithium Nickel Manganese Cobalt Oxide (NMC)	(9:1) HNO3:HCI	210°C
Lithium Nickel Cobalt Aluminum Oxide (NCA)	(1:1) HCI:H2O	230°C
Lithium Cobalt Oxide (LCO)	(9:1) HNO3:HCI	210°C
Graphite	(3:1) HCI:HNO3	220°C
Spent Li-Battery (recycled)	(3:1) HCI:HNO3	220°C

Digestion Procedure for NMC 811

- Simple acid matrix (9:1) HNO3:HCI
- Others have used various combinations of HNO3:HCl for digestion
- Depending on dosage ratios of Ni, Mn,
 Co the color of the digest may vary

Digested Samples

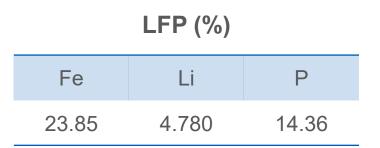
- Lithium Sources will provide clear, colorless solutions
- Cathode materials will often provide clear, nicely colored solutions
 - It can tell us something about our ratio in NMC for example
- Anode materials will often provide clear, colorless solutions
 - Leached materials will always have material remaining undigested



Lithium Sources and SRM Results by ICP-OES

Montana Soil II Recovery – NIST SRM 2711a												
Al Ca Co Fe K Mn Na P Si Ti V Zn										Zn		
% Recovery	93.32	92.89	101.4	94.84	101.7	95.84	107.7	101.1	96.60	98.91	97.75	96.81

Lepidolite – NIST SRM 182							
	Li Recovery						
% Rec. 99.70							



Cathode Material Results by ICP-OES

	NMC 811 (ppm)												
Al	Ca	Fe	K	Na	Р	Si	Ti	V	Zn				
16.71	1.930	2.180	199.6	13.48	14.06	1168	7.836	3.763	23.37				

NMC 811 (%)										
Со	Li	Mn	Ni							
7.046	7.560	3.388	55.98							

	LFP (ppm)												
Al	Ca	Со	K	Mn	Na	Si	Ti	V	Zn				
53.90	5.280	4.167	213.8	80.27	124.2	51.15	1600	11.42	12.67				

Anode Material Results by ICP-OES

	Graphite (ppm)												
Al	Ca	Со	Fe	K	Li	Mn	Na	Р	Si	Ti	V	Zn	
1.780	2.423	0.4700	94.44	36.65	38.96	0.5600	<lod< th=""><th>2.860</th><th>29.30</th><th>13.26</th><th>6.280</th><th>0.0333</th></lod<>	2.860	29.30	13.26	6.280	0.0333	

Conclusions

- Microwave closed vessel digestion speeds decomposition
 - Samples that take hours on a hot block can take minutes in the microwave
 - Some samples will not digest without microwave pressurized digestion
- Methods are different for organic and inorganic sample types
 - Organics = oxidation and destruction of the carbon matrix
 - Inorganics = optimize acids for sample matrix and analytes
 - For inorganic samples, total matrix digestion with HF may not always be necessary for analyte recovery
- Microwave digestion provides a good solution for preparing the varied sample types for lithium battery production and recycling
- For more information visit cem.com/microwave-digestion

Thank You

Questions?

