Trying to stay one-step ahead.

LGC

How High Resolution Accurate Mass LCMS has enabled early detection of fentanyl analogues (including carfentant) and synthetic cannabinoids in the UK.

Simon Hudson, Technical Director, LGC Sport and Specialised Analytical Services, Fordham, UK

Sport and Specialised Analytical Services

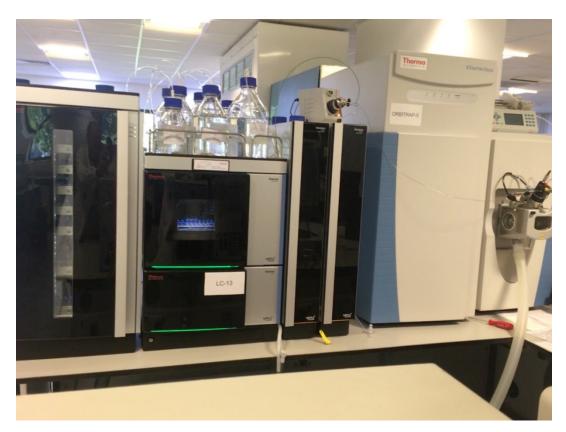
- Originally operating as Horseracing Forensic Laboratory, HFL, HFL Sport Science and now part of LGC.
- Background in doping and medication control in Equine, Canine and Human sport and also leaders in nutritional supplement testing though 'Informed Sport' and 'Informed Choice'.
- More recently involved in NPS and have applied HRAM LCMS to forensic toxicology and coroners work for customers in the UK.

Outline

- 1. High Resolution Accurate Mass (HRAM) LCMS
- 2. Fentanyl analogues
- 3. Synthetic Cannabinoid Receptor agonists (SCRAs)
- 4. Summary

High Resolution Accurate Mass (HRAM) LCMS

Thermo Scientific™ Orbitrap™


- First looked at HRAM LCMS in 2006
- Implemented in doping control screening in 2008 2 x Thermo Scientific™ LTQ Orbitrap XL™ ETD Hybrid Ion Trap-Orbitrap Mass Spectrometer removed 10 x GCMS and several LC-MS/MS instruments.
- 2012 Thermo Scientific™ Q Exactive™ Hybrid Quadrupole-Orbitrap Mass Spectrometer
- 2014 The Thermo Scientific™ Q Exactive™ Focus hybrid quadrupole-Orbitrap MS
- 2016-2019 3 Q Exactives and 1 Q Exactive Focus

Thermo Scientific Q Exactive Orbitrap

- High Resolution Accurate Mass (HRAM) LCMS
- 7 minute LC cycle time
- Over 2000 compounds

Selectivity of accurate mass – nominal mass

Compounds – all different elemental compositions	Nominal Mass			
Aminacrine (C ₁₃ H ₁₀ N ₂)	194			
Aminohippuric acid (C ₉ H ₁₀ N ₂ O ₃)	194			
Anthranol (C ₁₄ H ₁₀ O)	194			
Butylparaben (C ₁₁ H ₁₄ O)	194			
Caffeine (C ₈ H ₁₀ N ₄ O ₂)	194			
Dimethyl phthalate (C ₁₀ H ₁₀ O ₄)	194			
Galacturonic acid (C ₆ H ₁₀ O ₇)	194			
Hexylresorcinol (C ₁₂ H ₁₈ O ₂)	194			
Methylglucoside (C ₇ H ₄ O ₆)	194			
Depreton (C ₈ H ₁₀ N ₄ S)	194			
Phenocoll (C ₁₀ H ₁₄ N ₂ O ₂)	194			
Solanone (C ₁₃ H ₂₂ O)	194			
Temozolamide (C ₆ H ₆ N ₆ O ₂)	194			

Massingtelements

CarCarben - massats 12.00

Oxygergen – massats 15.995

Nithbitragen – massats 14.003

Hydhydregen - massats 1.008

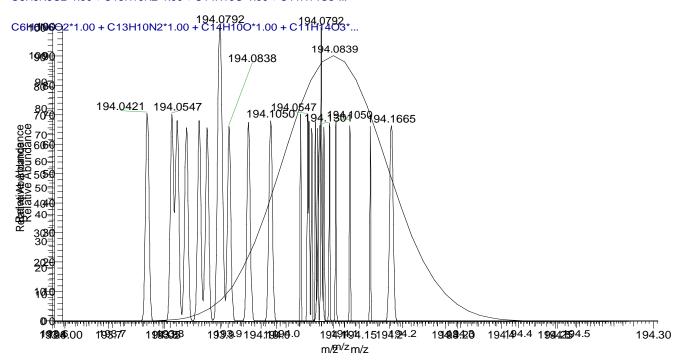
Selectivity of accurate mass

Compound	Accurate Mass
Aminacrine (C ₁₃ H ₁₀ N ₂)	194.08385
Aminohippuric acid (C ₉ H ₁₀ N ₂ O ₃)	194.06859
Anthranol (C ₁₄ H ₁₀ O)	194.07262
Butylparaben (C ₁₁ H ₁₄ O)	194.09375
Caffeine (C ₈ H ₁₀ N ₄ O ₂)	194.07983
Dimethyl phthalate (C ₁₀ H ₁₀ O ₄)	194.05736
Galacturonic acid (C ₆ H ₁₀ O ₇)	194.04210
Hexylresorcinol (C ₁₂ H ₁₈ O ₂)	194.13103
Methylglucoside (C ₇ H ₄ O ₆)	194.07849
Depreton (C ₈ H ₁₀ N ₄ S)	194.06207
Phenocoll (C ₁₀ H ₁₄ N ₂ O ₂)	194.10498
Solanone (C ₁₃ H ₂₂ O)	194.16652
Temozolamide (C ₆ H ₆ N ₆ O ₂)	194.05467

Accurate masses of elements

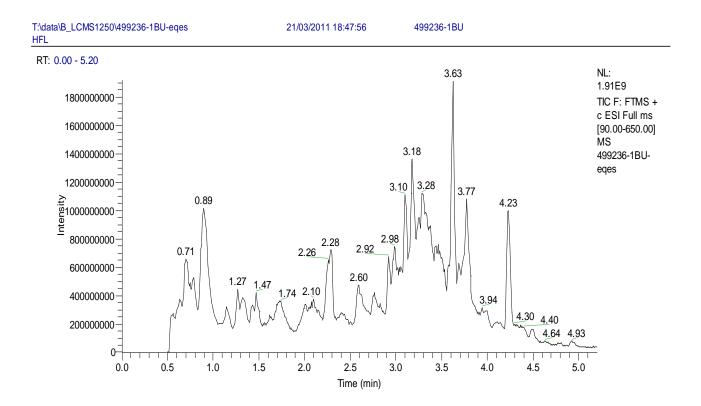
Carbon – mass 12.00

Oxygen – mass 15.995

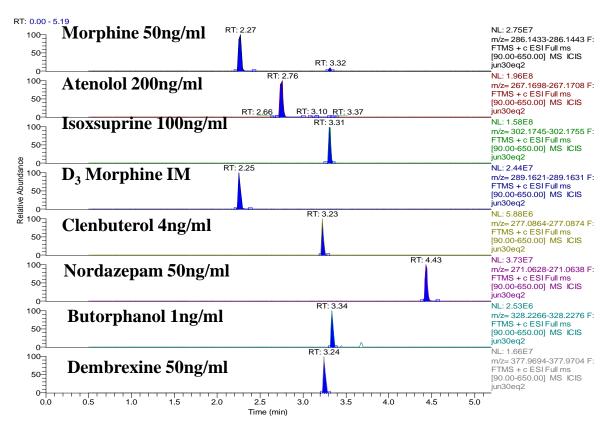

Nitrogen – mass 14.003

Hydrogen – mass 1.008

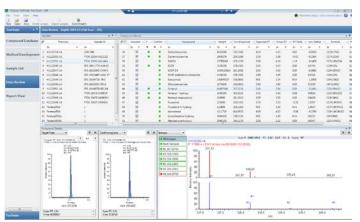
Selectivity through resolution and accurate mass measurement



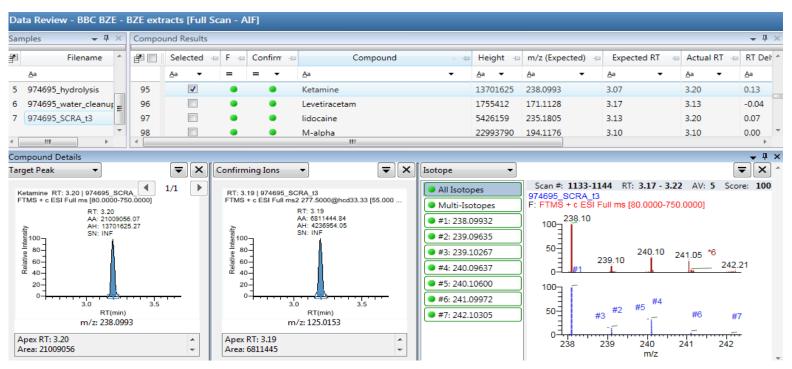
C6Ab16662270000C1813611211211-0014A1661100*1.001-440b11.403*...


Equine urine control sample post SPE – full scan

Equine urine control post SPE. EIC with 0.001 amu mass window



Sample analysis – General Drug Screen



- LC-HRAM-MS
- LC method acetic acid/acetonitrile gradient, 7 minute cycle time (5 minute acquisition time)
- +ve ESI with full scan and full scan All Ion Fragmentation (AIF) searched against database of over 2000 analytes
- Data dependent (dd) MS² scans initiated from inclusion list of around 1000 analytes (a subset of the database) with a tolerance +/- 2mDa.
- Data processing with ToxFinder

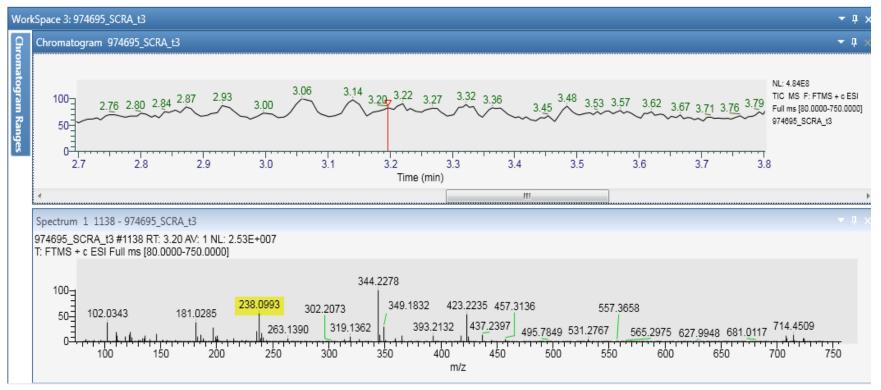
Sample analysis – General Drug Screen

Accurate mass processing database

Con	ompound Database - T3 database [Full Scan - AIF]*													
F	Compound Name 4	Molecular Formula	Extracted to m/z	Polarity 🕁	Adduct +=	Charge State	RT (min)	RT Window (sec)	Relative RT	Internal +=	Area Threshol += d	Height Threshol += d	Isotope Score	Fragment 1
	Aa ketamine ▼ 🏋	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a				
1	Ketamine-N-ethyl	C14H18CINO	252.11497	Positive ▼	Hydrogen ▼	1 •	3.20	24.00	1	BDPA Rt Marker ▼	1000000	1000000	35	125.0151
2	Ketamine	C13H16CINO	238.09932	Positive *	Hydrogen 🔻	1 •	3.07	30.00	0.959375	BDPA Rt Marker ▼	300000	100000	35	125.0153
3	ketamine - dehydronor	C12H12CINO	222.06802	Positive *	Hydrogen ▼	1 •	3.08	24.00	0.9625	BDPA Rt Marker ▼	1000000	1000000	35	205.0415
4	Ketamine - nor	C12H14CINO	224.08367	Positive *	Hydrogen 🔻	1 •	3.10	24.00	0.96875	BDPA Rt Marker ▼	1000000	1000000	35	207.0571
5	ketamine - hydroxynor	C12H14CINO2	240.07858	Positive *	Hydrogen ▼	1 •	2.61	36.00	0.815625	BDPA Rt Marker ▼	1000000	1000000	35	223.052
6				•	•	•				-				

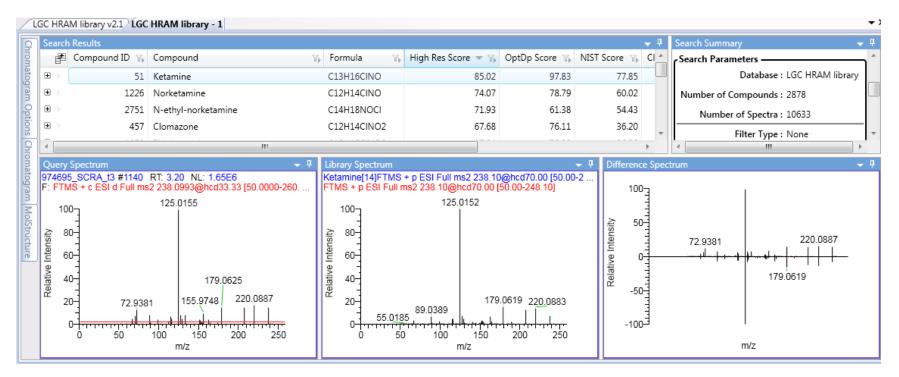
Inclusion list – over 1000 analytes

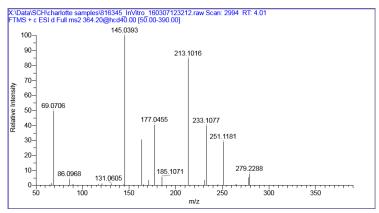
1210	142.159 C9H19N	Chemical	Н	1 Positive	2.99	3.39	NCE	N=Isometheptene; F=C9H19N; A=H; T=SRM
1211	158.1539 C9H19NO	Chemical	Н	1 Positive			NCE	N=Isometheptene hydroxy; F=C9H19NO; A=H; T=SRM
1212	138.0662 C6H7N3O	Chemical	Н	1 Positive	1.03	1.83	NCE	N=Isoniazid; F=C6H7N3O; A=H; T=SRM
1213	212.1281 C11H17NO3	Chemical	Н	1 Positive	1.28	2.08	NCE	N=Isoprenaline; F=C11H17NO3; A=H; T=SRM
1214	354.2666 C23H33N2O	Chemical	Н	1 Positive	3.2	3.7	NCE	N=Isopropamide; F=C23H33N2O; A=H; T=SRM
1215	357.1495 C18H26Cl2N2O	Chemical	Н	1 Positive	3	4	NCE	N=isopropyl-U-47700; F=C18H26Cl2N2O; A=H; T=SRM
1216	262.1802 C16H23NO2	Chemical	Н	1 Positive	2.8	3.8	NCE	N=isopropylphenidate; F=C16H23NO2; A=H; T=SRM
1217	246.1601 C14H19N3O	Chemical	Н	1 Positive	2.87	3.37	NCE	N=isopyrine; F=C14H19N3O; A=H; T=SRM
1218	475.2122 C22H30N6O4S	Chemical	Н	1 Positive	3	5	NCE	N=isosildenafil; F=C22H30N6O4S; A=H; T=SRM
1219	286.1372 C16H19N3S	Chemical	Н	1 Positive	3.21	3.71	NCE	N=Isothipendyl; F=C16H19N3S; A=H; T=SRM
1220	302.1751 C18H23NO3	Chemical	Н	1 Positive	3.05	3.55	NCE	N=Isoxsuprine; F=C18H23NO3; A=H; T=SRM
1221	318.17 C18H23NO4	Chemical	Н	1 Positive	3	3.5	NCE	N=Isoxsuprine ring OH; F=C18H23NO4; A=H; T=SRM
1222	439.1864 C24H26N2O6	Chemical	Н	1 Positive	0	5.1	NCE	N=JTE-907; F=C24H26N2O6; A=H; T=SRM
1223	357.1961 C24H24N2O	Chemical	Н	1 Positive	0	5.1	NCE	N=JWH-018 carboxamide derivative; F=C24H24N2O; A=H; T=S
1224	385.1911 C25H24N2O2	Chemical	Н	1 Positive	3.09	3.49	NCE	N=JWH-200; F=C25H24N2O2; A=H; T=SRM
1225	238.0993 C13H16CINO	Chemical	Н	1 Positive	2.82	3.32	NCE	N=Ketamine; F=C13H16ClNO; A=H; T=SRM
1226	222.068 C12H12CINO	Chemical	Н	1 Positive	2.88	3.28	NCE	N=ketamine - dehydronor; F=C12H12CINO; A=H; T=SRM
1227	240.0786 C12H14CINO2	Chemical	Н	1 Positive	2.31	2.91	NCE	N=ketamine - hydroxynor; F=C12H14ClNO2; A=H; T=SRM
1228	224.0837 C12H14CINO	Chemical	H	1 Positive	2.9	3.3	NCE	N=Ketamine - nor; F=C12H14ClNO; A=H; T=SRM
1229	252.115 C14H18CINO	Chemical	H	1 Positive	3	3.4	NCE	N=Ketamine-N-ethyl; F=C14H18ClNO; A=H; T=SRM
1230	369.1001 C20H17CIN2O3	Chemical	H	1 Positive	4.31	4.81	NCE	N=Ketazolam; F=C20H17CIN2O3; A=H; T=SRM
1231	248.1645 C15H21NO2	Chemical	Н	1 Positive	2.82	3.32	NCE	N=ketobemidone; F=C15H21NO2; A=H; T=SRM
1232	255.1016 C16H14O3	Chemical	Н	1 Positive	4.12	4.62	NCE	N=ketoprofen; F=C16H14O3; A=H; T=SRM
1233	256.0968 C15H13NO3	Chemical	Н	1 Positive	4.1	4.6	NCE	N=Ketorolac; F=C15H13NO3; A=H; T=SRM
1234	310.126 C19H19NOS	Chemical	Н	1 Positive	3.15	3.65	NCE	N=Ketotifen; F=C19H19NOS; A=H; T=SRM
1235	329.186 C19H24N2O3	Chemical	Н	1 Positive	3.14	3.64	NCE	N=Labetalol; F=C19H24N2O3; A=H; T=SRM
1236	251.139 C13H18N2O3	Chemical	Н	1 Positive	0.5	6.5	NCE	N=Lacosamide; F=C13H18N2O3; A=H; T=SRM
1237	230.0594 C8H11N3O3S	Chemical	Н	1 Positive	1.85	2.35	NCE	N=lamivudine; F=C8H11N3O3S; A=H; T=SRM
1238	256.0151 C9H7Cl2N5	Chemical	Н	1 Positive	2.87	3.37	NCE	N=Lamotrigine; F=C9H7Cl2N5; A=H; T=SRM
1239	370.0832 C16H14F3N3O2S	Chemical	Н	1 Positive	3.83	4.49	NCE	N=Lansoprazole; F=C16H14F3N3O2S; A=H; T=SRM
1240	328.2873 C22H35N2	Chemical	Н	1 Positive	3.89	4.39	NCE	N=laurolinium; F=C22H35N2; A=H; T=SRM
1241	226.159 C16H19N	Chemical	Н	1 Positive	3.08	3.58	NCE	N=lefetamine; F=C16H19N; A=H; T=SRM
1242	139.0978 C6H10N4	Chemical	Н	1 Positive	3.26	3.76	NCE	N=leptazol; F=C6H10N4; A=H; T=SRM

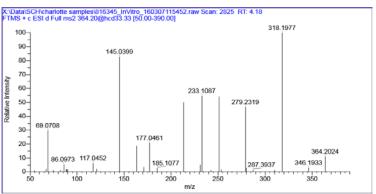

Multiple MS2 events initiated

Chromatogram Options		X
Chromatogram —		
		Ш
		Ш
		Ш
Filter	FTMS + c ESI d Full ms2 238.1271@hcd33.33 [50.0000-260.0000] ▼	Ш
	FTMS + c ESI d Full ms2 238.1271@hcd33.33 [50.0000-260.0000]	Ш
Time Range	FTMS + c ESI d Full ms2 239.1277@hcd33.33 [50.0000-260.0000]	Ш
Trace Type	FTMS + c ESI d Full ms2 240.1600@hcd33.33 [50.0000-265.0000]	Ш
ll lace Type	F1M3 + C E31 d Full MS2 230.1800@ficd55.55 [30.0000-273.0000]	Ш
Filter Mass	FTMS + c ESI d Full ms2 254.1750@hcd33.33 [50.0000-275.0000]	Ш
	FTMS + c ESI d Full ms2 256.0141@hcd33.33 [50.0000-280.0000]	J۱
	FTMS + c ESI d Full ms2 262.1801@hcd33.33 [50.0000-285.0000] FTMS + c ESI d Full ms2 264.1955@hcd33.33 [50.0000-285.0000]	
	FTMS + c ESI d Full ms2 266.1651@hcd33.33 [50.0000-290.0000]	
	FTMS + c ESI d Full ms2 271.1802@hcd33.33 [50.0000-295.0000]	
	FTMS + c ESI d Full ms2 276.1955@hcd33.33 [50.0000-300.0000]	
	FTMS + c ESI d Full ms2 278.2113@hcd33.33 [50.0000-300.0000]	
	FTMS + c ESI d Full ms2 280.1695@hcd33.33 [50.0000-305.0000]	
	FTMS + c ESI d Full ms2 281.2111@hcd33.33 [50.0000-305.0000]	
	FTMS + c ESI d Full ms2 284.1180@hcd33.33 [50.0000-310.0000]	
	FTMS + c ESI d Full ms2 290.1747@hcd33.33 [50.0000-315.0000]	
	FTMS + c ESI d Full ms2 296.1201@hcd33.33 [50.0000-320.0000]	
	FTMS + c ESI d Full ms2 300.1592@hcd33.33 [50.0000-325.0000]	
	FTMS + c ESI d Full ms2 304.1542@hcd33.33 [50.0000-330.0000] FTMS + c ESI d Full ms2 310.2182@hcd33.33 [50.0000-335.0000]	
	FTMS + c ESI d Full ms2 310.2182@nca33.33 [50.0000-335.0000]	
	FTMS + c ESI d Full ms2 319.1652@hcd33.33 [50.0000-345.0000]	
	1 1 1 1 3 · C EST G 1 GH 11 11 32 515/1052 WHEGISJAST 150/0000 545/00001	
		_


Ion identified in full scan spectrum for MS² from inclusion list


Data dependent MS² triggered by m/z 238.0993


Confirmation of finding using MS2 spectrum generated 'on the fly' then matched in library – either mzcloud™ or mzvault ™



MS2 spectra – single CE or stepped CE

CE 40

5F-ADB metabolite

CE 15,35,50

Keeping up to date – need to know what to look for (without reference materials)

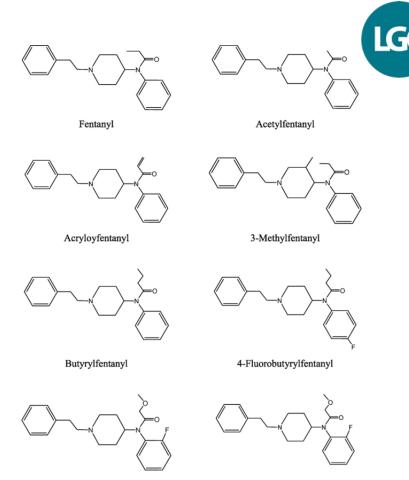
- Problems presented by incorporation of new NPS into testing
 - No definitive information on metabolism
 - No reference materials initially for parent drug or metabolites

Database

- Updated as new drugs reported through forensic networks
- Updated as new drugs detected in seizures
- Updated as new drugs come on to the market or are found in sports drug testing
- Updated as cases seen with metabolites or from in-vitro metabolism

Libraries

- Updated as new drugs are detected in lab from seizures or biological samples
- Updated as cases seen with metabolites or from in-vitro metabolism
- Use of mzcloud which is updated daily



Nomenclature

- Fentanyl is a potent opioid drug 100x stronger than morphine
- 'Fentanyls' is a generic term used to cover all the compounds of similar structure that are often termed 'designer' fentanyls
- A fentanyl can in this context be any of the 'fentanyl' group of drugs

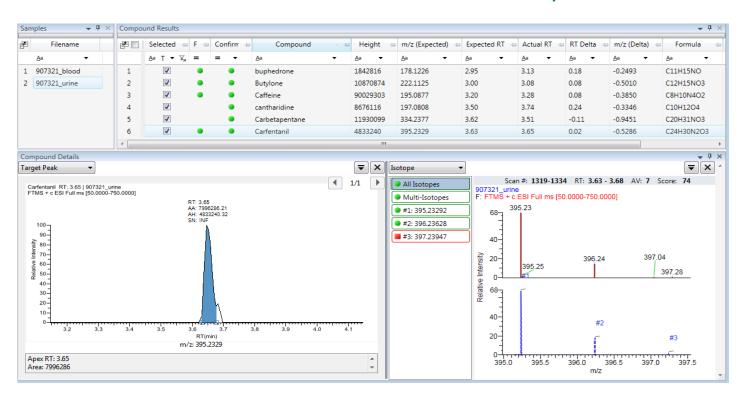
Furanylfentanyl

Ocfentanil

Detection of fentanyl analogues in the UK by LGC

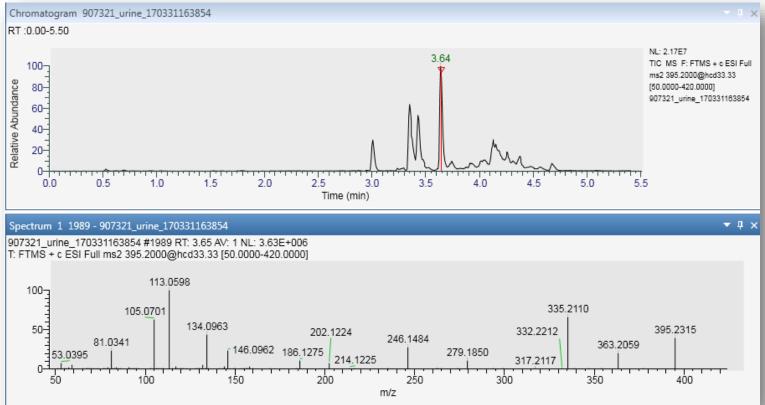
- Up to 2017, a handful of fentanyl, alfentanil and fluorofentanyl findings
- 2017 started with a few fentanyl, fluorofentanyl and fluorobutyryl fentanyl findings
- Late March 2017, detected carfentanil in a urine and blood sample.

Recent Deaths Possibly Linked to Fentanyl

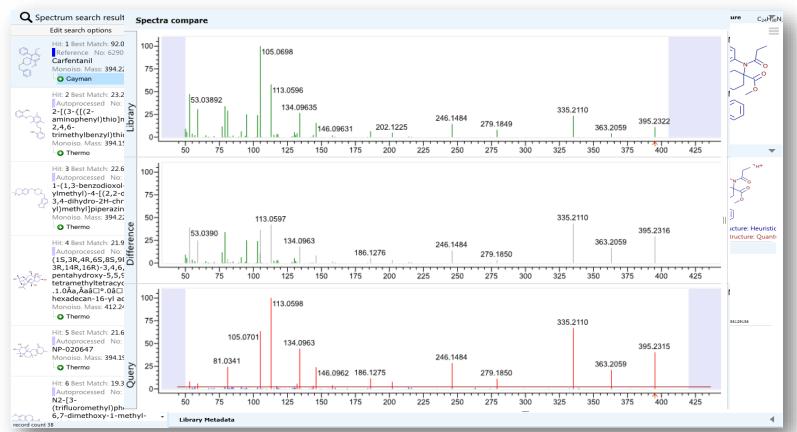

April 2017

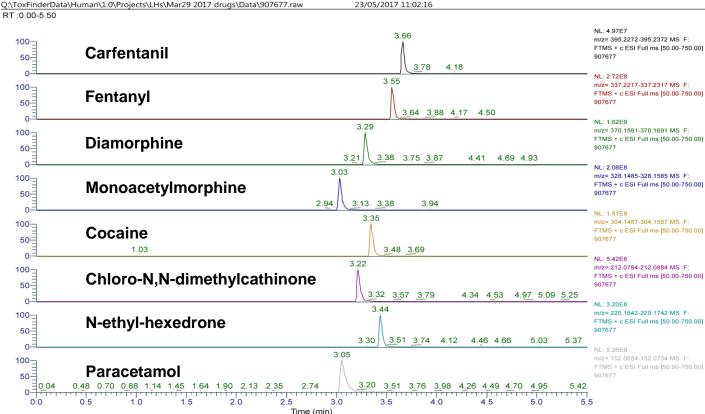
There has been a recent increase in deaths attributed to heroin in the North East of England. Some of these deaths have shown signs of being very sudden, potentially indicating an immediate and fatal overdose. Recent results from toxicology samples submitted for specific fentanyl screening generated 'additional substance' detections.

First carfentanil finding Mar 2017



Carfentanil in accurate mass database from work in animal sport


Re-analysed to generate MS² data as not in inclusion list


Confirmed ID as carfentanil using mzcloud

Carfentanil in heroin seizure

For Forensic Use Only.

Over 3 days, identified carfentanil in blood, urine and heroin seizure

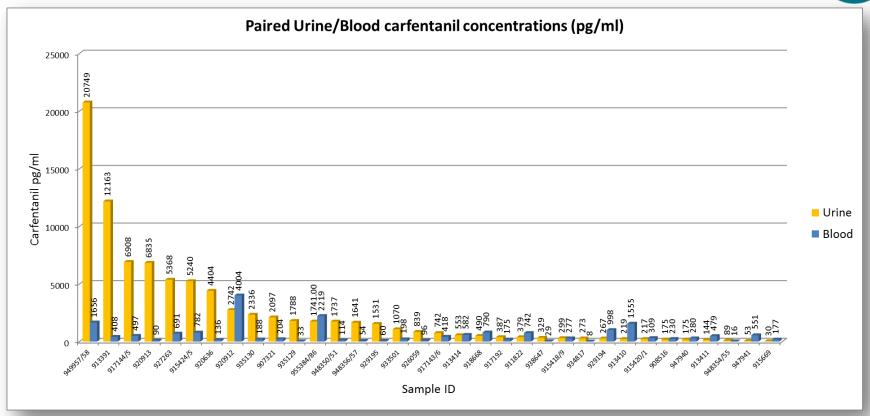
- Quantitative potency approximately 10,000 times that of morphine and 100 times that of fentanyl
- Active in humans at 1µg. Believed to be lethal at 20µg
- Being added to heroin
- Other drugs present
- Level seen at LGC 0.2% carfentanil in heroin could lead to dose of 200µg assuming a 100mg dose of heroin

Selected coroners cases

	LGC
•	

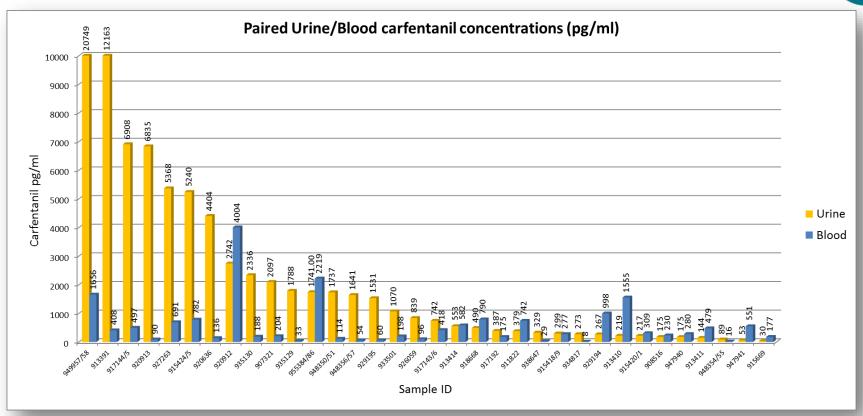
M/F	Age	Circumstances	Synthetic fentanyls	Other drugs
M	44	Ex drug-abuser. Started using again last 4-5 months. Found in foetal position on floor, uncapped syringe present.	Carfentanil 230 pg/mL blood 175 pg/mL urine Fentanyl = <0.1 ng/mL Norfentanyl = <0.1 ng/mL	Morphine (free) = 18 ng/mL Morphine (total) = 21 ng/mL Noscapine and papaverine metabolites detected Mirtazapine = 15 ng/mL Diazepam = 68 ng/mL Nordiazepam = 29 ng/mL Paracetamol = <5 mg/L
M	44	Discovered on living room floor of flat deceased.	Carfentanil 96 pg/mL blood 839 pg/mL urine Fentanyl = <0.1 ng/mL Norfentanyl = <0.1 ng/mL	Duloxetine = 92 ng/mL Paracetamol = 16 mg/L
M	40	Found on waste ground, kneeling position, drug paraphernalia at side of body.	Carfentanil 4004 pg/mL blood 2742 pg/mL urine Fentanyl = <0.1 ng/mL Norfentanyl = <0.1 ng/mL	Morphine (free) = 71 ng/mL Morphine (total) = 94 ng/mL 6-monoacetylmorphine detected Noscapine and papaverine metabolites detected Ethanol = 10 mg/100mL (PB) Ethanol = 22 mg/100mL (PU) Paracetamol = 11 mg/L Pregabalin = 11 mg/L THC-COOH = 7 ng/mL

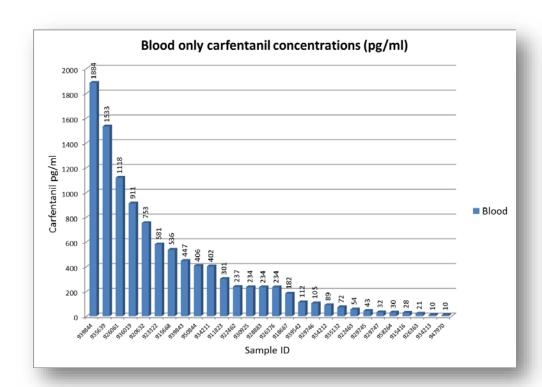
Selected coroners cases

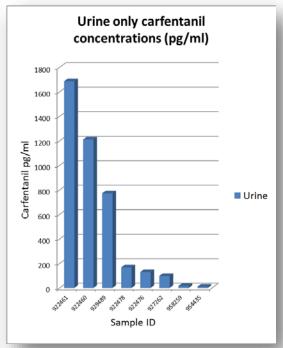


M/F Age	Circumstances	Synthetic fentanyls	Other drugs
M 31	IV drug abuser. Slumped in bathroom. Syringe in left hand and belt around right arm. Prescribed co-codamol, methadone and mirtazapine.	Carfentanil 479 pg/mL blood, 144 pg/mL urine Butyryl fentanyl 4F-butyryl fentanyl	Synthetic cannabinoid: 5F-ADB Ethanol = 10 mg/100mL (PB) Ethanol = 22 mg/100mL (PU) Morphine (free) =16 ng/mL Morphine (total) = 17 ng/mL Paracetamol = <5 mg/L Diazepam = 558 ng/mL Nordiazepam = 458 ng/mL Temazepam = 16 ng/mL Oxazepam = <5 ng/mL Pregabalin = 4.0 mg/L Methadone = 498 ng/mL EDDP = 50 ng/mL Cocaine metabolite (benzoylecgonine = 19 ng/mL) Mirtazapine = 128 ng/mL

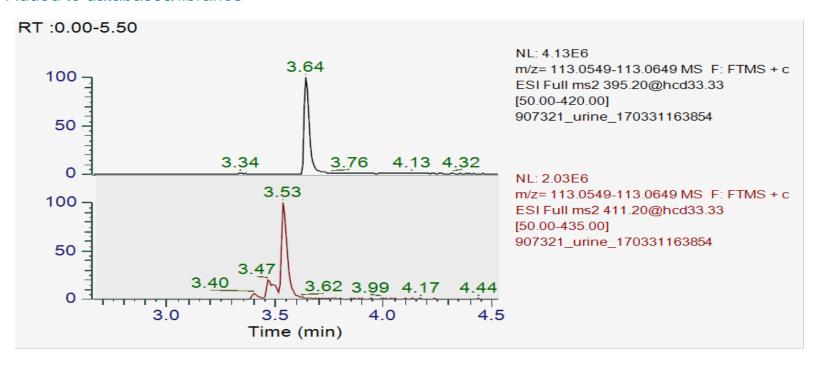
Carfentanil Blood/Urine findings ·


- LOD approximately 5pg/ml (5ppt)
- Highest blood level 4004 pg/ml
- Highest urine level 20749 pg/ml

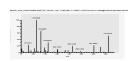

Carfentanil Blood/Urine findings (displayed to 10000 pg/ml)



Carfentanil Blood/Urine findings

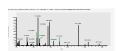


What about metabolites?


LGC

- Parent drug and hydroxylated metabolites in urine.
- Added to databases/libraries

Generally the major hydroxy metabolite



Additional hydroxy metabolites

Desalkyl metabolite (but also a metabolite remifentanil)

Fentanyl analogues since Mar 2017

- 70 cases have contained carfentanil (sometimes with other 'fentanyls'
- Most recent positive carfentanil findings from cases from June 2017 – i.e problem gone.
- Other fentanyls seen over same period included fentanyl, alfentanil, fluorofentanyl, furanylfentanyl, butyrylfentanyl, 4F isobutyrylfentanyl
- Since this period cyclopropylfentanyl, methoxyacetylfentanyl, fentanyl, alfentanil and remifentanil

West Yorkshire men jailed for selling drugs on the dark web

Case Study - Operation Tanite

- Selling Carfentanil and other related fentanyls from warehouse through Royal Mail
- Large quantities of cutting agents found namely paracetamol, caffeine and mannitol
- Drugs were being mixed in a blender
- Perpetrators used filtered face masks and strong gloves
- Approximately 650g of carfentanil seized which is equivalent to around 300million to 600million doses
- Case worked on by pairs of analysts one of whom was trained in naloxone antidote administration
- Three defendants were sentenced to a total of 42 years for supply of a Class A drug in January 2019
- Although not confirmed as being a direct result of this gang over 100 people died of overdoses with carfentanil present

OFFICIAL

00

Manchester Spice Zombies

UK Prisons

2014 2017 2015 2016

LGC

Synthetic ca Warning Synthetic ca Two people die in suspected spice-health problemergene impact in U related incidents

Prisoners increasingly u Inspectors reveal d numbers of users in hos

synthetic drug cor

Inspectors who review

emergencies involving in

Chief inspector of priso cannabis substitutes 'sr

Prisoner dies of suspected overdose at HMP Forest Bank in Salford, and Somerset police investigate death of man in Taunton

Synthetic cannabis know UK prisons with serious inspector of prisons, Nic

The deaths will heighten concerns that problems relating to spice are growing both inside and outside prison. Photograph-Leon Neal/AFP/Getty Images

Spice – what is it?

A BOTANICAL PRODUCT

An exotic custom blend of aromatic spices, herbs, and extracts, releasing a warm, sensual, pleasant aroma when burned.

May contain wild lettuce, red clover, basil, spearmint, peppermint, chamomile flower, hops, strawberry leaves, and patchouli leaves.

Best used with charce all and an incense burner.

May be used

NET WEIGHT - 10 Grams

Not for human consumption.

- Available on Internet and from specialist shops from at least 2006
- Advertised as an 'exotic incense blend that releases a rich aroma'
- Also marked 'not for human consumption'
- When smoked it's reported to have effect similar to cannabis
- Listed ingredients are all plant material
- Has been associated with deaths around the world

What is 'Spice'

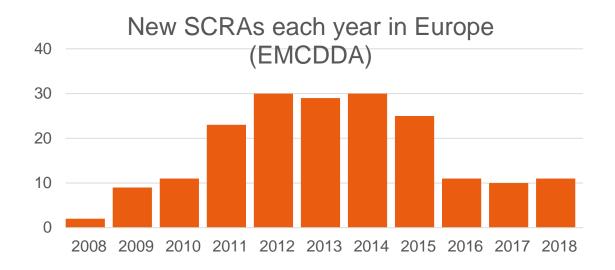
JWH-018 - first SCRA

- First synthesized in 1995 by John W Huffman's group in Clemson University, South Carolina to study structure-receptor relationships
- Never tested in humans
- JWH-018 approximately 5x more potent than THC
- Structurally dissimilar to THC
- Now illegal in many countries
- As of 13th June 2019, 198 different SCRAs have been reported in Europe

Synthetic Cannabinoid Receptor Agonists - Variety of structures

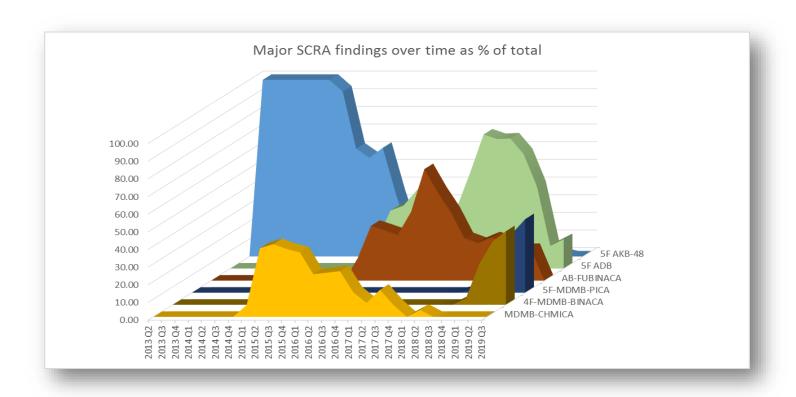
So where have these compounds come from?

- Scientific literature e.g. Huffman's work on drug/cannabinoid receptor interaction as investigative tools for the endocannabinoid system
- Filed patents much work has been done on trying to mimic the pain relieving property of cannabis without the psychoactive effect.
- More recently, attempts to evade legislation by structural modification

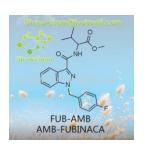

Hijacking of Basic Research: The Case of Synthetic Cannabinoids

Jenny L. Wiley, PhD, Julie A. Marusich, PhD, John W. Huffman, PhD, Robert L. Balster, PhD, and Brian F. Thomas. PhD

Gathering and communicating knowledge are important aspects of the scientific endeavor. Yet presentation of data in public forums such as scientific meetings and publications makes it available not only to scientists, but also to others who may have different ideas about how to use research findings. A recent example of this type of hijacking is the introduction of synthetic cannabinoids that are sprayed on herbal products and subsequently smoked for their marijuana-like intoxicating properties. Originally developed for the legitimate research purpose of furthering understanding of the cannabinoid system, these synthetic


New SCRAs in Europe

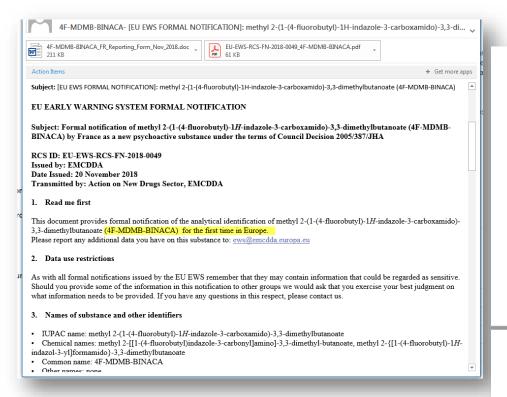
Change in major SCRA findings at LGC over time 2013-2019



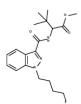
Testing Methodology - SCRAs

LGC

- Herbals etc prepared in methanol
- LLE sample prep of blood or pre-treated urine
- Analysis on Q Exactive MS
- Full scan + AIF + dd MS2
 - Full scan/AIF broad screen and new compounds
 - DD MS2 from 800+ analyte inclusion list to confirm actual finding. Mass window to trigger inclusion list MS2 – 5 mmu with 4 second dynamic exclusion



4F-MDMB-BINACA



3. Names of substance and other identifiers

- IUPAC name: methyl 2-(1-(4-fluorobutyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate
- Chemical names: methyl 2-[[1-(4-fluorobutyl)indazole-3-carbonyl]amino]-3,3-dimethylbutanoate, methyl 2-{[1-(4-fluorobutyl)-1*H*-indazol-3-yl]formamido]-3,3-dimethylbutanoate
- Common name: 4F-MDMB-BINACA
- Other names: none
- Chemical formula: C₁₉H₂₆FN₃O₃
- Molecular weight: 363.43
- CAS Registry number: not registered
- InChlKey: GZGKSDAMWRWYOZ-UHFFFAOYSA-N

Molecular structure

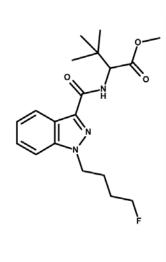
Praça Europa 1, Cais do Sodré, 1249-289 Lisbon, Portugal

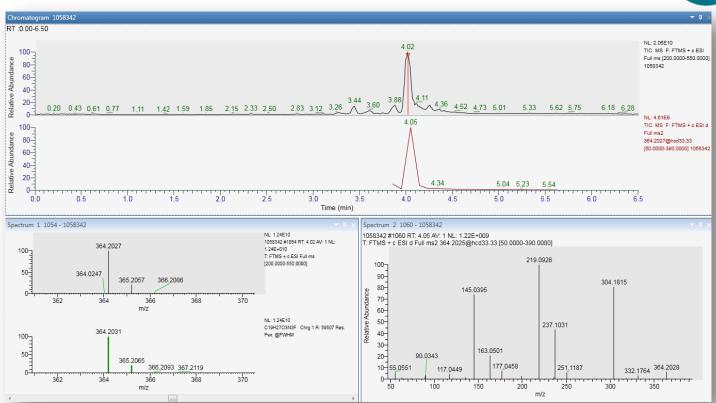
Tel. (351) 211 21 02 00 | Fax (351) 211 21 03 80 | ews@emcdda.europa.eu | emcdda.europa.eu

EU EWS FORMAL NOTIFICATION | EU-EWS-RCS-FN-2018-0049

4. Substance classification

Synthetic cannabinoid

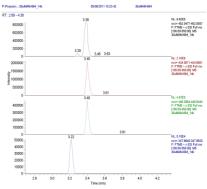

Add to accurate mass database


Con	npound Database - SCRA Master [I	Full Scan - AIF] Molecular	Extracted			Charge	RT	RT Window	Relative	Internal	Area	Height	Isotope	
F	Compound Name	Formula	m/z	Polarity 垣	Adduct -	State	(min)		RT	Standard	Threshol += d	Threshol -	Score	Fragment 1
	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a
939	APP-BINACA-desamino-hydroxy	C21H23N3O3	366.18122	Positive ▼	Hydrogen ▼	1	4.64	30.00	1.198966408	d5 hydroxypenty ▼	1400000	100000	35	201.1018
940	4F MDMB-BINACA	C19H26FN3O3	364.2031	Positive 🔻	Hydrogen *	1	4.10		1.059431525	d5 hydroxypenty	1400000	100000	35	
941	4F-MDMB-BINACA-desmethyl	C18H24FN3O3	350.18745	Positive •	Hydrogen 🔻	1	3.97	30	1.025839793	d5 hydroxypenty	1400000	100000	35	219.0926
942	APP-BINACA-hydroxy 2	C21H24N4O3	381.19212	Positive •	Hydrogen 🔻	1 .	3.16	30.00	0.816537468	d5 hydroxypenty	1400000	100000	35	235.1071
943	APP-BINACA-hydroxy 3	C21H24N4O3	381.19212	Positive *	Hydrogen 🔻	1 .	3.32	30.00	0.857881137	d5 hydroxypenty	1400000	100000	35	201.1017
944	APP-BINACA-hydroxy 4	C21H24N4O3	381.19212	Positive •	Hydrogen 🔻	1 .	3.64	30.00	0.940568475	d5 hydroxypenty	1400000	100000	35	217.0969
945	APP-BINACA-dihydroxy 1	C21H24N4O4	397.18703	Positive •	Hydrogen 🕶	1 .	2.87	30.00	0.741602067	d5 hydroxypenty	1400000	100000	35	235.1074
946	APP-BINACA-dihydroxy 2	C21H24N4O4	397.18703	Positive •	Hydrogen 🕶	1 .	3.18	30.00	0.821705426	d5 hydroxypenty	1400000	100000	35	217.0969
47	4F-MDMB-BINACA-desfluoro-hydroxy	C19H27N3O4	362.20743	Positive •	Hydrogen 🕶	1 .	3.60	30.00	0.930232558	d5 hydroxypenty	1400000	100000	35	235.1077
48	4F-MDMB-BINACA-desmethyl (-2H)	C18H22N3O3F	348.1718	Positive 🕶	Hydrogen ▼	1 .	3.30	30.00	0.852713178	d5 hydroxypenty ▼	1400000	100000	35	237.1019

Identified in the UK in a 'Spice' product – Dec 2018

 $C_{19}H_{26}FN_3O_3$

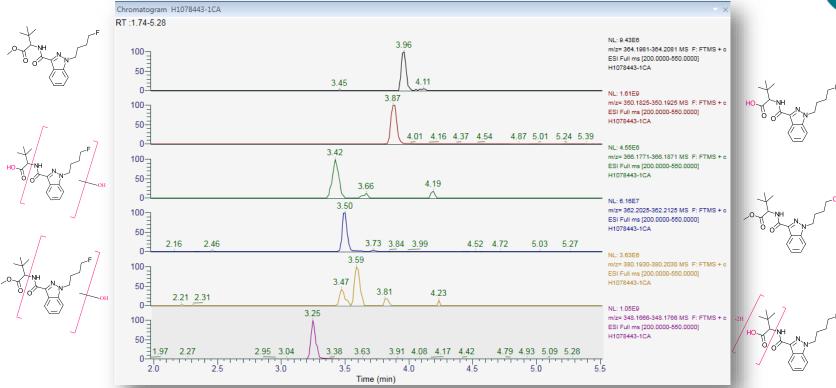
Add Rt and fragment information to accurate mass database


Compound Database - SCRA Master [Full Scan - AIF]														
#	Compound Name 4	Molecular Formula	Extracted #=	Polarity 🕁	Adduct +=	Charge State	RT (min)	RT Window (sec)	Relative RT	Internal Standard	Area Threshol += d	Height Threshol += d	Isotope Score	Fragment 1
	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼
939	APP-BINACA-desamino-hydroxy	C21H23N3O3	366.18122	Positive ▼	Hydrogen ▼	1 •	4.64	30.00	1.198966408	d5 hydroxypenty ▼	1400000	100000	35	201.1018
940	4F MDMB-BINACA	C19H26FN3O3	364.2031	Positive 🔻	Hydrogen 🔻	1 -	4.10	30.00	1.059431525	d5 hydroxypenty	1400000	100000	35	219.0926
941	4F-MDMB-BINACA-desmethyl	C18H24FN3O3	350.18745	Positive *	Hydrogen ▼	1 •	3.97	30	1.025839793	d5 hydroxypenty ▼	1400000	100000	35	219.0926
942	APP-BINACA-hydroxy 2	C21H24N4O3	381.19212	Positive *	Hydrogen 🔻	1 -	3.16	30.00	0.816537468	d5 hydroxypenty	1400000	100000	35	235.1071
943	APP-BINACA-hydroxy 3	C21H24N4O3	381.19212	Positive *	Hydrogen 🔻	1 -	3.32	30.00	0.857881137	d5 hydroxypenty	1400000	100000	35	201.1017
944	APP-BINACA-hydroxy 4	C21H24N4O3	381.19212	Positive *	Hydrogen ▼	1 -	3.64	30.00	0.940568475	d5 hydroxypenty ▼	1400000	100000	35	217.0969
945	APP-BINACA-dihydroxy 1	C21H24N4O4	397.18703	Positive *	Hydrogen ▼	1 -	2.87	30.00	0.741602067	d5 hydroxypenty ▼	1400000	100000	35	235.1074
946	APP-BINACA-dihydroxy 2	C21H24N4O4	397.18703	Positive 🕶	Hydrogen ▼	1 -	3.18	30.00	0.821705426	d5 hydroxypenty	1400000	100000	35	217.0969
947	4F-MDMB-BINACA-desfluoro-hydroxy	C19H27N3O4	362.20743	Positive 🕶	Hydrogen ▼	1 •	3.60	30.00	0.930232558	d5 hydroxypenty	1400000	100000	35	235.1077
948	4F-MDMB-BINACA-desmethyl (-2H)	C18H22N3O3F	348.1718	Positive ▼	Hydrogen ▼	1 -	3.30	30.00	0.852713178	d5 hydroxypenty ▼	1400000	100000	35	237.1019

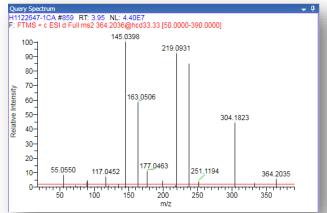
Getting more information – *In-Vitro* **Metabolism**

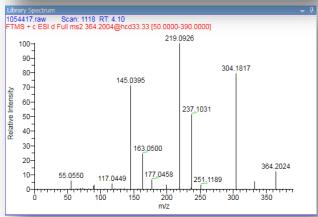
- Knowledge of breakdown in the body is required – metabolism
- Many drugs only leave detectable concentrations of metabolites and not parent drug
- Metabolite information for many NPS are not available
- Able to mimic metabolism in a test tube using the drug and enzymes from liver cells
- Information is added to databases to use in testing process

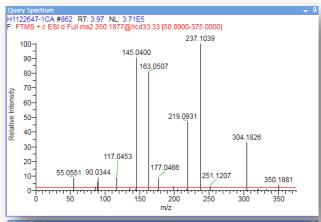
Metabolism of 4F MDMB-BINACA

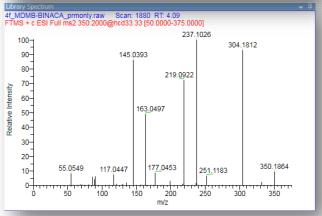

Addition of metabolite information

Compound Database - SCRA Master [Full Scan - AIF]														
P	Compound Name	Molecular Formula	Extracted m/z	Polarity +=	Adduct +=	Charge State	RT (min)	RT Window (sec)	Relative RT	Internal Standard	Area Threshol += d	Height Threshol += d	Isotope Score	Fragment 1
	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼	<u>A</u> a ▼
939	APP-BINACA-desamino-hydroxy	C21H23N3O3	366.18122	Positive 🔻	Hydrogen ▼	1 •	4.64	30.00	1.198966408	d5 hydroxypenty ▼	1400000	100000	35	201.1018
940	4F MDMB-BINACA	C19H26FN3O3	364.2031	Positive 🔻	Hydrogen 🔻	1 •	4.10	30.00	1.059431525	d5 hydroxypenty 💌	1400000	100000	35	219.0926
941	4F-MDMB-BINACA-desmethyl	C18H24FN3O3	350.18745	Positive 🔻	Hydrogen ▼	1 •	3.97	30	1.025839793	d5 hydroxypenty ▼	1400000	100000	35	219.0926
942	APP-BINACA-hydroxy 2	C21H24N4O3	381.19212	Positive 🔻	Hydrogen 🔻	1 •	3.16	30.00	0.816537468	d5 hydroxypenty 💌	1400000	100000	35	235.1071
943	APP-BINACA-hydroxy 3	C21H24N4O3	381.19212	Positive 🔻	Hydrogen ▼	1 •	3.32	30.00	0.857881137	d5 hydroxypenty ▼	1400000	100000	35	201.1017
944	APP-BINACA-hydroxy 4	C21H24N4O3	381.19212	Positive 🔻	Hydrogen 🔻	1 •	3.64	30.00	0.940568475	d5 hydroxypenty 💌	1400000	100000	35	217.0969
945	APP-BINACA-dihydroxy 1	C21H24N4O4	397.18703	Positive 🔻	Hydrogen ▼	1 •	2.87	30.00	0.741602067	d5 hydroxypenty ▼	1400000	100000	35	235.1074
946	APP-BINACA-dihydroxy 2	C21H24N4O4	397.18703	Positive 🕶	Hydrogen ▼	1 •	3.18	30.00	0.821705426	d5 hydroxypenty 💌	1400000	100000	35	217.0969
947	4F-MDMB-BINACA-desfluoro-hydroxy	C19H27N3O4	362.20743	Positive 🕶	Hydrogen ▼	1 •	3.60	30.00	0.930232558	d5 hydroxypenty 🕶	1400000	100000	35	235.1077
948	4F-MDMB-BINACA-desmethyl (-2H)	C18H22N3O3F	348.1718	Positive 🕶	Hydrogen ▼	1 -	3.30	30.00	0.852713178	d5 hydroxypenty 💌	1400000	100000	35	237.1019


Metabolites identified in post mortem sample – Jan-2019



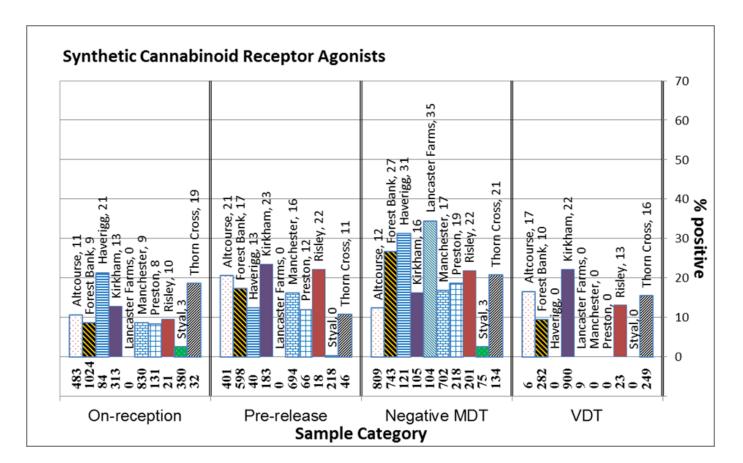



4F MDMB-BINACA parent and desmethyl metabolite matched against in vitro data.

First Study of NPS use in UK prisons

- LGC approached by the National Offender Management Service (NOMS) in August 2014 to look at 'Spice' use in prisons
- Agreed a broad screening approach to cover all NPS and 'traditional'
 DoA, prescription medications and 'over the counter' products.
- Phase I 10 prisons in North West (Dec 2014- May 2015) HRAM-LCMS
- Phase II 10 prisons in North West and 20 in South East (May 2015-Jul 2015) – HRAM-LCMS and GCMS – (negative MDT samples only)
- Analysis of drug seizures in participating prisons

UK prisons study 2015 (12000 urine samples)



SCRAs

- 19 different SCRAs were detected
- Overall % of urines positive was 19.4%
- 1873 samples contained one of more SCRA
- Positive rate in some prisons > 30%
- Very low use in female prisons

UK prisons study 2015 (12000 urine samples)

Latest Findings – SCRAs

December 2018

- Spice material from Eurofins (ex LGC) forensics
- Analysed and found 4F MDMB-BINACA and APP-BINACA
- Added to HRAM database along with theoretical metabolites
- Data supported by NMR
- Reported to EMCDDA

January 2019

- In vitro metabolism performed on extract from 'Spice'
- Major metabolites identified and confirmed in/added to database and MS2 data added to library
- Positives seen for 4F MDMB-BINACA and APP-BINACA in blood and urine from coroners cases.

Since January 2019

45 x 4F-MDMB-BINACA findings, 42 x 5F-MDMB-PICA findings

Summary

- Numbers of new NPS detections are reducing. Old ones occasionally reemerge.
- Still remains a challenge.
- It <u>is</u> possible to keep up with new compounds if labs are pragmatic about the initial data that they use to start screening with.
- Strategies presented here enable us to keep as up to date as possible with NPS evolution

simon.hudson@lgcgroup.com

